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Abstract. In the usual frequentist formulation of testing and interval esti-
mation there is a strong relationship between a-level tests and 1 — o confi-
dence intervals. Such strong relationships do not always persist for post-data,
or Bayesian, measures of accuracy of these procedures, We explore the re-
lationship between post-data measures of accuracy of both tests and interval
estimates, measures that are derived under a decision-theoretic structure. We
find that, in general, there are strong post-data relationships in the one-sided
case, and some relationships in the two-sided case.

Key words and phrases:  Posterior probability, coverage probability, null hy-
pothesis, Dayes, p-value.

1. Introduction

A post-data measure of accuracy of a procedure is an estimate of the correct-
ness of an inference. We differontiate between post data mcasurcs, constructed
after the data have been seen, from pre-data measures constructed before seeing
any data. For the accuracy of a test, for example, common post-data measures
are the p-value or the posterior probabilities, as opposed to the a-level which is a
pre-data measure.

The concern here is with inferences about the accuracy of tests and confidence
intervals. There is a close relationship between the two procedures, as each one can
be obtained by inverting the other. This duality results in a direct correspondence
between some characteristics, such as the confidence coefficient of an interval and
the level of a test. Hence, one may expect the associated accuracy measures to
be also related. The major focus of the paper is to explore the existence of such
relationships.

* This paper was completed before the untimely death of Costas Goutis in July 1596,

** Research Supperted by NSF Grant DMS 9305547, This is paper BU-1347-M in the Bio-
metrics Unit, Cornell University, lthaca, NY 14853, File acc2.tex.
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712 CONSTANTINOS GOUTIS AND GEORGE CASELLA

We will concentrate on two ways of constructing estimates of accuracy. The
first is the straightforward Bayesian calculation of posterior probabilities of hy-
potheses or regions. The second is through classical decision theory. Since the
accuracy of a procedure can be viewed as the negative of its loss, estimating accu-
racy is equivalent to estimating a loss function (see, e.g., Rukhin (19884, 19885),
Johnstone (1988) or Lu and Berger (1989a, 19895)}.

In our general development we assume that X = z is observed, where X ~
f(- 1 8) and 9 is an unknown parameter of interest. Furthermore, there is a prior
distribution w{0} which can be combined with f{- | 4) in the usual way to vield
a posterior distribution #(f# | z). For a set estimator of 8, C(xz), the post-data
accuracy is measured by I(# € C(z)), where I{-) is the indicator function. This,
in effect, measures the loss inenrrad hy estimating 8 with (7(x), sinee we can define

1 if 8¢4C(x)
Li(8,Clx))=1-I(0 C(z)) =
@) -1-10eca)-{, o Lo
To estimate the accuracy, we look for estimators -y(x) that perform well against
the loss

(1.1) Ly(8,C,y) = [I(8 € C(x)) = 7(=)]”.

The pair {C(x),v(z)}) is referred to as a confidence procedure.

A similar approach was taken by Lu and Berger (19894), Robert and Casella
(1993), and George and Caselia (1994} in the context of estimating a multivariate
normal mean, while Goutis and Casella (1992) applied this methodology to Stu-
dent’s t interval. A discussion of the appropriateness of the loss (1.1) can be found
in Hwang and Pemantle {1990) and Hwang ef al. (1892).

For the testing problem a similar development is possible. In testing Hy : 6 €
B¢ vs. Hy : 6 ¢ B9 we consider a rule of the form “accept Hy if z € A”, where A is
a subset of the sample space. The loss incurred by this procedure can be written

L(HA)—II if 66y, z¢A or 86y, zcA
BP0 if €8, z€A or 8¢ 6, zé A

Traditional decision theory implicitly uses L3(#, A), as the risk of a test under this
loss is the Type I and Type II errors. To estimate the loss {or accuracy) of the
procedure we use estimators p{z) that perform well against

(1.2) Ly(0, A,p) = [[1(8 € ©0) ~ I(z € A)| - p(z)]*.

The procedures {A, p(x)) and (C(z), v(x)) both provide a means of assessing post-
data accuracy. To clarify the meaning of the “equivalence” of these post-data
measures consider the typical pre-data situation. If A and C are an a-level accep-
tance region and its associated 1 — « confidence set, then (writing A(#) for clarity)
we have

(1.3) 8 CC{z) e xc AlD),
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and hence

(1.4) sup P(X ¢ A6) {6) =1—inf  P(9 € C(X)|0),

AcBy

which we refer to as pre-data equivalence of 4 and C.

We explore whether a similar equivalence exists between accuracy measures in
a post-data setting. However, for the frequentist sets and tests related as in (1.3),
there is no implicit definition of post-data accuracy measures in the construction,
an it is not immaediate how to derive the post-data quantities equivalent to the
ones in (1.4). We are guided in this derivation by both decision-theoretical and
Bayesian methodology, which lead us to accuracy measures derived from posterior
distributions. Conditioning on X = r, instcad of the Type I error for the test, we
will consider p™ of the form

(1.5) pT(x) = PO C Oy | 2){m g A) | P8¢ Oy |a)I(xe A)

as an estimate of the loss Ly incurred, where p™(z} is the Bayes rule against the
loss Ly for a given acceptonce region A and prior . Similarly, instead of the
coverage probability we will consider 4™ given by

= [ w0z

as an estimate of the logs L, incurred.

The post-data version of (1.4) would involve the supremum of p* and the
infimum of 4™, and in the remainder of the paper this relationship is explored.
Scetion 2 considers the one-sided case, where a strong relationship exists. In the
two-sided case, treated in Section 3, the relationship still exists but is not as strong.
Finally, Section 4 contains a short discussion.

2. The one-sided case

There are two major points that we should take into account in establishing
a post-data equivalence. The first is that for hypothesis testing 7 will usually
depend on Hy, while for set estimation it does not. Hence, along with a family of
tests we have a family of priors. Secondly there is a vast difference in the one-sided
vs. two-sided problem (see Berger and Sellke (1987); Casella and Berger (1987);
Hwang et al. (1992}). Any prior for testing Hy : @ = 6, must put a point mass
on ty, which would not be done if interest was in set estimation or in testing an
interval null hypothesis. Therefore, we will consider the one-sided and two-sided
cases separately.

We specialize to the case of a location parameter, and assume that we observe
X =z, where X ~ f(z - #) with f(} continuous and having monotone likelihood
ratio (mlr). Suppose also that the prior is continuons and of the form 7(8 — 8,),
where fy is the parameter value specified in Hy, and that the supports of the
density and prior do not depend on z or 8. Note that the results of this section
will also apply to the scale parameter case.
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The hypothesis ol interest is

(2.1) Hy:60<6y vs. 8>6,

which leads to the acceptance region and associated interval

(2.2) A(0) — {x:x < 0p + <}, Clz)y={0:9 >z —c},

where ¢ is a constant, usually chosen to yield a specified a level. Using the loss
function Ly, our measure of accuracy of A{lg) is

palz, o) = PO < 8y | x)I{x & A(bo)) + P > 6y | z)I{z € A(by))
where

4
" Flz — 8)m (8 — 0p)dt
(2.3) PO <by|x)= (RN O

Similarly, using the loss L5, our measure of accuracy of (C(z) is

2 f(a = 8)x (8 — fo)db
B ffooo flz —8)7(6 — 8y)do

o (1:1 QU)

The equivalence between p4 and ~ is stated in the following theorem,
THEOREM 2.1. Under the assumptions in this seclion

(2.4) sup  pa(z,fo) =1-—vc(c0).
o809 C )

Furthermore, of m{-) has mlir, then

. i 8,y = 0

(2.5) oy Yo (z, 80} = ve(c, 0},

and thus

(2.6) csup  pa{z,f)=1- iof ye(z,6).
90:90&'0(:{:) 9()15060(;{;)

Remark 1. Equation (2.6) can be thought of as the equivalent of (1.4). In
words, equation (2.6) says that the maximum probability of not covering 8 (the
RIIS) is the maximum error of the test when rejecting (the LHS), or cquivalently

sup P{(X ¢ Alf) |2)=1— iI;fP(Q € Clx) | x).

feBo

Remark 2. The assumption of mlr of 7{-) is somewhat restrictive, but it is
a needed technical assumption, and is not a necessary condition for equation (2.6)
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to hold. Indeed, it can be shown that (2.6) holds for a Cauchy prior and Caucly
likelihood, and we have numerical evidence that it holds for a Cauchy prior and
normal likelihood.

ProOF.  We first calculate the LHS of (2.4). For 8y < z — ¢, pa(z,8y) =
P(# < 6y | ). From (2.3), change variables to t = § — 6, and define y = x — .
Then

J2 o Fly = tym(t)dt

and we want to calculate the supremum of (2.7) over the set {8y : 0y < x ¢} =
{y :y > c}. Since f has mlr, the quantity f{y — t)x(t)/f(c ~ t)n(t) is increasing
in ¢ for y > ¢. Applying Lemma A.1 of the Appendix we find that

5.7 fly — Ox(t)dt
7 fle— tr()dt’

Is increasing in z for y > ¢. Setting  — 0 and 2 = —oo shows that the supremum
of (2.7) over {y > c} is achieved for y = ¢ and is equal to 1 — ¢ (¢, 0), establishing
(2.4).

To establish (2.5) we make the transformation t = 8 — 8y and y = z — 6, and
show

R N | G DL L N (RO L O

(2.8) y;lélgc jj; flt— Prtdr T2, flt— e)ym(t)dt’

Apply Lemma A.1 with g(t) = f(t—y)n(t), h(t) = f(t—c)n(t), and a{z) = z+y—c.
Since w{x — 0) has mlr and ¢ > y, it follows that

gla(z))e' ()  flz—on(z+y—¢)

h@)  — flz—o)n(a)

is increasing in z, and thus
S22 - ()
[ F(t = cym{t)dt

Is increasing in . Evaluating the function at # = 0 and z = —oo cstablishes (2.8)
and (2.5), proving the theorem. 0

Allowing 7(-) to depend on 6 is really a “testing-type” prior. The equivalence
between the testing and set estimation errors is thus somewhat more striking. We
can turn the problem around, and ask if the equivalence holds using an “interval-
type” prior that does not depend on fg. In that case, the posterior probability
that 1 € C'(%) is equal to v (=, 0) and the following corollary is immediate.
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The one-sided testing problem #Hg @ ¢ < #g vs. H1 1 8 > 8p, where X ~ n{f, 1)

and & ~ n{#y,1). The solid line is P(# < 8 | x). The posterior coverage probabilities
of the interval C{z} = {8 : 6 > = — ¢} are given for ¢ = 1.282 (long dashes), ¢ = 1.645
{clogely spaced dots), ¢ = 1.06 (short dashes) and ¢ = 2328 (dnts). The intersections
are at the value of c.

COROLLARY 2.1.

If ©{-) 1s independent of 6y, then

aup palr, o) =1 — yeolz,0).
BodC(z)

To illustrate Theorem 2.1 we lock at the fallowing example.

Ezample 2.1. Suppose X ~ n(#,0?) and 6 ~ n(fg,7%) where o and 72
are known and (2.1) are the hypotheses of intorest. The acceptance region and
interval of {2.2) become A(fy) = {z:z <O+ c}and Clz) ={#:0>z—¢c}. It

is straightforward to calculate

(2.9)

and

P(9S90I$)—P(z<\/§[$%‘gqb
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(2.10) Yo(2,60) = P(Z 2 (1~ B)(z - 6) — ¢|/Vo?B),

where Z ~ n(0,1) and B = 7%/{0? 4 72). Since P(# < 8 | x) is increasing in 6,
and 7y (x, 8o} is decreasing in fy, it follows that

(2.11) sup P@<Oy|z)=PlH<x—¢c|z)

Yoo <x—c

=1- inf -(x, 8
e Yo (z, 80)

= P(Z < -eVB).

The quantities in (2.9) and (2.10) are illustrated in Fig. 1. It can be seen that
P8 < 6 | ) is decreasing in z — 8y and always intersects the increasing (in x — )
1 -~ yelz, 80} at c.

3. The two-sided case

In contrast with the frequentist sitnation, the Bayesian paradigm treats the
two-sided hypothesis test in an entirely different way from the one-sided case. This
reflects mainly on the form of the priors used in the point null case Hy : 8 = g,
where a point mass is put on #y. It turns out that the correspondence botween two-
sided testing and set estimation is weaker than in the one-sided case. However, if a
set estimation-type prior distribution is used, then the correspondence is stronger.

Before proceeding we restate and strengthen our assumptions. As before, we
assume that f(-) is continuous, symmetric and unimodal, but now we also assume
that f(-) has a bounded derivative. Also, we assume that f(-} has the T'Ps property
(Karliu (1968), Brown et al, {1981)), which guarantees that the distribution of
| X| has mlr and implies T'P,, which is exactly the property of monotone likelihood
ratio. We continue to make the same assumptions about 7(-), but will sometimes
also need 7(-} to have T F3. This will be explicitly stated.

3.1 Priors putting mass on a point
For testing

(3.1) Hy:0=8, vs. H :8+£0

a typical prior distribution is of the form

T if 6==~6

3.2 T8 | 8y) =
(32) (1 60) {(1~w0)w(eeﬂ) if 8 £ 0,

where 7 is a specified constant, and 7 (6—6) is a density function. We assume that
7(-) of (3.2) is continuous and symmetric, and that the value of 7y is a constant
independent of f;. An acceptance region and confidence interval corresponding to

(3.1) are given by

(3.3) Ay ={z: |z -8 <c} and Cz)—{0:lx—0 <c}h
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Under the prior of (3.2}, the probability that Hj is true is

B B mof(x — o)
GAy PO ol 2) - T T o) J2 fl@— 8)m(6 — )dd

and substituting in (1.5) we obtain pa(x, 80), the post-data accuracy of A(f).
Similarly, the post-data accuracy of C'(x), using the loss Ls, is

o flx — 8V {8, € Clx)) + {1 — my) f(}.(m) Sl —&m (0 — 8,)d0

(3.3) vo(w, 6o) = mof(x — b0) + (L — 7o) [0, flz = 0)m(0 — 05)do

Unlike the one-sided case, there is no equivalence between pa{x, 6y) and v (2, 6y)
as expressed in Theorem 2.1. However, we are able to calculate suprema and
infima, which are given in the following theorem. Its proof is given in the Appendix.

THEOREM 3.1. Under the assumptions in this section

su ] _ mof(c)
B8 S pale ) = e ) | e Or

Furthermore, if w(-) has TPy, then

| el () [, (e — e
BT e ) = ST A ) I Fuirle i’

Remark 3. Depending on whether 8y € C'(x), the accuracy estimate in (3.5)
falls on either side of the estimate

Jow f@ —0)m(8 — 60)do
f.(_)ooc flx —8)ym(0 — 6,)do ’

’Y:S’(I! 90) =

which is what might have been used if the problem were treated as one of interval
estimation that is, using an interval estimation prior. In fact, we can write

M(ZE — 90)1(90 € Clx)) + ’Y’C(CU, 90)

(3.8) Ye(x,00) = M(r — 8g) + 1 ’
where
(3‘9) M(y) o f(y)

T 1w [ fly - tym(t)de

is the posterior odds ratio for the hypotheses (3.1). From (3.8) it is immediate
that
T, 00 (B0 & C)) < ¥, 60) < 10, 80)1(8 € C(x)).
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Brample 3.1, Suppose X ~ n(f8,07} and the prior oo 8 is

o if 9290

(8| o) = { (1 —m) x n(y, %) if 8# 6

where 72 is known. For the hypothesis of (3.1), we have P{# = 6y | 2) = M/(M +
1), where M is the posterior odds ratio, given by

where, again, B = 72/(0? + 72). Tt is easy to see that P{(A = f, | x) is decreasing
in |z — 8|, so
sup palz,bp) = P =z~ ¢| ).
HEHES T

The post-data accuracy estimate for C(z), ve(xz,6p), is given by (3.8) with M of
(3.1) and

(3.10) Yo, By) = P(\/é—{(l ~ B)(z — ) — (]
<Z< \/;%[(1 — B)(z — ) +c])-

Since ¢ (z, 6p) is also decreasing in |z — 6], we have

(3.12) {Bn:|x1£100|5c}%(r’ o) B=x—-cla)+PlE#z—c|z)
— . 2 1.2
XP(——C\/E32<ELM_))_
a F \/B

Vahues of P(# = 6y | z) and ~veo(z,60) are shown in Fig. 2 for various values of c.
It can be seen that, for the most part, P(# = 6y | z) is smaller than vo(z, ).
However, for large ¢ (small alpha) the order is reversed.

For fixed ¢, {3.6) and (3.7) are both increasing functions of 7y and there is
a unique 73 = m3(c) for which equality holds between (3.6) and one minus (3.7),
and we have

<
n5(e).

f

1—  inf ez, 8) as wo

sup  palz,bo) |z —8ol<e

5‘0:!.’1‘:—3()|>ﬂ

VoIllA

>

In general this relationship is artificial, since it is not usual for ¢ and 7 to be chosen
i & dependent way. But it should come as no surprise, given the dependence of
the posterior probability 7{(6y | ) on 7y, and the subjective choice of mg. In the
next section, however, we look into another methodology that yiclds a less artificial
equivalence.
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Fig. 2. The two-sided testing problem fig : @ — g vs. Hy @ 8 # 8o, where X ~ n{#, 1)
and #p has prior probability %, and 4 # 8y has density %n(()u, 1) otherwise. The solid
line is P(# = fy | =). The posterior coverage probabilities of the interval C{z) = {8 :
{0 — x| < e} are given for ¢ = 1.645 (long dashes), ¢ = 1.968 (clnsely spaced dats),
¢ = 2.326 (short dashes}, ¢ = 2,574 (dots) and ¢ = 2.807 (dots and dashes).

3.2 Continuous priors

If interest were only in interval estimators, then a continuous prior would
most likely be used. With such a priar, however, P(6 = 8y | )} cannot be evalu-
ated. Fortunately, in the decision-theoretic framework of Section 2, we can obtain

accuracy estimates of a test based on a continuous prior. This is donc by using an
interval estimate to construct an estimate of festing accuracy.

For the hypothesis of (3.1), we can estimate the accuracy of A(8y) of (3.3} in
the following way. Starting from C(z) of {3.3), create the family of intervals

C}g{go) = {9 . |90 — 9] < k}
aud the corresponding accuracy measure of A(g):

(3.12) pr(x,0p) = P(0 € Cilbo) | x)l(z & A(6o))
L P8 € Culbo) | 2)1(z € Albg)).
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Of course, pr(z,8y) is a Bayes rule for the interval hypothesis Hy :
The advantage of the measure pg(z, fly) is that it can be evaluated without u<:1ng a
prior that puts mass on 8g. We consider a continuous prior w(f — fp), as might be
used for interval estimation, calculate P(6 € Ci(f#y) | =), and see that it is also the
posterior probability of the hypothesis Hy : |fo —8| < k. Thus, by constructing our
probability from the confidence interval, we are, in effect, replacing the point null
by an interval null. We have the following theorem, which shows the relationship
between py(z, 0y) and vo(zx, ).

THEOREM 3.2. For the hypotheses in (3.1), where X ~ f(z —8), continuous
and symmetric with T Py, and w(8 — 6) continwous and symmetric, there exists a
value k* = k*{c) such that

3.13 su (z,0)=1- inf ~{x, 8g).
( ) {3():Jz—£)0|>c}pk ( O) {fa:|z~8a| <e} 7(( O)

Proor. For |z — 8y > ¢, pe(x,60) = 1 — P(6 € Ci(by) | ). Thus, to
compute the left-hand side of (3.13) we can compute

(3.14) 60:|wii1£n|>c PO € Culbo) | 2) = ?ini??éL jj wff‘r('tl - f)ﬂ'((_tt))cgt
Write
(3.15) ff Fly —t)ym(t)dt fok —t)+ fly+ t)]ﬂ(t)dt‘
fhofle—omdt [5ifle—t)+ fle+ n(t)dt

Since f{-) has TPy, the function in square brackets (which is the density of | X|)
has mir. An application of Lemma A.1 shows that (3.15) is decreasing in k for
y > ¢ > 0. Thus the infimum in (3.14) is attained at y = ¢, and

I, f(c Hm(t)dt
3.16 sup  prlz, b)) =1 ==
( ) Bn:tm—Bp|<e k(& 6o) [ fle—tm(t)dt
The right-hand side of {3.16) is a monotone function of & that takes values from

0 to 1. Since the right-hand side of (3.13) is constant in k, equation (3.13) has a
unique solution k*. M

Note that the right-hand side of (3.13) is not directly computable, but it is not
needed for the theorem. However, if the prior also has 1T'Fy, we can establish that
the infimum is attained for |« — &y = ¢ and hence compute it. This is illustrated
in Example 3.2.

Ezample 3.2. Suppose X ~ n(f#,0?) and 8 ~ n(fy, %) where o2 and 72
are known. For the interval C(z) = {# : |x — 8| < ¢}, an accuracy measure for
Hy . # = 64 could be based on

(317)  P(0€Cilbo) |z) = P “koz< M) ,

((0)
VoiB VoiB
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where B = 72/(0? + 77) and Z ~ n{0,1). The post-data accuracy measure of
C(x) is v¢:(x, 6o) of {3.10) and, as both (3.10) and (3.17) are decreasing functions
of ¥ — 84, we have

—Be -~k —~Be+ k
sup PO e CL(6 m:P(ﬁ—gzg—ﬁ>
{l?(l:|:.‘:—|9;)[>(:} ( ( O) ‘ ) O'VB O'\/B
. . —Be e(2 — B))
inf x,00) =P <Z< ==,
o<y 10 (& 00) (0“ B oV B

Using {3.2), 1t 18 now a simple matter to solve for the value of &* to satisty (3.13),
and selected values are given in Table 3.1. There is a remarkable agreement be-
tween the values of Table 3.1 and Table 2 of Berger and Delampady (1987), which
gives bounds on (standardized) e such that the hypothesis Hy : [# — 8| < € has
approximately the same p-value as the exact hypothesis Hy : § = 6.

Table 3.1.

Values of k™ satisfying {3.13)

o c k*
0.200 1.282 0.250
0.100 1.645 0.213
0.050 1.960 0.191
0.020 2.326 0.172
.010 2.576 0.156
0.005 2.807 0.148
0.001 3.291 0.125

4, Discussion

In the frequentist paradigm, the testing/interval estimation duality has long
been employed to both construct and evaluate these statistical procedures. This
correspondence is a pre-data one, however, and did not translate to a post-data,
equivalence. On the other hand, Baycsians tend to treat intervals and testing
(especially with point nulls) as two different entities, employing different priors in
either situation. There has never been much effort directed toward establishing
any Bayestan post-data testing/interval relationship.

We find that a strong post-data relationship exists in the one-sided testing
case. By employing decision theory to develop the form of the post-data accuracy
measures {as loss estimates), the relationship in the one-sided case is established.
A similar relationship does not hold in the two-sided case, however, again demon-
strating that Bayesian testing is vastly different from interval estimation in the
two-sided case.

Most interestingly, it seems that the p-value occupies a middle ground. The
testing/interval accuracy relationship is valid almost by definition for both one-
sided and two-sided tests, as the p-valuc corresponds to a flat prior on the location
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Fig. 3. The twosided tosting problem Hp : 8 — 8g va. H) : @ # 0y, where X -~ n(0,1)}.
Shown are risks, using the loss Ly of (1.2) for estimates pa(x,f) based on a point-
mass prior (solid line), pi (=, 0o) based on a continucus prior {dashes), and the p-value
(dotted). Note that the risk at # = 0 is .23 for the point-mass prior estimate, 651 for
the continuous prior estimate, and .33 for the p-value.

paramcter. So we have a relationship between a post-data measure (the p-value)
and a pre-data measure {the confidence coefficient) that yields a pre-data bound
on the post-data accuracy measure. This equivalence is quilte general, making es-
sentially no assumptions about the form of the density or the forms of the tests
or confidence sets. It follows directly from the frequentist equivalence of the con-
struction of confidence sets as inverted tests.

This is a distinct difference from the fully Bayesian setup, and meore closely
mimics the frequentist correspondence. Thus, it seems that the p-value borrows
properties from both the Bayesians and frequentists. It allows a post-data test-
ing/interval correspondence in a manner that somewhat mimies the pre-data fre-
guentist correspondence. This “middle ground” seems to carry over to risk consid-
crations. Figure 3 shows the risk {using the loss Ly of {1.2) of three estimators: the
point-null estimator, the interval-null estimator, and the p-value. As can be seen,
the p-value seems to occupy a middle risk between these other two estimators.
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Appendix
LeMMA A.l.  Let h{-) and g(-) be positive functions, and let a(-) be a differ-

entiable function so that gla{z)|a’(x)/h(x) is a decreasing (increasing) function of
x. Then, if the integruls exist,

Lotn 9lt)at

#-1) L h(t)dt

is a decreasing (increasing) function of x.

Proor. Differentiating (A.1) with respect to z and simplifying will show
that the eign of the derivative is given by the sign of

(A2 | @l ©) - ntglaa)d @)

For ¢t > z the integrand in (A.2) is negative (positive) depending on whether
gla(x)]a’ (z)/h{z) is a decreasing (increasing) function. O

LemMMA A2, Under the assumptions of Section 3, the function M{y) given
by (3.9) is decreasing for vy > 0 and increasing for y < 0.

Proor. By symmetry we only need to give details for y > 0. Differentiating,
M(y) is decreasing if

(A.3) f(y)f fly = Om(t)dt ~ f£( / Fflly—tr)dt <0

{interchange of derivative and integral is permissible since ' is assumed bounded).
The left-hand side of {A.3) equals

0
(A4) f {Ffly—t)— fFW)f 'y —t)m(t)d
- ‘/Om{f'(y)f(y =) = ff (y ~ t)}r(B)dt
= /Ow{f’(y)f(y +u) = f(u)f'(y + w)tr(u)du
<, TG0 - oo
0

= /ﬂ {fffly+t)+ Flu—D]— Ff ly+1) + fly— )]ty
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where in the above we have used the symmetry of 7(-} and f(.). Now, if f(y —1)
is symmetric and has T'F5, then for t > Oand y > 0, [f(y +¢) + fly — t)1/[2f(v))]
is increasing in y so its derivative with respect to y is positive. This implies

f'(y) < Fly+)+ f'ly-t)
fy) flu+1)+ fly—1)

s0 the integrand of (A.4) is negative for £ > 0, and hence (A.3) holds. &

ProOF OF THEOREM 3.1. Siuce |z — | > ¢ is equivalent to z € A(fp), the
post-data accuracy pa{z,8y) equals P(6 = 6y | x) of (3.4). Hence to compute (3.6)
we need to compute

(A.5) sup  M{xz — bp),

ol —ba| >

where M (y) is given by (3.9) for t = § ~ #y. From Lemma A.2, M{y) is increasing
for y < U and decreasing for ¥ > U, so the supremum in (A.5) is attained at either
boundary, establishing (3.6).

To establish (3.7), again let y = ¢ — 6y, v = r — 6. By symmetry it suffices to
consider only ¥ > 0. Substituting in the definition of v~ (z, fy), it suffices to show
that the function

_ mof(y) + (1 m0) 7, Fljrly — u)du
mof(y) + (1 —mo) f7 flu)m(y — u)du

is decreasing in y.
Under the assumption that (-} is T P, the ratio

[, Flw)m(y — u)du
17 flwn{y —u)du

(A.6)

is a decreasing function of ¥, so for ys < ¥ we obtain
(A7) /f muwf Fwyn(ys — udu
< [ fwrle - vide / ()
Using this; a sufficient condition for the function v(y) to be decreasing is
)t [ s —wiu= s [ s - v

< £ | Fmlys - wydn + Flua) f (= wydn

—cC
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or, equivalently, that the function

fy)
[, u) (y—wu
f5, flum(y — u)du

f_ f(u ﬂ(y-—u)du

Ny} =

is decreasing. The numerator of N(y) is decreasing by an argument similar to
the vue used for the funclion M{y) in Leuuna A2, Since (A8) Is decreasiug,
the denominator is increasing, hence N{y) is decreasing, establishing (A.8) which
implies (3.7) and completes the theorem. O
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