International Journal of Parallel Programming, Vol. 28, No. 2, 2000

A Distributed Shared-Memory System
on a Workstation Cluster Using Fast
Serial Links

Hironori Nakajo," Akihiro Ichikawa,? and Yukio Kaneda?

Received April 15, 1998; revised July 15, 1999

In this paper, a fast serial link, Serial Transparent Asynchronous First-in First-
out Link (STAFF-Link), is introduced. Using such links, we construct a parallel
processing system based on a workstation cluster. The workstation cluster
implements a distributed sharedmemory mechanism for inter-process communi-
cation using a software controlled cache using a STAFF-Link router board. The
board has a chained multicast capability with which we have implemented
efficient invalidation protocol based on Eager Release Consistency (ERC)
model in the DSM system. Performance results on several application programs
from the SPLASH2 benchmark suites have been measured.

KEY WORDS: Distributed shared-memory; workstation cluster; STAFF-
Link.

1. INTRODUCTION

Recent improvements of integrated circuit and network technologies allow
anumber of workstations to be connected into a multiple processor system
that can of achieve the high performance of parallel/vector computing systems.

There are two kinds of multiprocessors: the message-passing type and
the shared-memory type. The communication can be either through explicit
messages sent directly from one processor to another or through access to
shared-memory. Message-passing systems present a programmer with a set

! Division of Computer Information and Communication Sciences, Tokyo University of
Agriculture and Technology.
2 Department of Computer and Systems Engineering, Kobe University.

179

0885-7458/00/0400-0179$18.00/0 © 2000 Plenum Publishing Corporation

180 Nakajo, Ichikawa, and Kaneda

of separate computers that communicate only by sending explicit messages.
In shared-memory systems, memory is accessible by all processors and
communication is accomplished through shared variables. A shared-
memory machine can also be used as a message-passing machine with
messages stored in shared-memory buffers.

Message-passing systems require explicit data movement via message
exchange between processors. This makes it very difficult to write parallel
programs with dynamic or irregular communication patterns. Shared-
memory systems avoid this difficulty and have therefore achieved commer-
cial success with tightly-coupled multiprocessor systems such as SUN
SPARCcenter1000 or SGI Origin2000. Thus, even though message-passing
libraries for parallel programming, e.g., PVM" or MPI® are now avail-
able for workstations clusters,® shared-memory communication support
for multiple workstations is important.

This research has concentrated on problems for hardware and
software implementation of a shared-memory programming system on
workstation clusters.

The shared-memory system implementation on workstation clusters
faces two major problems. First, there is no physically shared memory in
a workstation cluster. Second, a local area network connecting the
workstations usually does not have a high enough bandwidth. To address
the first problem, virtual shared memory systems using message passing
have been proposed, e.g., IVY,® TredMark,”® Quarks,® and Tempest.”
Such systems use caching techniques to minimize remote accesses and to
conserve the low bandwidth of the LAN.

In a previous study,® we have implemented a distributed shared
memory (DSM) system based on a 10-baseT local area network. The DSM
system did not achieve expected performance on all applications because of
the low bandwidth and high contention of the LAN. This experience
showed that exible and sophisticated network facilities are required to
implement an efficient shared-memory parallel computing environment.
The work described here addresses the problem by implementing a
workstation cluster using point-to-point fast serial links called a Serial
Transparent Asynchronous First-in First-out link (STAFF-Link).

For the purpose of efficient routing between nodes in a cluster, we
have implemented a STAFF-Link router board. The system has an efficient
multicast capability called chained multicast in which asingle packet travels
around specified nodes. The multicast is used for an efficient invalidation
and implementing an Eager Release Consistency (ERC) model as described
in a later section.

The remaining sections of this paper introduce the hardware con-
figuration of a STAFF-Link, a router board and the parallel computing

Using Fast Serial Links 181

environment of a workstation cluster connected with STAFF-Link router
boards. We introduce parallel programming environment of DSM with
write invalidate protocol based on an ERC model in our cluster system.
System performance has been measured using several application programs
and the results are discussed.

2. THE STAFF-LINK

The STAFF-Link was designed to connect multiple I/O units and pro-
cessing elements and used to configure the scalable I/O subsystem of
JUMP-1(Japan University Massively Parallel computer).®®> The STAFF-
Link interface design is general purpose which allowed us to use the fast
serial links in constructing a high performance workstation cluster.

2.1. Transfer Speed and Distance of Local and Wide Area
Networks

Processing elements of a parallel computing system are usually con-
nected via a fast backplane bus or via cables. High-speed data communica-
tion using cables with many signal lines is difficult to scale due to noise,
clocking problems and packaging difficulties. Furthermore, if the transfer
width or the number of router ports are increased the required connector
area increases proportionately.

Given the tradeoff between physical and spatial restrictions and transfer
speeds, we have implemented a communication link which can be accessed
as FIFO memory located between the ends of the link. This link is referred
to STAFF-Link (Serial Transparent Asynchronous First In First Out Link).

High-speed serial communication LSI chips are now widely available
for wide area networks such as B-ISDN and ATM. The reliability of com-
munication using these LSI circuits has improved, and, combined with
improvements in printed circuit board assembly technology for mounting
such LSIs, makes serial communication between workstations very promising.

It can be extrapolated that a bundle of multiple STAFF-Links can
achieve transfer speeds from tens of Mbps to a few Gbps and can cover a
distance from a few meters to a few hundred meters. This makes STAFF-
Links suitable for workstation cluster interconnect.

2.2. STAFF-Link Organization
Serial communication can be divided into the following five phases:

1. Data write.

182 Nakajo, Ichikawa, and Kaneda

Parallel-serial conversion.

2

3. Data transfer.

4. Serial-parallel conversion.
5

Data read.

A conventional serial communication interface delay due to parallel/serial
data conversion limits transfer speeds. When using a STAFFLink, phases
2-4 are handled by a high-speed serial communication LSI. Buffers
provided by the circuit at both the send and the receive ends of the link
allow the five phases above to be overlapped and thus raise the throughput.

Figure 1 shows the STAFF-Link organization. A communication
block consists of a high-speed bidirectional serial communication LSI
(TAXI chip'?), two FIFO memories (send and receive), and an
asynchronous communication controller (X ow control) with handshaking
to prevent FIFO over ow. Currently a single STAFF-Link can handle
transfer rates of up to 140 Mbps.

Connection of two communication blocks by Category 5 twisted-pair
cables results in a virtual bidirectional FIFO at each end, and in turn effec-
tively hides the physical communication distance between nodes to ensure
a transparent communication path. The communication controller provides
asynchronous communication control simultaneously with Xon/Xoff con-
trol. Specifically, when the receiving FIFO at the destination is more than

Communication Block

o —— e
0 Transmitter

(& icatior{

{ Controller
- Receive|\ Yy, .IAX'.
0

|

Serial

= =
Transmitter 0 (oo
Communicatio
Controller
TAXL Receive ||__..
)

STAFF-Link

Fig. 1. Serial Transparent Asynchronous First-in First-
out Link (STAFF-Link).

Using Fast Serial Links 183

half full, the receiving side sends an Xoff message requesting an interrup-
tion of transmission. When the receiving FIFO is able to receive again, the
Xon message is sent requesting resumption of transmission. This control is
performed automatically by the two communication controllers. At the
transmission side, data is written to the sending FIFO until it is full, and
at the receiving side the data can be read from the FIFO until it gets
empty. The use of multiple STAFF-Links allows a workstation cluster
system to have a high communication bandwidth.

3. ADSM SYSTEM ON A WORKSTATION CLUSTER

3.1. Design Concept

The general organization of our DSM system is shown in Fig. 2.
Instead of a single specific server node, each node participates in managing
the shared-memory space. Thus the management load for the shared-space
access is distributed over the entire system.

As described earlier, caching is required in workstation clusters imple-
menting shared-memory. Thus our system supports a cache mechanism
with a write invalidate based on a relaxed consistency model. The shared-
memory space of our system consists of pages which are allocated in each
local memory.

Distribute and place page in each node

Shared-Memory

4
4 Networkj

Fig. 2. The concept of our DSM system.

184 Nakajo, Ichikawa, and Kaneda

3.2. Consistency Control

Many consistency models have been proposed such as Release Con-
sistency Model for better performance in shared-memory systems. In a
release consistency model, there are some variants such as an FEager
Release Consistency!") model or a Lazy Release Consistency!?) model.

In a distributed shared-memory system, a vast shared space is divided
into some fixed size of pages and allocated and managed in each node
which configures an entire system. Home memory is defined as a collection
of pages distributed and allocated in each node. Generally consistency is
controlled in a unit of page in a software controlled shared-memory system.

If a size of a page is set to a small size, the number of pages in a
shared space becomes large, and an amount of attributes of pages increases.
Therefore, a size of page must be considered for implementation of
a shared-memory system. As a result, some variables which are used in
different processes or routines tend to be allocated in a same page.

In an Eager Release Consistency model, each collection of shared
variables which are accessed by an application program during a specified
period is managed for consistency control. Namely, a single synchroniza-
tion variable is defined for each collection of shared variables, and
coherence of shared variables are maintained while an only node which
acquires a right of accesses to the synchronization variables accesses to a
collection of the shared variables.

In a same way, a Lazy Release Consistency model adopts a right of
accesses to a synchronization variable.

An Eager Release Consistency model conducts consistency control
of shared variables in releasing a right of accesses to a synchronization
variable. On the other hand, in a Lazy Release Consistency model, con-
sistency control is postponed until a right of accesses to a synchronization
variable is acquired in a next session of accessing to shared variables.
Therefore, amount of communication in a Lazy Release Consistency model
is smaller than in a Eager Release Consistency model, however, consistency
control is complicated and information for consistency control must be
kept in a long time. From the before, we have implemented a distributed
shared-memory system base on an Eager Release Consistency model in our
system.

3.3. Software Organization in a Workstation

The software organization in each node is shown in Fig. 3. A manager
process maintains the DSM using workstation memory pages. A directory
is maintained and updated according to accesses or invalidation messages

Using Fast Serial Links 185

—Node ~
Application]

DSM

detect

Cache cache miss

automatically

| |
Manager LLCacheControlProcessj

shared |
] memory —
STAFF-Link v
Router DSP
STAFF-Link H

to other nodes

Fig. 3. Structure of one node.

from other nodes. The cache memory uses part of main memory through
which an application program accesses a shared-memory space.

A Cache Control process is linked to an application program and
executed as a thread. When the process detects a miss access in the applica-
tion program, it requests a desired page from the Manager process and also
locks the requested page. Moreover, the Cache Control process performs
invalidations according to requests from other nodes in order to keep cache
memory coherent.

3.4. Detecting Cache Misses

In a tightly coupled bus-based multiprocessor system, data accesses
from processing elements are always snooped by hardware. In a work-
station cluster environment, the operating system cannot keep watch over
all accesses and a different mechanism is required. Our system detects miss
accesses to DSM cache via UNIX Segmentation fault (SIGSEGV),
a mechanism commonly used in software-controlled cache systems. As a
result, there is no need to check the state of DSM cache on each access and
therefore a cache hit access does not incur any overhead.

186 Nakajo, Ichikawa, and Kaneda

3.5. Efficient Invalidation and Synchronization by Chained
Multicast

A write access to a page in DSM causes copies of the page in other
nodes to be invalidated in order to keep coherence. A bus network allows
a broadcast of an invalidation message at the same time. But bus-based
systems lack scalability due to a limited bandwidth. In contrast, a point-
to-point network cannot support efficient broadcast even though it has
sufficient bandwidth to support a larger number of workstations.

It has also been reported that a number of copies of a shared page is
limited to two or three, on average, in most application programs for
invalidation-based cache coherence protocols.!*) Thus invalidation using a
broadcast message does not offer a great advantage over multiple “almost-
simultaneous” requests.

Therefore, our system has adopted a chained multicast as an invalida-
tion mechanism. In this case a single message travels to just the required
nodes which are specified in a header of the message. The chained multicast
invalidation message includes the address of the node which issues the
invalidation request and the message is finally sent to the original node as
an acknowledge message. Moreover we have implemented an Eager
Release Consistency model with a chained multicast mechanism for
efficient synchronization.

The basic concept of chained multicast mechanism was introduced by
Nakajo et al."® A similar mechanism is used in myrinet.>

3.6. Hardware Organization of STAFF-Link Router Board

Software-controlled routing in a workstation cluster may cause a
significant overhead and may degrade system performance by consuming
CPU cycles. A hardware router, independent oftheworkstation operating
system, is therefore desirable. For this reason we have designed and
implemented a STAFF-Link router board shown in Fig. 4.

The I/O network router board has the following characteristics:

e Board: SBus double-height

¢ Routing controller: DSP (TMS320C40)

e Program memory: 512 KWord (2 MB)

e Data memory: 512 KWord (2 MB)

Data transfer performance using the router board is shown in Table I
which shows detailed communication time. The results helped us find that

a bottleneck exists in accessing main memory of the workstation. This
limits the data transfer speed of a STAFF-Link to a maximum of 64 Mbps.

Using Fast Serial Links

Fig. 4. STAFF-Link router board.

Table I. Communication Time of a
STAFF-Link Router Board

Process

Time or through put

Access start up on communication buffer
Write to communication buffer
Communication buffer - FIFO
Communication start up

Send FIFO - receive FIFO

FIFO - communication buffer

Read from communication buffer
Routing (per 1 node)

45 uS

128 Mbps
200 Mbps
320 nS
140 Mbps
200 Mbps
64 Mbps
1uS

187

188 Nakajo, Ichikawa, and Kaneda

Table Il. The Workstation Node Configuration

Workstation Sun SPARCstation-20(SS20)
CPU SuperSPARC(60 MHz) x 2
oS Solaris 2.5.1(SunOS 5.5.1)
Memory 64 MB

4. PERFORMANCE EVALUATION OF THE DSM SYSTEM

An experiment workstation cluster system consists of four Sun
Microsystems SPARCstation20 (SS20) workstations. A specification of the
workstation used in the experiments is described in Table II.

4.1. Cache Miss Penalty

Figures 5 and 6 show read miss and write miss penalty of shared-
memory accessing respectively. From Figs. 5 and 6, sending and receiving
a page sized 4 KB spends about 3 ms. It spends about 700 us to evacuating
current cache in order for generating update information.

4.2. Performance Evaluation with Parallel Processing
Applications

4.2.1. Matrix Multiplication

We have measured processing time of matrix multiplication as a first
parallel processing application.

Figure 7 shows a result of matrix multiplication sized 128 x 128.
The vertical and horizontal lines in the figure are processing time and the

Processing time (1s)
0 1000 2000 3000 4000 5000 6000

l

5492

- detect cache miss and send Page Request Message
copy Home Memory via SBus to Send Buffer

send and receive page data
copy page data via SBus to Cache

- others

Fig. 5. Miss penalty of Read Miss.

Using Fast Serial Links 189

Processing time (us)
0 1000 2000 3000 4000 5000 6000 7000
B 1]) 1 1 1

-] detect cache miss and send Page Request Message

) copy Home Memory via SBus to Send Buffer
send and receive page data
copy page data via SBus to Cache

evacuate current Cache

- others

Fig. 6. Miss penalty of Write Miss.

number of nodes used for processing respectively. Dotted line shows a
processing time with the single SPARCstation20.

Computation, Release, Barrier and Initialization mean computation
time, processing time for releasing a right for accessing to shared variables,
waiting time for barrier synchronization and time for initialization of data
respectively.

From the result of Fig. 7, the system shows good performance in the
increasing number of nodes because grains of computation of matrix multi-
plication are quite large, thus the accessing time to shared-memory is short.

4.2.2. Processing Time of FFT

As the next application, we have adopted an FFT program from
SPLASH2"® benchmark suites.

- Initialization

3000
’g U] Barrier
= Release
o
.g 2000 Computation
2
2
@®
g8 1000
[

1 2 3 4
Number of nodes

Fig. 7. Processing time of matrix multiplication sized 128 x 128.

190 Nakajo, Ichikawa, and Kaneda

> - Initialization
250 7///% Barrier
Release
E 200 Transpose
Computation
o
£ 150
o
£
&
o 100
Q
Q
a
50
[}

Number of nodes

Fig. 8. Processing time of FFT with 1024 data points.

Figures 8 and 9 show the results of FFT with 1024 and 65536 data
points respectively.

As in the matrix multiplication, Computation, Release, Barrier and
Initialization mean computation time, processing time for releasing a right
for accessing to shared variables, waiting time for barrier synchronization
and time for initialization of data respectively. Transpose means a time for
writing results to shared-memory.

10000

- Initialization

8000 .)
’g % Barrier
= Release
g 6000 Transpose
= Computation
2
@ 4000
®
Q
<
o
2000

1 2 3 4
Number of nodes

Fig. 9. Processing time of FFT with 65536 data points.

Using Fast Serial Links 191

The results of Figs. 8 and 9 shows that the system performs well with
focus on only computation time. However, total performance is worse than
with a single SPARCstation20, because initialization of data spends about
40-50% of whole processing time. Moreover, an FFT program consists of
fine grained processing and needs many synchronization points during
computation, thus the costs of writing results and releasing a right of
accessing to synchronization becomes larger in the increasing number of
nodes.

As Fig. 9 shows, processing times are almost same with the number of
nodes because the processing of initialization is distributed to nodes with
increasing number of nodes and initialization time gets smaller.

4.2.3. Processing Time of LU Decomposition

In this subsection, results of LU decomposition are shown. The results
of LU decomposition sized 128 x 128 and 512 x 512 are respectively shown
in Figs. 10 and 11.

From the results of Figs. 10 and 11, computation time is getting
smaller in the increasing number of nodes.

However the system cannot perform sufficient speed up with the
increasing number of nodes because, as in FFT, an LU decomposition
program has many synchronization points and there needs releasing a right
of accessing to shared variables in each synchronization point.

After a process releases a right of accessing to shared variables, state
of cache is changed from READ/WRITE to READONLY. Thus when a

1500 | - Initialization
% Barrier
E’ Release
1000 | Computation
]
£
o
£
2
@
5 500 |
o
0 2 3 4

Number of nodes

Fig. 10. Processing time of LU decomposition with
128 x 128 Matrix.

192 Nakajo, Ichikawa, and Kaneda

40000 | Bl 10ciatizeion
% Barrier
’g Release
30000 Computation
[0
£
2 20000 |
7]
0
Q
Q
2
a
10000
0y 2

Number of nodes

Fig. 11. Processing time of LU decomposition with 512 x 512
matrix.

process writes to the cache, consistency control is performed based on
Clean Write which isa write access to cache in a state of clean. Conse-
quently the number of Clean Write increases and the cost for consistency
control is significantly large in LU decomposition.

In both results of Figs. 10 and 11, a releasing time with 3 nodes is
shorter than other cases.

We have investigated the number of Update Request Message and
Update Message in processing LU decomposition with a matrix sized
512 x 512 as shown in Table III.

An Update Request Message is a request to manager process which
sends an Update Message in order for cache to be updated for implement-
ing an Eager Release Consistency model.

From Table I1I, since the number of Update Messages is significantly
smaller than the one of Update Request Messages, the releasing time with
three nodes is short. There are less nodes which holds targeted pages of
Update Request Messages, because distribution of shared data is well per-
formed in the case of 3 nodes.

Table Ill. Number of Messages

Message 1 2 3 4

Update request message 6633 12466 12979 13492
Update message 0 6088 2593 16502

Using Fast Serial Links 193

5. CONCLUSIONS

This paper described a workstation cluster system with a distributed
shared memory. It uses a fast serial link called STAFF-Link to build an
interconnection network.

In our system, chained multicast has been adopted for an efficient mul-
ticast in a limited bandwidth network. Chained multicast is used not only
for efficient invalidation but also efficient synchronization based on an
Eager Release Consistency model.

From the results of experiments, the system performs well in computa-
tion in the increasing number of nodes, however, there exists overhead of
page transferring or consistency control. Compiler supports will be needed
for better performance in the future.

ACKNOWLEDGMENTS

We would like to thank Prof. Hidehiko Tanaka of University of
Tokyo and Prof. Shinji Tomita of Kyoto University for their supports in
implementing a STAFF-Link and the router board. This work was suppor-
ted in part by the Japan Ministry of Education, Science and Culture under
Grant in Aid for Scientific Research 042235103 entitled “Research on
Massively Parallel Hardware Architecture” and 06508001 entitled
“Development and Testbed of Massively Parallel Computer Prototype.”

REFERENCES

1. V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency:
Practice and Experience 2(4):315-339 (1990).

2. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Int’l J.
Supercomputer Applications and High Performance Computing 8(3/4):159-416 (1994).

3. Craig C. Douglas, Timothy G. Mattson, and Martin H. Schultz, Parallel Programming
Systems for Workstation Clusters, Technical Report TR-975, Yale University Department
of Computer Science Research (1993).

4. K. Li and P. Hudak, Memory Coherency in Shared Virtual Memory Systems, ACM
Trans. Comput. Syst. 7(4):321-359 (1989).

5. Pete Keleher, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel, TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating Systems, Rice
COMP TR93214 (1993).

6. Dilip Khandekar, Quarks: Portable Distributed SharedMemory on UNIX, quarks/doc/
tech-report.ps including fip:// jaguar.cs.utah.edu/pub/dsm/Quarks.tar.Z (1995).

7. Mark D. Hill, James R. Larus, and David A. Wook, Tempest: A Substrate for Portable
Parallel Programs, Proc. of COMPCON’95, pp. 327-332 (1995).

8. H. Nakajo, K. Kuramae, Y. Kaneda, and S. Maekawa, The Implementation and Evalua-
tion of Software Distributed SharedMemory (DSM) for Workstation Clusters (in
Japanese), Trans. IPS Japan 36(7):1719-1728 (1995).

194 Nakajo, Ichikawa, and Kaneda

9.

10.

11.

12.

13.

16.

H. Nakajo, S. Ohtani, T. Matsumoto, M. Kohata, K. Hiraki, and Y. Kaneda, An I/O
Network Architecture of the Distributed Shared-Memory Massively Parallel Computer
JUMP-1, Proc. of 11th Int’l. Conf. on Supercomputing (1CS97) (1997) (to appear).
Advanced Micro Devices, Inc. Am7968/Am7969-175 TAXI-175 Transmitter/Receiver
Data Sheet and Technical Manual (1992).

J. B. Carter, J. K. Bennet, and W. Zwaenepoel, Implementation and Performance of
Munin, Proc. 13th ACM Symp. Operat. Syst. Principles, pp. 152-164 (1991).

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel, Lazy Release Consistency for Software
Distributed Shared Memory, ACM SIGARCH Computer Architecture News 20(2):13-21
(1992).

Daniel E. Lenoski and Wolf-Dietrich Weber, Scalable Shared-Memory Multiprocessing,
Morgan Kaufmann Publishers (1995).

. Hironori Nakajo, Takeshi Yoshinaga, Koichi Wada, and Yukio Kaneda, Ring-Connected

Parallel Computer KORP-Coherence Protocol for Distributed Shared-Memory, Proc.
Int’l. Conf. Parallel and Distrib. Syst. ICPADS’92, pp. 504-511 (1992).

. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and

W. K. Su, Myrinet: A Gigabitper Second Local Area Network, IEEE Micro 15(1):29-36
(1995).

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta, SPLASH-2 Programs: Characterization and Methodological Considerations,
Proc. 22nd Int’l. Symp. Computer Architecture, pp. 24-36 (1995).

