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Overlapping communication with computation is a well-known approach to
improving performance. Previous research has focused on optimizations per-
formed by the programmer. This paper presents a compiler algorithm that
automatically determines the appropriate loop indices of a given nested loop
and applies loop interchange and tiling in order to overlap communication with
computation. The algorithm avoids generating redundant communication by
providing a framework for combining information on data dependence, com-
munication, and reuse. It also describes a method of generating messages to
exchange data between processors for tiled loops on distributed memory
machines. The algorithm has been implemented in our High Performance
Fortran (HPF) compiler, and experimental results have shown its effectiveness
on distributed memory machines, such as the RISC System�6000 Scalable
POWERparallel System. This paper also discusses the architectural problems of
efficient optimization.

KEY WORDS: compiler; distributed memory machines; overlapping com-
munication with computation; loop transformations.

1. INTRODUCTION

On distributed memory machines, data parallel programming provides an
effective way of writing scalable parallel programs. In this model, the user
writes message-passing programs that deal with separate address spaces,
communication, and synchronization. Therefore, many parallelizing com-
pilers(1�6) have been developed for the Fortran-D and High Performance
Fortran (HPF)(7) languages. These compilers make it possible for the user
to write programs in the global memory address space without dealing
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with the details of interprocessor communication and synchronization. To
obtain scalability with parallel compilers, it is important to use message
related optimization that combines a series of short messages in a loop into
a single long message to reduce the startup overhead of each communica-
tion. It is the key optimization in parallelizing compilers for distributed
memory machines(8).

Many researchers have proposed methods for reducing execution time
by overlapping communication with computation. This hides the commu-
nication latency during computation. In previous methods, (9�11) the pro-
grammer had to manually insert nonblocking send�receive(12) or PUT�GET
primitives in order to use the optimization method of overlapping commu-
nication with computation. Therefore, the cited papers do not discuss loop
transformations by a compiler for overlapping communication with com-
putation. Various methods of executing a loop in a tiled wavefront method
have also been described(13�15) for situations in which the loop contains a
true dependence. These methods apply tiling to the loop in order to over-
lap communication with computation and reduce the synchronization cost
on distributed memory machines. The cited papers discuss methods for
choosing the best tile size according to the characteristic parameters of the
machine; however, they do not discuss methods for applying loop transfor-
mations automatically.

This paper presents an algorithm that automatically transforms loops
using loop interchange(16, 17) and tiling(17�19) in order to overlap com-
munication with computation. A framework for combining information
about data dependence, communication, and reuse to allow automatic
application of the loop transformations is proposed. It is expressed in the
framework of Banerjee's(16) and Wolfe's(19) unimodular framework. This
paper also describes a method of generating message to exchange data
between processors for tiled loops on a distributed memory machine. The
algorithm has been implemented in our High Performance Fortran (HPF)
compiler, and experimental results have shown its effectiveness on dis-
tributed memory machines, the RISC System�6000 SP.(20)

Tiling is a loop transformation that a compiler uses to automatically
create a blocked nested loop. Tiling divides the iteration space into blocks
or tiles of the same size and shape and traverses the tiles to cover the entire
iteration space. On a uniprocessor, tiling is used to improve the cache
locality by changing the order of data accesses in a loop so that reuse of
the elements occurs in the innermost loop.(21) It takes advantage of the
benefits of the memory hierarchy. On distributed memory machines, if
reuse with nonlocal data accesses occurs in the innermost loop, the perfor-
mance is greatly degraded. For tiling on distributed memory machines, our
algorithm applies loop interchange so that communication by nonlocal
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data accesses without reuse occurs at the outermost loop. When reuse with
nonlocal accesses does not occur in a loop index, our algorithm applies tiling
to that loop index in order to overlap communication with computation.

The outline of our algorithm is as follows: First, the algorithm
calculates the communication, called the In Set, (2) required when a nested
loop is executed in parallel. It then determines the indices of loops in which
reuse does not occur for arrays requiring communication, using a combina-
tion of data dependence, communication, and reuse information. The algo-
rithm then transforms the determined loop indices by means of loop inter-
change to perform communication without reuse at the outermost possible
nested loop, and applies tiling to the loop indices. Finally, it generates
messages to exchange data between processors just before and after the
tiled loop. As a result, the communication is split into small pieces based
on the tiled loop. The processor can overlap this communication with com-
putation.

The structure of this paper is as follows. Section 2 summarizes related
work. Section 3 introduces definitions of some terms used throughout the
paper. Section 4 presents the concept behind our algorithm. Section 5
describes our loop transformation algorithm. Section 6 describes a method
of generating messages to exchange data between processors. Section 7
gives the performance results that we obtained in our experiments, and
discusses the bottlenecks of the system. Finally, Section 8 outlines our
conclusions.

2. RELATED WORK

We summarize related work in two categories: overlapping com-
munication with computation, and loop transformations for distributed
memory machines.

2.1. Overlapping Communication with Computation

We categorize previous work into the following six areas:

1. Overlapping communication with computation by using pipeline
communication in loops where there is a true dependence;(13�15)

these loops are tiled by a compiler. The cited papers discuss
methods for choosing the best tile size.

2. Overlapping the communication for the next computation with the
current computation in loops that require prefetch communica-
tion.(9, 10) The cited papers discuss the performance of programs
optimized by the programmer.
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3. Overlapping communication with computation by transforming
the original loops with stencil communication into loops with two
separate computation processes, one with nonlocal data and the
other with local data.(2, 22) The cited papers discuss methods for
generating code in the limited cases of FORALL statements or
one-dimensional distributed arrays.

4. Overlapping the communication for selection of the next pivot
with computation of matrix elimination in Gaussian Elimina-
tion.(21) The cited paper discusses an optimization, to shorten the
critical path of the computation, that is performed manually by
the programmer.

5. Hiding communication latency and eliminating redundant com-
munication by scheduling sends as early as possible and receives as
late as possible.(23) The cited paper discusses a compiler
framework for eliminating redundant communications, but does
not give any experimental results.

6. Hiding data transfer overhead by pre-loading and post-storing on
shared memory processors.(24) The cited paper discusses a static
scheduling algorithm in the case that execution times of each task
and data transfer are given.

In areas 1�4, the cited papers do not discuss loop transformation algo-
rithms that can be implemented in an automatic parallelization compiler.
In areas 1 and 2, our algorithm can apply loop transformations to nested
loops in order to overlap communication with computation automatically.
The nested loops transformed by our algorithm are the same as in previous
methods.(9, 10, 13�15) However, the cited papers do not discuss any algo-
rithms for automatic loop transformation, such as the one implemented in
our compiler. Our algorithm makes it possible for communication to be
overlapped with computation in languages that do not insert communica-
tion primitives explicitly, such as HPF. It can be applied to loops that
include operands requiring prefetch and pipeline communication.

2.2. Loop Transformations

Much research(25�27) has been done on automatic loop transformations
to improve the performance of nested loops on distributed memory
machines. The cited papers focus on a two-phase approach that consists of
automatic data distribution and loop transformations to minimize the
amount of communication in nested loops, while our algorithm focuses on
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reducing the execution time in a nested loop by overlapping communica-
tion with computation. Therefore, our algorithm can be applied to nested
loops transformed by other algorithms.

3. BACKGROUND

In this section, we introduce our loop representation, data dependence
vectors, and tiling in order to explain our algorithm.

3.1. Loop Representation

To simplify the discussion, we discuss only perfectly nested loops. We
represent a perfectly nested loop, such as that in Fig. 1a, as shown in
Fig. 1b. Here, l and r are m-dimensional arrays in an n-nested loop. Each
iteration in the loop is identified by a column vector i=(i1 ,..., in ). We call
this vector the loop index vector, and each element a loop index. Here,
ii is the value of the i th loop index, counting from the outermost to the
innermost loop. The lower bound of the loop is denoted by l=(l1 ,..., ln ),
and the upper bound of the loop is denoted by u=(u1 ,..., un ). The sub-
script function f (i)=H i+a=j maps the loop index vector i to the array
vector j=( j1 ,..., jm ). All elemental values of the linear transformation
matrix H and the vector a are integers.

The distribution function g( j)=p maps the array index vector j to the
processor index vector p=( p1 ,..., pk ), where k is the rank of the processor
configuration. Let P be the set of processor indices for executing the
program.

In Fig. 2, n is three, l is (1, 1, 1), u is (8, 8, 8), k is one, and P is
[(0), (1)]. The rank m of the array A is two. The mapping function of a
reference A(I, J ) is f (i)=( 0 1 0

1 0 0) i. The distribution function of the array A
is g( j)=(w( j2&1)�4x).

Fig. 1. Loop representation.
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Fig. 2. An example program.

3.2. Dependence Vector

A dependence vector shows possible execution orders constrained by
their data dependence. In our approach, we distinguish between true and
anti-data dependencies in order to analyze data dependence exactly. In this
paper, an anti dependence vector da shows that an execution order is con-
strained by anti dependence. A true dependence vector dt shows that an
execution order is constrained by true dependence.(28) We define D, which
is the set consisting of da and dt , as follows:

D=Da _ Dt ,

Da=[da | da=i$&i, anti dependence from i to i$],

Dt=[dt | dt=i$&i, true dependence from i to i$]

da=(da1 ,..., dan),

dai=[d min
ai , d max

ai ], d min
ai # Z _ &�, d max

ai # Z _ �,

dt=(dt1 ,..., dtn ),

dti=[d min
ti , d max

ti ], d min
ti # Z _ &�, d max

ti # Z _ �

3.3. Iteration Space Tiling

In general, tiling decomposes an n-nested loop into a n+t-nested loop
by adding t inner loops for a fixed number of iterations. This reduces the
number of iterations between accesses of the same data, which allows the
same data to be kept in the data cache, and hence reduces the number of
memory accesses. Thus, on a uniprocessor, tiling is used to improve the
data locality. Figure 3 shows the code after tiling of both the loop index
variables I and K for the example shown in Fig. 2, using a tile size of 4_4.

4. CONCEPT OF THE ALGORITHM

In this section, we give a general definition of reuse. We then discuss
the usage of reuse information for distributed memory machines.
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4.1. Types of Reuse

Reuse(21) occurs when the same data is read or written more than once
in a loop. Temporal reuse occurs when two references access the same
memory location. Spatial reuse occurs when two references access nearby
memory locations, such as within the same cache line. A self reuse occurs
when a reference in different iterations accesses the same memory location.
A group reuse occurs when different references access the same memory
location. The following terms(21) are used for these types of reuse. Self-tem-
poral reuse is a reference that accesses the same memory location in dif-
ferent iterations. Self-spatial reuse is a reference that accesses the same
cache line in different iterations. Group-temporal reuse is a reference that
accesses the same memory location. Group-spatial reuse is a reference that
accesses the same cache line.

4.2. Temporal Reuse

On distributed memory machines, A(I ) and A(I+1), which are con-
secutive from a programming language viewpoint, are not necessarily
assigned consecutive physical memory locations; this depends on the array
distribution. This makes it hard to discuss spatial reuse generally in con-
sidering the array distribution. We therefore discuss only temporal reuse in
this paper.

4.2.1. Self-Temporal Reuse

First, we consider self-temporal reuse. Self-temporal reuse occurs if
two iterations i1 and i2 reference the same data element. This occurs when-
ever H i1+a=H i2+a, that is, when H(i1&i2 )=0. The solution of this
equation is H, called the self-temporal reuse vector RST . Practically, RST is
the dimension corresponding to the subscript in which the loop index
variables do not appear.

On a uniprocessor, choosing some indices from the zero-value of ker H
as the innermost loop index allows a reference to exploit self-temporal
reuse, because reuse occurs when the value of the loop index variable that
does not appear in the subscripts is changed. An example of this is the loop
index variable K for the array B in Fig. 2. Tiling is applied to these indices
of the loop nest, and the tiled loops are moved to the innermost position
to maximize the number of times the processor reads the same elements
(from the data cache) within the innermost loop. The key to increasing per-
formance is to improve the cache locality in an innermost loop.

Here, however, we discuss the case in which this method is used on
distributed memory machines. If reuse with non-local data access occurs in
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Fig. 3. Example of tiling for a uniprocessor.

an innermost loop, the performance is greatly degraded. This is because,
normally, many communications are required for the same array element
which occurs in an innermost loop. In Fig. 3, when communication is per-
formed just before the tiled loop (DO 10 KK= } } } ), communication for
accessing the same region of array B is required more than once. This is
inefficient. The key to increasing the performance is to vectorize com-
munication for nonlocal data accesses in outermost loops as much as
possible. When tiling is applied to the nested loop, we must avoid generat-
ing redundant communications for accessing the same array elements by
reuse.

4.2.2. Group-Temporal Reuse

We discuss references that have the same affine subscript expressions
f1 (i)=H i+a1 and f2 (i)=H i+a2 . Group-temporal reuse occurs between
two such references with distance r if there are iterations i1 and i2 such that
H i1+a1=H i2+a2 , that is, H(i1&i2 )=Hr=a2&a1 . To determine
whether such an r exists, we solve the system of equations to obtain a par-
ticular solution rp . The general solution, ker H+rp , is called the group-
temporal reuse vector RGT . On a uniprocessor, this reuse reduces the num-
ber of memory references.

In contrast, on distributed memory machines, we require that the
compiler supports message coalescing in order to exploit group-temporal
reuse for nonlocal data accesses. This allows multiple operands to access
the same array elements in order to refer to the same message buffer.
Therefore, group-temporal reuse information helps reduce the number of
communications.

4.3. Usage of Reuse Information

Our algorithm applies loop interchange to move the loop indices to
positions further out than those in which reuse occurs, because this ensures
that the compiler does not generate redundant communication for the same
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array elements that are reused in the innermost loop. It then applies tiling
to the loop indices in which reuse does not occur in order to overlap com-
munication with computation, tiling only the loop indices that require
communication. We therefore apply tiling according to Condition 1.

Condition 1. Tiling is applied to loop indices that require com-
munication and in which neither self-temporal nor group-temporal reuse
occurs. These are the indices in which either the self-temporal reuse vector
or the group-temporal reuse vector has a value of zero.

5. ALGORITHM FOR LOOP TRANSFORMATIONS

In this section, we present an algorithm for tiling and loop interchange
in order to overlap communication with computation using a framework
that combines information on data dependence, communication, and reuse.

The algorithm is structured in the following five steps:

1. The In Set(2) is calculated as a set of array index vectors that
require interprocessor communication (by nonlocal data accesses).

2. The communication vector(28) is calculated as a vector that
indicates, on the basis of the loop index, if interprocessor com-
munication is required.

3. A check is carried out to determine whether interprocessor com-
munication can be vectorized.

4. The loop indices for tiling are determined by using the reuse vec-
tor and communication vector.

5. Loops are interchanged in order to move these loops indices to
outer nested loops, and tiling is done to generate loops which
allow overlapped communication and computation.

Figure 4 shows the algorithm for determining the loop indices to
which tiling is applied (steps 1�4). In the result of the algorithm, let the
tiling vector t be a vector showing the loop indices to which tiling is to be
applied. Tiling can be applied to the indices corresponding to nonzero
elements of t. The variable top shows that the outermost loop index can be
a target for loop interchange.

We now explain our algorithm, in which loop interchange and tiling
are applied in order to overlap communication with computation, using
the program in Fig. 2 as an example.
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Fig. 4. Algorithm for determining the loop indices to which tiling is applied (steps 1�4).

Example 1. The input parameters to the algorithm in Fig. 4 are as
follows:

n=3, l=(1, 1, 1), u=(8, 8, 8), P=[(0), (1)],

l=[A(I, J )], R=[A(I, J ), B(I, K ), C(K, J )], D=<
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5.1. Calculating the In Set (Step 1)

First, for a loop to be executed in parallel, its iteration space is parti-
tioned and each iteration sub-space is allocated to a single processor. In
this paper, we use the owner-computes rule, (13, 29) but this is not a restric-
tion imposed by our algorithm. The left-hand side of each assignment state-
ment in a loop is used to calculate the iteration space, which enables a
processor to store local data. We define the Local Iteration Set Q(p) as the
set of loop index vectors that access array elements on the processor p.

The compiler then calculates the set of array references that causes
nonlocal data access when each iteration of the partitioned iteration space
is executed. The accessed elements of the right-hand side array r are deter-
mined by the Local Iteration Set Q(p) and the subscript expression fr (i) of
the array r. We define the In Set Y(p) as the set of array index vectors that
causes nonlocal data accesses when each loop index of the Local Iteration
Set Q(p) is executed on the processor p.

Example 2. In Fig. 2, the subscripts of the left-hand side array A
are (I, J ). The array A is distributed in (*, BLOCK(4)). We assume
l=[A(I, J )] to be the left-hand side operand. The mapping functions fl

and the distribution function gl for the operand A(I, J) and the Local
Iteration Set Q(p) are as follows:

fl (i)=\0 1 0
1 0 0+ i, gl ( j)=\\ j2&1

4 �+ ,

Q((0))=(1:4, 1 :8, 1 :8), Q((1))=(5:8, 1 :8, 1:8)

In Sets are calculated for all right-hand side operands in the loop.
For this example, the results of the operands without communication are
omitted, because they do not affect the results of loop transformations. We
show the result in array B that need to be communicated. In Fig. 4, we
assume r=R=[B(I, K )] to be the right-hand side operand. The subscripts
of the right-hand side array B are (I, K ). The array B is distributed in
(*, BLOCK(4)). The mapping functions fr and distribution function gr for
the operand B(I, K ) and the In Set Yr are as follows:

fr (i)=\0 1 0
0 0 1+ i, gr (j)=\\ j2&1

4 �+,

Yr ((0))=(1:8, 5 :8), Yr ((1))=(1:8, 1 :4)
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5.2. Generating the Communication Vector (Step 2)

We now present a method of generating the communication vector,
which represents communication information, based on the loop index. We
want to calculate communication information based on the array index, the
data dependence vector, and the reuse vector based on the loop index.
Hr in fr (i) maps the loop index vector to the array index vector.

If the depth n of the nested loop is smaller than the rank m of the
array r, the communication information is reduced when it is mapped to
the loop index. This occurs because the matrix does not completely project
an array index vector into the loop index vector. Practically speaking, if the
ith value of ker Hr is nonzero, it shows that the i th loop index variable
does not appear in the subscripts. If the i th index variable for the nested
loop does not appear in the subscripts of the right-hand side array, the
compiler has to add the information to the i th index conservatively in order
to show that communication occurs. We define the result vector, called the
communication vector, as follows. The communication vector b=(b1 ,..., bn ),
bi=nonzero or zero, is a vector in which each elemental value represents
whether the processors require communication, on the basis of each loop
index.

Example 3. In Fig. 4, the range of the first dimension of the In Set
for array B is the same on each processor. Each processor reads a different
range of the second dimension of the In Set. As a result, the In Set shows
that communication is required in the second dimension of array B. The
compiler then calculates the loop index for accessing the second dimension
of array B. In Fig. 4, it is calculated from the following expression:

br=\0 1 0
0 0 1+

T

\0
1+=\

0
0
1+

The result is br=span[e3 ]. We use the vectors e1 , e2 , and e3 to repre-
sent (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. The result shows that the
loop index variable K accesses the second dimension of array B.

To the loop index whose variable J does not appear in the subscript
B(I, K ), the compiler adds the vector span[e1 ] that needs to be com-
municated. Here, the communication vector is br=span[e1 , e3 ].

5.3. Determining if Communication can be Vectorized (Step 3)

To determine an appropriate mode of communication, we define the
communication dependence vector c as a vector in which the value of each
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element represents whether communication occurs as a result of anti depen-
dence da or true dependence dt for the operand. It consists of an anti
communication dependence vector ca and a true communication depen-
dence vector ct . These are then derived, as follows, by combining informa-
tion on data dependence and communication:

ct=(ct1 , ct2 ,..., ctn ), cti={dti (if bi{0)
0 (if b i=0) = ,

ca=(ca1 , ca2 ,..., can ), cai={dai (if bi{0)
0 (if b i=0) =

The compiler can apply message vectorization if Condition 2 is satisfied.(28)

Condition 2. Message vectorization is applied if an operand satisfies
exactly one of the following conditions:

1. It has only an anti communication dependence vector ca .

2. It has only a true communication dependence vector ct .

3. It has no data dependence.

If the operand has only a true communication dependence vector ct ,
it requires vector pipeline communication. Otherwise, the operand requires
vector prefetch communication.

Example 4. D=< shows that any operand in the loop has no
dependence, and thus it satisfies Condition 2. The communication for array
B can be vectorized by using prefetch communication.

5.4. Determining Appropriate Loop Indices for Tiling (Step 4)

To determine loop indices that satisfy Condition 1, we provide a
framework for combining information on reuse and communication as
follows. The compiler calculates the bitwise AND of the communication
vector b and the logical negative of the self-temporal reuse vector and the
group-temporal reuse vector. The i th zero value of the reuse vector shows
that reuse does not occur in the i th loop index. The i th non-zero value of
the communication vector shows that communication occurs in the i th
loop index. If the i th value of the reuse vector is zero and the ith value of
the communication vector is nonzero, the compiler sets the i th nonzero
value of the result vector. Then, if the i th value of the result vector is non-
zero, the compiler determines that tiling can be applied to the i th loop
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index. It determines the scope of the tiled loop by examining whether the
nested loops are fully permutable.(19)

Example 5. In the example, we focus only on self-temporal reuse,
because not more than one reference is made to the same array with com-
munication. Thus, we assume that there is no group-temporal reuse. In
Fig. 2, the self-temporal reuse vector RST for the operand B(I, K ) is
span[e1 ]. The bitwise AND of br=span[e1 , e3 ] and span[e2 , e3 ] is t=
span[e3 ].

To ensure legality of the loop transformations, the compiler then
determines the scope of the nested loop that is fully permutable. Since
D=< in the loop, the whole nested loop is fully permutable. The range of
the loop index is between (top=) 1 and (inner=) 3. As a result, the algo-
rithm returns t=span[e3 ] and top=1 in Fig. 4.

5.5. Apply Loop Interchange and Tiling (Step 5)

First, the compiler determines the loop index to which tiling is to be
applied on the basis of the communication method in the loop. If the
operands in the loop require only vector prefetch communication, tiling is
applied to all loop indices. This is because the loop can be executed
without synchronization after communication is completed, and thus the
parallelism is not varied when tiling is applied to any loop index. If the
operands in the loop also require vector pipeline communication, tiling is
applied to the loop index that accesses the array dimension distributed
among the fewest processors, because the array size for each communica-
tion should be as small as possible to increase the effectiveness of overlap.

Next, in order to perform communication for a tiled loop at the outer-
most possible level, the compiler interchanges the determined loop indices
with the indices of outermost loop that is fully permutable. The compiler
then applies tiling to the loop indices that were moved into the outermost
loop.

Example 6. The loop has only prefetch communication. Since only
the third index has a nonzero value in the vector t, the compiler inter-
changes the loop index variable K with the outermost loop index. Finally,
it applies tiling to the new outermost loop.

6. CODE GENERATION

In this section, we describe methods for generating communication
such that it is overlapped with computation. The method depends on the
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Fig. 5. Overlapping of computation with prefetch com-
munication.

communication method of each operand, which may be prefetch or pipeline
communication. We assume that a nonblocking communication interface is
implemented on distributed memory machines. Non-blocking communica-
tion means that the next computation can be executed without waiting for
a reply after a command to send or receive data has been issued. In this
paper, SEND�RECEIVE indicates a function that issues a non-blocking
send�nonblocking receive. WAIT indicates a function that waits for all data
to be received.

6.1. Overlap for Prefetch Communication

An operand that requires prefetch communication must reference
elements before they are written. To overlap communication with computa-
tion of the tiled loop, the processor performs prefetch communication that
exchanges the two receive buffers alternatively. First, the processor sends
array elements that will be read in the next tiled loop to another buffer
before the execution of the tiled loop. Then, it starts to calculate the tiled
loop, using the current buffer. Here, the processor can overlap communica-
tion with computation. Before starting to calculate the next tile, the pro-
cessor waits for the arrival of the data sent to the buffer, in order to syn-
chronize itself with the other processor. After exchanging the old buffer
with the received buffer, it starts to calculate the tiled loop. Figure 5 shows

Fig. 6. Example of prefetch communication.
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Fig. 7. Overlapping of computation with pipeline com-
munication.

how communication and computation are performed. Figure 6 shows the
pseudo-code generated for the program in Fig. 2.

6.2. Overlap for Pipeline Communication

The operand that requires the pipeline communication to be written at
iteration i is read at iteration i+d. The processor sends the array elements
to another processor that references them after the calculation of the tiled
loop is completed, and starts to calculate the next tiled loop during the
communication. Thus, the processor can overlap communication with com-
putation. The other processor then executes the next tiled loop after receiving
data. Figure 7 shows how communication and computation are performed.
Figure 8 shows the original program and the generated pseudo-code.

7. EXPERIMENTS

In this section, we give the experimental results obtained by using our
algorithm, which we have implemented in our HPF compiler.(28, 30) To
measure the effectiveness of the algorithm, we compiled two applications
written in HPF. One is a matrix multiplication code that requires prefetch
communication. The other is a Successive Over Relaxation (SOR) code
that requires prefetch and pipeline communication.

Fig. 8. Example of pipeline communication.
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For our experiments, we used an IBM SP with 32 thin nodes. The
high-performance switch (HPS) provides a DMA mechanism between
the network and the system buffer. We used the IBM Message Passing
Library, (31) which provides a nonblocking communication interface.

7.1. Matrix Multiplication

We ran the matrix multiplication code with 1600_1600 arrays dis-
tributed in (*, BLOCK). The performance results are shown in Fig. 9a. The
vertical axis shows the speedup ratio normalized by the execution time
without communication overlap, while the horizontal axis shows the size of
tile used by the compiler. In this experiment, a tile size between 200 and
500 was found to be the best choice.

7.2. Successive Over Relaxation Method

For the second experiment, we ran the SOR code with 2000_2000
arrays distributed in (BLOCK, *). The performance results are shown in
Fig. 9b. The vertical axis shows the speedup ratio normalized by the execu-
tion time of the sequential code on a single processor, while the horizontal
axis shows the tile size used by the compiler. The results of running SOR
code without our optimization are also shown for 3_3 and 4_4 processor
configurations of in the array distribution (BLOCK, BLOCK). In this
experiment, a tile size between 100 and 200 was found to be the best choice.

7.3. Discussion

Prefetch communication is generated in the matrix multiplication
code. As the number of processors increases, the effectiveness of the algo-
rithm becomes apparent for a wider range of tile sizes. The performance
gains also increase when more processors are used. In the SOR code, both

Fig. 9. Performance results of the experiments.
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prefetch communication and pipeline communication are generated. The
program is executed in a wavefront method. The performance with our
algorithm is better than the performance when the array distribution is
done by the user.

The best tile size is determined by the relationship between the com-
munication time among processors and the execution time of the tiled loop.
When there is prefetch communication, identically, if the communication is
issued before executing the nested loop, the communication time is hidden.
Since our algorithm does not move prefetch communication out of the
nested loop, communication takes up less of the execution time if the com-
munication time is hidden by the calculation time of the tiled loop. The
best tile size gives a ratio of 1:1 for the communication time and the
calculation time of the tiled loop. The performance drops when the tile size
is larger than optimum in the case of matrix multiplication by 32 pro-
cessors. When there is pipeline communication, the parallelism increases
and the amount of data in each communication decreases if the tile size is
smaller, but communication overhead increases with the total number of
communications. On the other hand, the parallelism decreases if the tile
size is larger. Actually, in Fig. 9, the performance drops when the tile size
is 50 and larger than 200 by 32 processors. In an SP thin system, we can
overlap computation with transfer over a network, but we cannot overlap
computation with the transfer between the system buffer and the user
buffer. This is because a DMA transfer in an SP system only supports
copying of data between the network and the system buffer. In an SP
system, the following two types of overhead exist when communication and
computation are overlapped by using a non-blocking communication
interface:(31)

1. An interrupt to the processor, generated by the DMA mechanism
at the completion of the data transfer from the network to the
system buffer.

2. A copy between the system buffer and the user buffer by the pro-
cessor.

Roughly speaking, the first type of overhead takes 60 +s, and the
second type of overhead takes 28 +s�KB. These overheads also bring unne-
cessary data (for computation) into the data cache, and thus decrease the
data locality.

Despite the overhead of an SP mechanism, our algorithm improves
the performance by choosing an appropriate tile size. If a system supports
direct data transfer between the network and the user buffer on the pro-
cessor, we would be able to obtain an even better speedup.
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8. CONCLUSIONS

We have described an automatic loop transformation algorithm that
hides the communication latency by overlapping communication with com-
putation. Previously, this type of optimization could only be achieved by
hand-coding programs. We developed the algorithm by combining the
vectors of data dependence, communication, and reuse. We have also
described how to generate communication for tiled loops. We implemented
this algorithm in our HPF compiler, and experimental results have shown
its effectiveness. We are currently working on a heuristic algorithm to
determine an appropriate tile size for overlapping communication with
computation.
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