Ann. Inst. Statist. Math.
Voi. 49, No. 4, 681-692 (1997)

CONTROLLING TYPE 1l ERROR WHILE CONSTRUCTING
TRIPLE SAMPLING FIXED PRECISION CONFIDENCE
INTERVALS FOR THE NORMAL MEAN

M. S. Son!, L. D. HauaH!, H. I. HAMDY!2 AND M. C. COSTANZAL:2

1 Stabistics Program, College of Engineering and Mathemaiics, The University of Vermont,
16 Colchester Avenue, Burlinglon, VT 05401, U.5.A.
2 Medical Biostatistics, College of Medicine, The University of Vermond,
24C Hills Science Building, Burlington, V' 05401, U.5. A.

(Received January 16, 1006; revised November 1, 1908)

Abstract. The rationale and methodology for estimating a mean with a fixed
width confidence interval through sampling in three stages are extended to
cover the additional problem of testing hypotheses concerning shifts in the mean
with controlled Type 1l error. The coverage probability and operating char-
acteristic function of the confidence interval based on the integrated approach
are derived and compared with those of the usual triple sampling confidence
interval. The extended methodology leads to better coverage probability and
uniformly better Type Il error probabilities. Achieving the additional objective
of controlling Type [ errar inevitably implies a two- to threefold increase in the
required optimal sample size. Some suggestions for dealing with this apparent
limitation are discussed from a practical viewpoint. It is recommended that an
integrated approach to estimation and testing based on confidence intervals be
incorporated in the design stage for credible inferences.

Key words and phrases:  Coverage probability, operating characteristic fune-
tion, optimal design.

1. lIntroduction

Statistical hypothesis tests and confidence intervals can be used to achieve
similar inferential objectives. But confidence intervals, in general, provide more
information concerning the reliability of the inference. It is woll known that a con-
fidence interval shows by its length the precision of estimation, as well as which
parameter values would not be rejected it they were hypothesized as (point) null
values. This classical view of the duality between the union of all non-rejectable
point null hypotheses and a single confidence interval that is taught in most intro-
ductory statistical methods courses is what Tukey {(1991), p. 102) was referring
16 In passing when he wrote:
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“Many of us are familiar with deriving a confidence interval from an
infinite array of tests of significance, one for each potential null hypoth-
esis”.

His main point, however, was made in the two subsequent sentences, to wit:

“Fewer of us, perhaps, have thought of the use of a confidence in-
terval as the reverse process. This is the most important reason for a
confidence interval...”.

In this ‘reverse’ view, the intersection of an infinite array of confidence intervals is
utilized to determine a single set of plausible point null hypotheses.

Regardless of the method used to derive a hypothesis test, careful considera-
tion of the issue of Type II error should be made to ensure that a credible inference
will be obtained. And although it does not appear to be standard practice, the op-
erating characteristics of confidence intervals should be addressed. In the context
of the classical use of confidence intervals to test hypotheses, Lehmann ((1986),
pp. 89-96) studied the relationship between uniformly most powerful one-sided
tests and corresponding lower or upper confidence bounds. In medical applica-
tions there appears to be some awareness of the need to consider the power of
tests based on confidence intervals. For example, Bristal {1989) eomputed the
length of the confidence interval obtained using the sample size required to con-
trol the power of the corresponding test, as well as the power obtained using the
sample size required to control the length of the confidence interval.

In designing and performing tests of hypotheses based on confidence intervals
using the ‘reverse process’ that Tukey suggested, one would be concerned with
controlling Type Il errors in advance. This is essentially the approach employed
when statistical quality control charts are designed and used to detect shifts in
a process mean (see e.g. Montgomery (1982) and Rahim (1993)). Apart from
studies such as the latter, however, the relationship between confidence intervals
and the power of tests derived therefrom has received relatively little attention in
the statistical literature.

In order to achieve a targeted coverage probability in constructing a fixed
width confidence interval for a parameter in the presence of nuisance parameters,
a variety of multistage sampling techniques have been developed since the 1940°s
by many authors. Of these techniques, Stein’s (1945) two stage group sampling
provides at least the desired coverage, but it can lead to substantial oversam-
pling if the initial sample size is much less than the optimal fixed sample size,
as demonstrated by Ghosh and Mukhopadhyay (1981). Anscombe’s {1953} and
Chow-Robbins’ {1965} one-by-one sequential sampling improves upon this draw-
back, but the desired coverage is attained asymptotically, and it is impractical to
implement when decisions need to be reached quickly. A major breakthrough was
achieved when Hall (1981) proposed an elegant three stage group sampling tech-
nique (triple sampling) as a reasonable compromise between two stage and purely
sequential sampling for estimating the normal mean. However, since the triple
sampling coverage probability was also attained asymptotically due to the nature
of the optimal sample size ordinarily used, ke suggested modifying the procedure
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through incrcasing the sample size by a small known number of extra observations
after termination of the final sampling stage to improve the coverage.

To the best of our knowledge, no one else has studied the use of triple sampling
fixed width confidence intervals to test hypotheses in Tukey’s (1991) sense, either
without or with imposing an additional requirement of some kind of Type II error
control. Recently, Costanza et al. (1995} evaluated the sensitivity of fixed width
confidence intervals to detecting shifts in the normal mean based on Hall’s (1981)
triple and modified triple sampling versus the corresponding fixed size sampling
procedure. They found the (unmodified) triple sampling fixed width confidence
intervals were more sensitive to shifts occurring within the intervals than their
fixed sample size counterparts. However, the corresponding Type II error proba-
bilities were still large. Although the usc of Hall’s (1981) modified triple sampling
improved the coverage probability, it also led to increases in the Type II error prob-
abilities for shifts occurring both inside and far outside the confidence intervals.
This occurred because the nsual “optimal” fixed sample sizes nsed to establish the
triple sampling estimation procedures did not reflect any requirements regarding
the control of Type II error. They conjectured that the use of another “optimal”
fixed sample size that did reflect some form of Type II error control would probably
improve the coverage probability as well. In this paper we investigate this latter
approach in depth, as well as examine other relevant issues involved in controlling
the Type II error probabilities of triple sampling fixed length confidence intervals.

Specifically, in Section 2 we describe the hypotheses to be tested when con-
trolling Type II error, and we derive the corresponding (approximate) optimal
fixed sample size. In Section 3 a triple sampling procedure designed to estimate
the optimal sample size is proposed and its asymptotic properties are examined
and compared to those of the usual triple sampling procedure without control
for Type II error. In Section 4 we derive the asymptotic operating characteristic
function of our proposed triple sampling procedure. In Section 5 some numeri-
cal computations for small to moderate size samples are presented to supplement
the asymptotic findings. Discussion of some practical and sampling design issues
appears in Section 6.

2. Constructing fixed precision contidence intervals with controlled Type |l error

Let X1, X5, ... be asequence of independent and normally distributed random
variables with mean p and variance o2, both unknown. Suppose it is required to
estimate p by a confidence interval such that the precision, +d, and the coverage
probability, 100(1 — )%, of the interval are predetermined. Suppose also that a
random sample Xy, Xg,..., X, of size n (> 2) is available, from which we compute
the usual sample measures X, and S2 for y and o2, respectively. We propose the
confidence interval I,, = (X, —d, X, + d) for p.

Moreover, suppose that for all £ > 0 the constructed interval is to be used to
test the null hypothesis

Horp=poe I,

versus the alternative hypothesis

Hl:y:,ul 2,{£0:td(1+k) ¢I”,
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guch that the probability of Type II error when the truc mean is, in fact, p, for a
prespecified value of k is required to be at most 1008%. We emphasize that under
Hy, all of the values in I,, would be considered “acceptable” (or “non-rejectable”)
values (or equally represent “the” true value) of p. Consequently, Hy only makes
sense as such for shifts of magnitude d{1 + k) occurring outside I,,. (For clarity,
we mention that the hypotheses and the representation of shifts in u studied in
this paper ditfer slightly trom those considered by Costanza et al. (1945).)

As far as we are aware, in all previous work related to constructing fixed width
confidence intervals of length 2d with prespecified coverage probability 100{1—«)%,
but without explicit control of Type I error, the required optimal fixed sample size
has been taken to be

(2.1} n’ = a*c?/d?,

where a is the upper /2 critical point of the N{0, 1} distribution. However, if, as
in this paper, we impose an additzonal requirement that L'ype II error probabil-
ity be explicitly controlled in some form, the required optimal sample size must
accordingly be modified (i.e., increased).

More specifically, we first consider the usual {approximate {sec e.g. Brownlee
(1965), pp. 117-118)) optimal fixed sample size required to control the Type 11
error probabilities of detecting shifts in p of magnitude £d(1 + £} units asay from
1 = pg outside the interval for a prespecified value of £ at a prespecified value 3,
given by

(2.2) n® = (a + b)Y’ c? /d*(1 + k)?,

where b is the upper 3 critical point of the N(0,1) distribution. (In this and
subsequent derivations we assume that the value of ¢ — iy 15 tocated in the center
of the interval in order to provide equal Type II error probabilities for equidistant
shifts to u = py outside the interval in either direction.) For k close to 0 in (2.2),
we expect a coverage probability greater than the targeted value, since (2.2) will
become greater than (2.1). However, for larger k& we expect a coverage probability
less than the targeted value, since the effect of increasing k& will dominate the effect
of b, and (2.2) will become less than (2.1).

Now it is certainly reasonable to keep the coverage probability at least at
the targeted value independent of the value of £. It is also natural to be more
concerned about small values of &, since potential values of p = u; close to the
endpoints of the interval from outside are less likely to be detected. With £ =0
in (2.2), we ohtain an upper haund for the aptimal sample gize,

(2.3) n = (a+0)%0?/d,

which maintains at least the targeted coverage through focusing on the value of k of
most concern. It also follows that the Type 11 error probabilities, 3(k) for arbitrary
k > 0, corresponding to the use of {2.3) will be less than those corresponding to
the use of (2.2) for all k& > 0.

In summary, utilizing n* in (2.3) as the “required” optimal sample size has
the following desirahle features: (1) it ensures at least the targeted coverage,
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100(1 - @)%, independent of &; (2) it has Type IT error probabilities which are
less than the prespecified 1008% at the particular shift(s) of interest indexed by
the prespecified value of k; (3) it actually has Type II error probabilities 3(k)
that are uniformiy less than those corresponding to the use of {2.2) for all k > 0.
Henceforth we utilize n* in (2.3) as the optimal sample size required to achieve
our objectives in defining our proposed procedures.

Clearly, (2.1) is the special case of (2.3) with & = 0, which implies that the
corresponding #(0) = 0.50. In other words, the usual classical (i.e., “uncontrolled”
for Type II error) application of the confidence interval to test Hy versus Hy has
the property that its Type Il error probability is enly implicitly controlled at
50% for shifts occurring at the endpoints of the interval. Moreover, from the
classical standpoint, the apparent “fact” that the corresponding “Tvpe II error
probabilitics” are even higher for values of g = “u;” lying within the interval
might be viewed as a disadvantage. However, the use of the confidence interval to
test Hy versus H) that is being considared in this paper implies that this apparent
drawback is actually an advantage in the sense that all potential values of u lying
within the interval are legitimate values only under Hy. Thus, the designation
“Type II error” does not even apply for these values of u (instead, “sensitivity to
departures from the center of the interval” is a more appropriate descriptor).

If 02 was known, a fixed sample size procedure based on n* in (2.3) to con-
struct Ins would be employed. Since ¢? is unknown, a triple sampling procedure
could be used to simultaneously estimate n* via estimation of o2 in constructing
the required interval for pu.

3. Type It error controlled triple sampling confidence intervals for the mean

The triple sampling procedure for estimating n* in (2.3) begins with a pilot
sample X, Xa,..., X, m > 2, from which X,,, and S?, are computed as initial

T
estimates of iz and ¢2. The second stage sample size is determined according to
the decigion rule

(a1 N; = max{m, [v(a + b)282 /d?] + 1},

where 0 < v < 1 is a design factor which represents the fraction of n* to be
cstimated in this stage and [-] denotes the largest iuteger function. (Empirical
results support the choice of ¥ = 0.50 and m = 5 to 15 in practice.) If the decision
is to continue sampling, we combine the pilot sample with N; ~ m additional
observalions to bring the final (third stage) sample size to

(3.2) N = max{Ny, [{a + b)*S3 /d?] +1}.
If necessary, we observe N — Ny further observations and terminate the sampling
process. We then compute Xy. Consequently we construct the Type II error

controlled confidence interval

I = (J_(N —d, XN + dy for g
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The main asymptotic features of the triple sample size N are given iu Theorem
3.1.

THEOREM 3.1. KFor the controlled triple sampling procedure (3.1}-(3.2) and

optimal fized n* in (2.3}, as d — 0 we have
(i) E(N)=n* -2y +1/2+0(1)

(ii) Var(N) =2y~ in* +o(d™*)

(iit) E|N - n*]® = o(d™*)

(iv) E(h(N)) = h(n*)+ 2y (v — 4/ (n*) +20°R" (n*)} +o(d*|A" (n*}]),
where h(> 0) is any real valued, continuously differentiable function in o neighbor-
hood of n* such that sup,,~,, K" (n)| = O(|h""{n*)|}, and primes mean derivatives.

The proofs of Parts (i)—(iil} of Theorem 3.1 are given in Hall (1981) and
Hamdy (1988), 5o they are omitted. The proof of Part (iv) of Theorem 3.1 involves
a straightforward application of the expectation of a Taylor series expansion of
h(N) around n*, Parts (i)-(iii), and the assumption that A" is bounded.

Remark la.  Part (i) of Theorem 3.1 shows that, on the average, the friple
sample size is approximately the optimal fixed sample size in (2.3). Conditioning
on N, it is easy to show that E{X,) = p. Parts (ii) and (iii) of Theorem 3.1
indicate (hat the triple sampling technique is in fact as cfficient as the Anscombe
(1953)-Chow and Robbins (1965) purely sequential sampling technique. Again
conditioning on N and applying Part (iv) of Theorem 3.1 to evaluate E{(N7Y
provide Var(Xy) = (02/n*) — (v — 8)(62/211*?) + o{d*). Moreover, the special
case of A{N) = &'V in Part (iv) can be used to establish the asymptotic normality of
N. Part (iv) of Theorem 3.1 is also used subsequently to obtain both the coverage
probability and the operating characteristic function of I'y. Our approach Lo the
latter based on considering a general continuously differentiable function of N is
more direct than an approach based on employing the integer moments of N,
which has been utilized in previous work (see Hamdy et al. {1988)).

Remark 1b. Theorem 3.1 holds for the triple sampling procedure suitably
based on any optimality criteria and the corresponding optimal fixed sample size.
In particular, it holds for Hall's (1981) (uncontrolled) triple sampling procedure
with optimal sample size »° in (2.1).

The following Theorem 3.2 extends the results in Theorem 3.1 to obtain the
coverage probability of In.

THEOREM 3.2. For the controlled triple sampling procedure (3.1)-(3.2) and
optimal fixed n* in (2.3), as d — 0 the coverage probability of In is given by

P(p € Iy) = {20(a+ b) — 1} = Qo(n",7) + o(d”)
> (1 —a) — Quin*,v) | ()(dQ),

where Qo(n*,y) = (a + b)pla + b){(a + b)? — v + 5}2yn*) " and ¢{-) is the
probability densily function of N(0,1).
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‘Lo prove Theorem 3.2 we note that P(u € Iy) = 2E®(dvN/o) ~ 1. To
evaluate E®{dv/'N /o), we make use of Part (iv) of Theorem 3.1 to complete the
proof.

Remark 2. We note that for most reasonable choices of o and 7 and even
for small values of n*, Qo{n*,v) is negligible. The coverage probability of Hall’s
(1981) (uncontrolled) triple sampling procedure with optimal sample size n° in
(2.1) follows from Theorem 3.2 with equality instead of the inequality for b = 0.
Moreover, the corresponding Qa(n®,~) term is larger than Qo(n*,~) in Theorem
3.2. Thus, Hall's procedure attains the coverage probability only asymptotically,
whereas our procedurc exceeds the targeted coverage for any value of n*. This
latter result could he construed as indicating that our procedure ig too liberal in
terms of Type II error probabilities. However, we also note that since the n* re-
quired by our procedure is necessarily much larger than {e.g.) the “corresponding”
7° required by Hall's procedure, the impact of this apparcnt drawback would sccm
to be of less concern. The use of »n® in (2.2) would attain the targeted coverage,
but the control of Type I error would be achieved only at the particular prespec-
ified value of k. We opt to use »* in our subsequent developments for the reasons
stated previously during the course of its derivation in Section 2.

4. Operating characteristic funclion of Type Il error controlled confidence intervals

In this section we investigate the capability of the controlled triple sampling
fixed width: conflidence interval Iy o siguily potential shifts in the true mean of
“distance” k (measured in units of the precision d) occurring outside the interval
when it is erroneously thought that such shifts never took place. Tor all & > 0,
the relevant hypotheses to be tested are

Hy:p=po €Iy wversus Hy:p=p =po+d(l+k)¢In.

The Type II error controlled conditional probability, Sre(k), of not detecting
such a shift when, in fact, such a shift actually took place can be written as

Bre(k) = P(p € In | Hy)
“P(XNMd<H<XN+d‘H1)

ZP (2+k)d < Xy —p1 < ~kd, N =n)

TL—=17L

ZP (2+k)d < Xy — 1 < ~kd| N =n)P(N =n).

n—=rn

The event (N = n) depends on S7. from the rule (3.2) forn =m, m +1,.... On
the other hand, the normality implies that 52 and X, are independent for all n.
Thorefore,

oG

Bro(k) = Y P(—(2+ k)dyno ! < (X, — m)yno~' < —kdyno~ ) P(N =n)

n=m
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= i ((—kdvno ™) — (= (2 + k)dyno )} P{(N = n)
= E_{é(—kdmo—l)} — E{®(-(2+k}dvNe ")}
We then apply Part (iv) of Theorem 3.1 to obtain

E{®(-kdVNo~")} = 8(—k(a + b)) + Qi1(n*,7, k) + o(d®) and
E{B{—(2 + K)dVNo™ 1)} = ®(—(2+ k){a + b)) + Qu(n”, v, k) + 0(d®),

where

Qr(n*, v, k) = (4yn*) " k(a + b)o(—k(a + b)) {k*(a +b)* —v +5} and
@Qa{n*, v, k)
= (4yn*) 2+ k) (a + B)p(— (2 + K)o+ D)2+ k)P (e +b)* — v + 5}

Finally, we obtain the following Theorem.

THEOREM 4.1. For the controlled triple sampling procedure (3.1)—{3.2) and
optimal fived n* in (2.3), as d — 0 the operating characteristic function is given
by

Bre(k) = ®{—k(a + b)) — 2{-(2+ k}{a +b)}
+ Ql (’J’L*,’Y, k) - Q‘Z(n*v FY?k) + o(dg)‘

Remark 3. The operating characteristic function, 8r(k), of Hall’s (1981)
(uncontrolled) triple sampling procedure with optimal sample size n® in (2.1) fol-
lows from Theorem 4.1 with & = 0. Since for all & > 0 we have

O{—k(a+b)} - {-(2+k){a+b)} > E{k{a)} - 2{—(2+k)(a)}
and
Q'l (nO:'Y: k‘) - Qz(ﬂos%k) > Ql(n*:f){:k) - 622{'”*?7?”6)»

we have Sr(k) > Bre(k) uniformly in k.
5. Numerical comparisons of controlled vs. uncontralled confidence intervals

In this section we supplement the asymptotic results for the uncontrolled and
controlled triple sampling procedures with some numerical computations for small
to moderate samples. The optimal sample sizes were n° in (2.1) for Hall's (1981)
triple sampling procedure and n* in (2.3) for our proposed controlled procedure in
(3.1) (3.2). For cousistency, we employed the same values of the optimal n® with
the corresponding values of the fixed precision d, as well as level of significance
o = 0.05 used by Hall in his simulations. These optimal sample sizes were n® = 24,
43, 61, 76, 96, 125, 171, 246, and 384, with the corresponding values of ¢ = 0.4,
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Table 1. Asymptotic coverage and Type II error probabilities of triple and controlled triple
sampling procedires: o = 0.05, v = 0.50.

Uncontrolled optimal sample size n° in (2.1)
24 13 61 76 06 125 171 216 384

Asymptotic coverage probability by
04102 0.9278 0.9343 0.9374 0.84 0.9424 (9444 0.9461 0.9475H
Asymptotic Type II error probability G (k)

Shifts &

0.0 0.4997 0.4998 0.4998 0.4999 0.4999 0.4989 04999 04999 0.1999
0.1 0.4294 0.4262 0.4251 0.4245 0.424! 0.4236 0.4233 0.423 04227
0.2 0.3615 0.3353 0.353 0.3519 0.351 0.3502 0.3485 0.3489 0.3484
0.3 0.2081 0.2854 0.2861 0.2845 0.2832 0.2821 0.2811 0.2802 0.2795%
0.4 0.241  0.2302 0.2262 0.2243 0.2226 0.2212 0.22 0.2189 0.218

0.5 0.191  0.1789 0.1744 0.1722 0.1704 0.1688 0.1674 0.1662 0.1653
0.6 0.1486 0.1359 0.1311 0.1289 0.127 0.1253 0.1238 0.1226 0.1216
0.7 0.1134 0.1003 0.0962 0.094 0.0921 0.0905 0.089 0.0878 0.0868
0.8 0.085 0.0732 0.0689 0.0668 0.0661 0.0635 0.0622 0.061 0.0601
0.9 0.0624  0.052 0.0480  0.0463 0.0448 0.0434 0.0422 0.0412 (0.0403
1.0 0.0449 0.0361 0.0328 0.0313 0.03 0.0288 0.0278 0.0269 0.0262
1.5 0.0058 0.004 0.06033 0,003 0.0027 0.0025 0.0022 0.0021 0.0019
2.0 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Jontrolled optimal sample size n* in (2.3) for 7 = 0.05

81 145 206 257 324 422 578 832 1200

Asymptotic Coverage Probability Pro
0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997
Asymptotic Type II error probability 3¢ (k)

Shifts k&
0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.1 0.3593 0.3593 0.3592 0.3592 0.3592 0.3592 0.3592 0.3592 0.3592
0.2 0.2355 0.2356 0.2355 0.2355 0.2355 0.2355 0.2355 0.2355 0.2355
0.3 0.1398 0.1398 0.1398 0.1397 0.1397 0.1397 0.1397 0.1397 0.1397
0.4 0.0747 0.0747 0.0747 0.0747 0.0747 0.0747 0.0747 0.0747 0.0747
0.5 0.0358 0.0358 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357
0.6 0.0153 0.0153 0.0153 0.0153 0.01353 0.0153 0.0153 0.0153 0.0153
0.7 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0068 0.0068
0.8 0.002 0.002 0.002 0.002 0,002 0002 0002 0002 0002
n.9 nonNa N0 NANDNAE  N.OMMA  0.00068 0006 N O00G 0 NO0DA 0 0NDA
1.0 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
1.5 0 0 0 0 0 0 0 ¢] 0
2.0 0 0 0 0 0 0 0 ¢ 0
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0.3, 0.25, 0.225, 0.2, 0.175, 0.15, 0.125, and 0.1. We fixed the controlled probability
of Type II error at 4 = 0.05 and employed the same value of « and values of d
to obtain the corresponding values of n* = 81, 145, 206, 257, 324, 422, 578, 832,
and 12949. We set the design factor v = 0.3, 0.5, and 0.8, and took the shift factor
k = 0(0.1)1.0 and 1.5(0.5)2.5 to study the impacts of these factors on both the
coverage and the Type Il error probabilities for both procedures.

The numerical computations based on Theorems 3.2 and 4.1 are presented
in Table 1 for values of ¥ < 2 and the case v = 0.50 only for brevity (the ef-
fects of v were negligible for the controlled procedure and slight for the uncon-
trolled procedure since v only appears in the terms Qg(-, v} in Theorem 3.1 and
Q1(-,v, k) — Qa2(-,7,k) in Theorem 4.1). The uncontrolled coverage probability
was always less than the targeted value and approached it only asymptatically,
while the controlled coverage probability was always substantially larger than the
targeted value. As expected, as k increased the probabilities of Type II errors de-
creaged for both procedures. Howevor, ,@T(;(k) < BT(k) nniformly in k. Tt was also
evident that attainment of the targeted value of 8 = 0.05 occurred for k between
0.4 and 0.5 for the controlled procedure wversus for k& between 0.8 and 0.9 for the
uncontrolled procedure.

6. Discussion

It is worth reemphasizing that in considering where the control of Type II
error of a fixed precision confidence interval for a parameter is to be achieved,
only potential values of the parameter occurring outside the interval are legitimate
candidates. Again, this is so because all potential values lying within the confidence
interval comprise the null hypothesis. It is only when studying the sensitivity of
the interval to any shifts in the true valuc of the parameter {(i.e., without regard to
control of Type IT error) that the designation “Type II error” may be appropriately
interpreted as applying to values of the parametcr lying inside the interval, as was
done in our previous work (Costanza et al. (1935)).

Regardless of the type of fixed width confidence interval to be employed to
test the hypotheses considered in this paper, it is obvious that to satisfy both the
previous requirements of controlling the coverage probability and the precision of
estimation, as well as the additional requirement of controlling the probabilities of
Type 11 error, the corresponding optimal sample size must be larger than it would
he if T'ype 1l errer probabilities were not reguired to be controlled. This is also
the case for the usual classical method of testing hypotheses based on the use of
confidence intervals, as discussed by Kupper and Hafner (1989). They also pointed
out that power of tests of hypotheses based on samples of sizes determined only
through prespecifying the length of the confidence interval (as in (2.1}) is extremely
unsatisfactory. Instead. they strongly recommended the use of sample sizes whose
determination formulas allow for control of power (as do (2.2} or (2.3)}). What
is new in our approach is the formulation and solution of the problem based on
triple sampling, hath in terms of the specific representation of the hypotheses to be
tested as well as the derivation of the required optimal sample size and a detailed
evaluation of the asymptotic and small to moderate sample size performance of
the proposed procedure.
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For most reasonable choices of a (e.g., @ £ 0.10) and 0 (e.g., « < 3 < 0.20),
the ratio of the corresponding required optimal sample size n* in (2.3) to n° in
(2.1) is on the order of two or three, indicating the dominating effect of the ad-
ditional requirement of controlling Type II error. Although the required relative
increase may seem large on intuitive grounds, and/or the required absolute in-
crease may be prohibitive in terms of available resources for some applications, the
Jact remains that an increase of (at most) this magnitude is necessary to achieve
all the prespecified objectives. There are, however, other considerations which can
reasonably be viewed as lessening the potential negative impact of having to take
larger samples. Of course, for applications where the cost of sampling is a rel-
atively minor issue in comparison to achieving the objectives of having a fixed
with confidence interval with better coverage and controlled for Type I1 error, this
would not be of concern.

First, as in any application of sample size determination in the planning phase
of a proposed study, the researcher has the option of specifying different values for
a, d, o, #, and the k at which the Type II error probability is to be controlled at
the required 4. In our experience, it is frequently the case that the results of such
caleulations arc thought of as “ballpark™ cstimates anyway. Depending on the
particular problem and field of application, there may be some flexibility in the re-
quirements, so that certain combinations of the values of these quantities may lead
to “optimal” sample sizes which can be “lived will® as avceplable compromises.

And second, the proposed n* in (2.3) represents a worst case scenario in that
it is an upper bound for the more specific n® in {2.2). Thus, the researcher could
opt to focus more directly on controlling only the Type Il error probability 4 at
the particular shift size k of interest, which would imply that an optimal sample
size smaller than n* in (2.3} would be required. {The relative magnitudes of n®
in {2.2) and n° in (2.1) depend on the mathematical relation between b and k, so
it less clear which is larger than the other.) of course, such an approach would
maintain the targeted coverage, but would entail some losses relative to Type 11
error probabilities for other shift sizes.

In comparison to testing hypotheses using Hall's {1981} {unmodified) con-
fidence interval, which was not designated to control T'vpe 1l error and which
barely maintains the targeted coverage, the controlled triple sampling procedurc
proposed in this paper has a coverage probability always greatly excceding the
targeted value, even for small optimal sample sizes. Hall’s madified procedure ig
based solely on improving the coverage probability. Although this modification
docs lead to improvements in some probabilities of Type II error, nonetheless it
still has the drawback that it is noft specifically focused on achieving a particular
prespecified controf of Type II error. When such countrol 4s required, as often oc-
curs, for example, in monitoring a process mean in statistical quality assurance,
then the use of our proposed triple sampling procedure would be the method of
choice since it has uniformly better probabilities of Type II error for all potential
shifts of the mean occurring outside the fixed precision confidence interval (i.e.,
the control limits).
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