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Abstract. The paper discusses a likelihood based method of estimation
which allows for a small amount of misspecification in the assumption of nor-
mality. Asymptotic results suggest that the new method can give an estimated
model which is closer to the true model. An application to hearing threshold
data is discussed.
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1. Introduction

Most elementary statistical methods used in practice assume normality. Es-
sentially, although this is usually implicit rather than explicit, a normal distribu-
tion is fitted to data and then the estimated parameters of the model are used to
make the desired inference. For example a tolerance interval or control limit may
be taken as the sample mean plus or minus a fixed multiple of the standard de-
viation, this multiple being chosen on the assumption of normality. But of course
normality never holds exactly, and much recent research concerns diagnostics for
model fit, detection of outliers and robust methods. In practice some suitable plot
of the data is usually examined and a subjective choice made either to keep the
model as it is, to use a transformation or another model, or to abandon para-
metric inference altogether and use a non-parametric approach. An alternative
is to keep within the parametric framework of normality but to allow maximum
likelihood estimation to adapt to local departures from the assumed model. We
aim to show that allowing for a small amount of model misspecification in this way
gives asymptotic inferences which are, in a number of senses to be discussed, closer
to those for the true distribution than are the usual inferences derived from an
incorrect assumption of normality. Our concern is with departures from the whole
model and not just the downweighting of a small proportion of outliers, which is
the usual focus of robust methods.

Copas (1995) uses ideas of stochastic censoring in an approach to maximum
likelihood which can adapt to local departures from an assumed parametric model.
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602 J. B. COPAS AND C. B. STRIDE

To motivate the idea here, suppose we have a random sample of size n from a
probability density function f(z,#), but that the data are interval censored to
(t —h,t+ h). That is, we only observe the exact values of z; for those sample
points which happen to fall in this interval. Then the likelihood is

(1.1) Li(6) = li(z:,8)
where

r—t

(12)  L(z,0) = K ( ) log f(x, )

(or () (3 o)

and K (u) is 1 if [u] < 1 and 0 otherwise. The semi-parametric likelihood of Copas
(1995) is exactly equations (1.1) and (1.2) but with K (u) replaced by a smooth
kernel function scaled to take the maximum value 1 at u = 0.

If 6, is the value of # which maximizcs (1.1}, then this “local maximum likeli-
hood estimate” should give a better local fit to the data in the neighbourhood of ¢,
and so adapt to model departures in that region of the sample space. We use the
term “adaption” to describe the way in which estimation adapts to such model
departures. The amount of adaption is controlled by h. Clearly (1.1) tends to the
ordinary log likelihood " log f(z;,8) as h tends to oo, and so for large h, §; will
be close to the ordinary maximum likelihood estimate 6. Copas (1995) shows that
for small h, f(t, ét) is close to the non-parametric kernel estimate of the density
of X at t, the kernel estimate using the same K (u) and the same value of A. Here
we are interested in a small amount of adaption, and hence in large h, for which
the only relevant property of K is

_ r— )2
(1.3) K ($h t) ;1—(2Tt)—+0(h‘4).

Without loss of generality we have assumed that the argument of K is scaled so
that K”(0) = —1. In the numerical example below K (u) is taken as exp(—u?/2),
but normality of the kernel is not needed for the theory, simply that K (u) is
smooth and locally quadratic around u = 0.

The paper is concerned with asymptotic properties of §; and related quantities
when both n and h are large. We assume that f({z,8) is the normal distribution,
but that this model may be misspecified. Section 2 sets out some basic theory.
Section 3 compares the three distributions f (t,ét), f(t,4) and g(t), the true dis-
tribution from which the data are sampled. Using suitable distance measures we
show that f(t,6,) is on average closer to g(t) than is f(f,6). Section 4 considers
the estimation of the true expectation of some given function s(¢), showing that
the asymptotic mean squared error of [ s(t)f (t,ét)dt is always less than that of
[ s(t)f(t.6)dt when s(t) is a low order polynomial, and often so for other functions.
Section 5 applies the method to the estimation of the upper percentiles of the dis-
tribution of hearing threshold. Here the estimates with local adaption fit the tail
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much better than the percentiles based on normality alone. A generalization is
mentioned briefly in Section 6.

The estimated density f(z, ét) for small h, which as mentioned is closely re-
lated to kernel density estimation, is discussed in Copas (1996). Approximating
the mean sqnared error for large n and small h leads to formulae for the optimum
choice of A, rather similar to the corresponding formulae in the theory of kernel
density estimation (Silverman (1986)). The small-h case is also related to Hjort
and Jones (1996), who use a slightly different approach to semi-parametric density
estimation. Here we are concerned with large h, appropriate for small differences
between g and f. Interest in the large-h casc derives from the fact that, in prac-
tice, a parametric model will be chosen because it is sensible in the light of the
data and context, and so in applications it is usually only small departures from
the model which are important. Typically, large departures would lead to a differ-
ent model being chosen. By keeping h large the sampling variances of estimates
remain similar to those of ordinary maximum likelihood.

Further and more general discussion of the censoring approach to local infer-
ence, and of links to dynamic regression modelling, is given in Copas (1995).

2. Some basic theory

Taking f(x,0) to be the probability density function of N(yu,0o?) with § =
(1,0)", and using equations {1.1) to (1.3) we find for large h

(2.1) Li{z.0) = logf(ac )
2h2(x~t) (log f(z,0) —log(a® + (p —£)2)) + O(h™*).

Hence, omitting from now on terms of order h=* and smaller,
- nd

(2.2) ajéLt(e) ZU(%‘, g) — BT}

where

u(z,8) = 59 log f(x,8),
(23) T =0 S e - H2(ulz,.6) - (6)).

and

o(0) = - 1og(o® + (u— 1))

It turns out that 7" in (2.3) is the crucial quantity which determines the
difference between #, and §. Explicitly, the two components of the vector 7" are

Y )

and
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2 2

2 Yoo (B - )

showing that up to the order of O(h~2) the local likelihood inference make use of
the skewness and kurtosis of the sample. X

Now the ordinary maximum likelihood estimate 8 is the solution of the equa-
tion

(2.4) % 3" u(ai,6) = 0

and so, as n — oc, 6 will converge strongly to 8, the solution of the equation

(2.5) / u(z, 0)g(x)dz = 0.

But

(2.6) u(z, 0) = (xf;“,("”";);_"z)T
and so equation (2.5) implies

@7) b= Ep(X) = E,(X)

?;-i) 0 = Ef(X — p)® = Bg(X — p)?

where the suffix on the expectation operator indicates the distribution over which
the expectation is taken. This is the obvious property of the normal distribution
that it matches the mean and variance of any distribution to which it is fitted. It
follows that

(2.9) Ef(X —t)? = By(X — 1)?

and so

210)  By(T) = By((X — u(X.6)) - (3/08)(0 + (u— 1)?)
(2.11) _ /(ac —)2u(z,8)(g(z) — f(z,0))dz.

Note that if g = f then (2.11) is zero and so Ef(T") = 0.

Another consequence of (2.7) and (2.8) is that the THessian
(6°/06067 ) log f(z,6), which involves at most quadratic terms in z, has the same
expectation under both f and g, namely

__.—=(1 0
H=-0 (0 2).
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Differentiating (2.2) with respect to 8, and noting that 6, is the zero of (2.2)
and € is the zero of (2.4), we obtain the first order approximation

1

HT.
2h2

ét‘é:

Substituting (2.6) into (2.3} and taking expectations thus gives
s A o? 20h
2.12 E (0, —0)=——=
( ) g( ‘ ) 4h? (O’bQ—Q(t—M)bj[)’
where b; and by are the skewness and kurtosis measures of g, namely
by =0 3E,(X — p)?
and

by =0 *E (X — u)* -3,

Note that if g = f then b = by = 0 and so to this order of approximation
E¢(6,) = Ef(0) = 0, as expected.
Much the same method can be used to study the variance of ét. We find that

nVary(8,) = nVars(6) + O(h™),

but in general A R
n'Var,(0;) = n Var, () + O(h™?).

3. Estimating the true density g(t)

In this section we study the estimation of g(t) by the model density f(¢,0)
with 8 taken as the maximum likelihood estimate with and without. local adaption.
To simplify the notation, let oy = g(t), a; = f(t, 9,5) and @; = f(t,8).

First note that

d — Gy~ F(t,0)uT(t,0)(6; — 6),

and so we can use (2.6) and (2.12) to obtain an approximation (accurate to O(h~*))
to the difference between the asymptotic biases of the two estimates. This comes
to

(3.1) Ey(ay — é&)

= e S )2t — 1) (20 — (¢ 1))+ oha((t = 1) — 02)).

The difference in the mean squared errors,
Ey(dy — ay)® — Eylay — ay)?
g\ttt t g\t t

is

(Varg(d,) — Varg(ay)) + 2E,(d; — &) E,(dy — ap) + O(h™%).
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The first two parts of this expression have the orders of magnitude of n~'h~2 and
h~2 respectively, and so for large n the bias term is dominant, and &, is better
than &, it the bias difference Fg (o, — ;) has the opposite sign to that of the bias
of a;. Asymptotic approximations to these quantities are

Eg(dt — o) = f(t,8) — g(t)

and E, (&, — &) given by equation (3.1).

Even if the model is misspecified ¢; will be approximately unbiased for at
least one value of ¢ (where the density curves f(¢,8) and g(¢) cross) and so it is
not surprising that ¢, cannot be uniformly better than c; for all t. To see an
example, suppose g(t) is a gamma distribution with shape parameter 2. Without
loss of generality we suppose it is shifted and scaled to have 4 = 0 and 7 = 1, s0
that

g(t) = 2(t + V2) exp(—V2(V2 + 1))

for t > —+/2 and zero otherwise. For this distribution 4, = /2 and by = 3.
Figure 1 shows the asymptotic bias E4(c@; — ;) and a suitable positive multiple of
E4(dy — d). These functions have opposite signs for almost all values of ¢ except
for values just above 0, where f and g happen to be close together.

For discrete data the fit of a distribution is usually measured by the chi-
squared statistic, the sum of squared differences between observed and expected
frequencies weighted inversely with the expected frequencies. Motivated by this,
deline the risk function

~ 2
Rl :Eg/(at at) a,\t

~ Q/Eg(dt — dt)%g—@dt.

(6 — )"

From (3.1) this is approximately

- iz [ @1t = w29 — (¢ 0) + ottt - 2~ S0) ~ (B
= —h7?0%b.

Hence if g(t) is skewed so that b; # 0, R; is negative, indicating that &, is on
average “closer” to «y than is d.

The same result also holds if we use the Kullback-Leibler distance (or relative
entropy) to give the risk function

Ry = —E, (/ log ﬁOzt,dt — /log %atdt) .
(o Oy

To the same approximation this gives

Rg = —Eg/ ata_ e atdt
t

~ /Eg(o?t - dt)%dt
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Fig. 1. Estimating gamma density.

Here we have used the fact that the integral of E,(d; — ) is of the order O(h™*),
since the integral of (3.1) over ¢ is zero. Hence

1. _.
Ry ~ —§h‘202b%,

again always negative when b, # 0.

Clearly R; and Ry — 0 as h — o0, both becoming increasingly negative as h
decreases. But these approximations are only valid for large h—the improvement
in bias gained by small & has to be offset against the deterioration in variance,
which would be substantial if & is small even with large sample sizes. As mentioned
above, a parallel asymptotic theory for small h is developed in Copas(1996).

4. Estimating generalized moments

Suppose we now wish to estimate the parameter « taking the form of a “gen-
eralized moment”

o= / s(t)a(t)dt,

the expectation of a given function s. Our estimates with and without local
adaption are

& = /s(t)f(t,e})dt

and
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& = / s(t) f(t, B)dt.
Using the same argument as at the beginning of Section 3 we have

(4.1)  Eyg(a—a)® — Ey(@ — a)® = Vary(&) — Vary(a)
+2E,(& - &)E (& — a) + O(h™Y).

As before this is dominated by the bias terms.
As f(t,0;) does not necessarily integrate to one, a more careful definition of
& might be A

From Section 2 we have that f(¢,8:) — f(t,6) is of the order of h~2 and so we can
write & — & = Ah~2 and [ f(t,6;)dt =1+ Bh™2. Then

& — &= (A—Ba)h ™2 +0(h™).

But from (3.1) E4(B) = O(h™2) and so to this approximation & has the same
mean squared error as & and so we can keep to the simpler definition.

The bias terms in (4.1} are obtained from the formulae in Sections 2 and 3.
Equation (3.1) implies

(4.2) E, / s(8) (@ — Guy)dt = —4h120(2b1E1 + aby E),
where

(4.3) B = Ep(s(X)(X — p)(20% = (X — 1)*))
?ZZ Ey = Ef(s(X)((X - u)* = o).

Note that the special case of s(t) = 1 gives both F; and FE» to be 0, and so, since
f(t,8) integrates to one for all 8,

(4.5) Ey/f(t, 8,)dt — 1+ O(h™%),

as already noted in Section 3. This extends equation (25) in Copas (1995) to the
case when g # f. We now use (4.2) to give

1
—2E3(2b1E1 + O'ngg)

(4.6) By - 0)E,(6 - 0) =~

where

Es = Ef(s(X)) — Ey(s(X)).
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Since the mean and variance of ¢ are matched exactly by f, Ej3, and hence
(4.6), is 0 when s(t) is any quadratic function of t. Suppose that s(t) = (t — 1)
Then Ey = —96%, E; =0 and E3 = —o3b;. Hence (4.6) is then

9 52
_WU bl
which is negative whenever b; # 0.
To add a quartic term we need to allow for the “correlation” between (¢ — u)*
and (t — p)?. Let

(4.7) s(t) = Ba(t — w)® + Bal(t — w)* = 150°(t — )?).

Then E; = —9830%, Ey = —18840° and E3 = —f3b10° — Bybao?. Hence (4.6)
becomes
958

o
which is also less than or equal to zero.
Any quartic polynomial can be written in the form

Bsby + o B4ba)?

(4.8) Bo+ Bilt — p) + Bat — ) + s(t)

with s(t) in (4.7). Let
&* = By + Bo” + &,

which is just the usual estimate of the expectation of (4.8) obtained from the fitted
normal distribution. The estimate with local adaption is

& = By + Bao’ + &,

and so &* — & = &* — &. Hence the difference between the mean squared errors of
&* and &* will be the same as the difference between the mean squared errors of &
and @&, and so is also less than or equal to zero. In practice the coefficients of this
polynomial will be calculated using the sample rather than the population values
of 1 and o, but this will not effect the asymptotic comparisons being made.
Section 3 remarks that f(t, g;) cannot be a uniformly better estimate of g(t)
than f(t,é) for all ¢, and likewise & cannot be hetter than & for all possible
functions s(t). However the above suggests that local adaption will give better
estimates for smooth functions s which can be approximated by low order poly-
nomials, and examples suggest that this is so for a wide variety of generalized
moments. For instance let s(t) equal 1 ift < ¢ and 0if ¢t > a. Then « is the cumu-
lative distribution function of g{t) at ¢ = a and & is the corresponding cumulative
probability for the normal distribution with the same mean and variance. Here

(4.9) Egzé(agﬂ>%/:ﬂUML
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where & is the standard normal distribution function. Evaluating the incomplete
moments of the normal needed for F1 and F» in (4.3) and (4.4) leads to

1

(4.10) A T

(a=me (=2) o) - bo)

Note that this is zero at @ = p, and so local adaption has no effect (to this
approximation) at the mean. It is also zero in both tails (a — =o0), which
must be so as the limiting values of & and & are either 0 or 1. I ¢ is skewed
only (bp = 0), the bias difference has the same sign in the two tails, but if g
is symmetrical (b; = 0), the bias difference has opposite signs in the two tails,
both as expected. More generally, if (¢ — p) changes sign, and b; changes sign,
then (4.10) also changes sign but retains the same magnitude, again as one would
expect from considerations of symmetry.

Equation (4.9) and a suitably scaled version of (4.10) are illustrated in Fig. 2
for the same gamma distribution which was used in Section 3. The two functions
have opposite signs (and hence @ is better than &) for almost all values of a except
those just less than zero, and local adaption is beneficial for estimating both tails.

——- bias of normal
——- bias differance

0.05

estimation bias
0.0

0.05

.10

4
4

Fig. 2. Estimating cdf of gamma.
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5. Application: percentiles of hearing threshold

Davis (1991) presents extensive tables of percentiles of the distribution of
hearing threshold, the distribution being broken down by age, sex and occupa-
tional group. Briefly, a person’s hearing threshold is the lowest volume of sound
(measured in decibels, dB) which can just be heard. The upper percentiles of the
distribution are of particular interest in assessing hearing disability (King et al.
(1992)).

Davis’s tables are based on a sample survey of the adult population of the
U.K. (Davis (1989)), and report case-weighted empirical percentiles calculated
from appropriate subsets of the data. An obvious difficulty is that there may be
insufficient data for estimation in the less commonly occurring combinations of
covariate levels, particularly for the more extreme percentiles. An alternative is to
fit a statistical model to the data. Bowater et al. (1996) suggest a three parameter
lognormal distribution, noting that these data are typically skewed to the right.
Much of the literature in this area, however, uses standard statistical techniques
and so is tacitly assuming a normal distribution. An example in the book by Long-
ford ((1993), Section 6.8) assumes a normal distribution for such hearing threshold
data, but presents versions with and without a logarithmic transformation. Our
approach here is to use a normal model but to allow for some local adaption for
model misspecification. The large-h theory is relevant in this application since the
data are only moderately skewed (the dB scale is already logarithmic), and so only
small departures between g and f are of interest.

We illustrate the method by taking Davis’s data for male manual workers
aged over 60 years, defining hearing threshold X dB to be the average of the three
readings obtained for the better ear at the frequencies 1, 2 and 3 kHz. There
are 244 observations for which sample estimates of ¢ and o are 37.3 and 20.9
respectively. Estimated skewness and kurtosis measures are by = 0.98 (£0.16) and
by = 1.36 (£0.31), indicating rather longer tails than the normal. Interest is in
the upper tail of the distribution, so we estimate percentiles from ahout the 90th
percentile upwards. .

For each of a fine grid of values of ¢, #; was found by numerical maximisation
of (1.1), noting that for the normal kernel K (u) = exp(—u*/2) the integral needed
in (1.2) is available explicitly as

(5.1) /K (x - t) f(z,8)dz = Wexp (“ﬂ%}) .

Values of the cumulative probabilities based on f(¢, ét) were estimated directly by
taking partial sums over the grid of ¢, normalized so that the value is 1 when ¢ is
above the range of the data. The corresponding estimates of the percentiles of the
distribution are shown in Fig. 3, using three different values of h as indicated. Also
shown in the graph are the actual data (the dots corresponding to the inverse of
the empirical distribution function), and the fitted normal model (the solid curve
being p+ o® ~1(%/100)). The choice h = 50 (two and a half standard deviations)
seems about right, A = 100 showing very little adaption and A = 10 too much
in the sense that it is strongly influenced by the pattern of the three highest
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observations. Note that the longer right tail of the data is quite well reflected by
the percentiles estimated with local adaption.

To check the accuracy of the asymptotic approximations used in the paper,
expression (4.10) was evaluated using the sample statistics b; and bo, and taking a
to be cach value of ¢ in the grid. These were then added to the estimated normal
cumulative probabilities to give the large-A approximations to the corresponding
estimates with local adaption. Figure 4 compares this approximation for A =
50 with the estimates obtained by direct numerical maximisation of the local
likelihood, indicating quite good agreement.

6. Generalization

The only property of normality which is important for the theory in the pre-
vious sections is the matching of mean and variance in equation (2.9). This leads
to the formulae (2.10) and (2.11) and thence to the relatively simple expressions
involving the third and fourth moments of g. The normal is not the only dis-
tribution having this property—a more general class is the quadratic exponential
family

(6.1) Flz,8) = exp(brx + 6222 + k(z) + ¥(0))

where k() is a given function of = and ¥(8) is the normalizing constant

Y(#) = — log/exp(t?lx + 622% + k(z))dz,

assuming this integral exists. The normal distribution is of course is a special case
of (6.1).

All the results of this paper can be generalized to cover this distribution. 'The
role of b; and bs is now taken by the difference between the respective moments of
f and g. The two risk differences studied in Section 3 are again less than or equal
to zero.

The function k(z) in (6.1) is assumed given. A further generalization is to
allow k{zx) to depend on additional unknown parameters.
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