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Abstract. Conventional Bayes factors for hypotheses testing cannot typically
accommodate the use of standard noninformative priors, as such priors are
defined only up to arbitrary constants which affect the values of the Bayes
factors. To circumnvent this problem, Berger and Pericchi (1996, J. Amer.
Statist. Assoc., 91, 109-122) introduced a new criterion called the Intrinsic
Bayes Factor (IBF). In this paper, we use their methodology to test several
hypotheses regarding the shape parameter of the power law process. Assuming
that we have data from the process according to the failure-truncation sampling
scheme, we derive the arithmetic and geometric IBF’s using the reference priors.
We deduce a set of intringic priors that correspond to these IBIVs, as the
observed number of failurcs tonds to infinity. We then use these results to
analyze an actual data set on the failures of an aircraft generator.

Key words and phrases:  Automatic Bayes factor, Intrinsic Bayes factors, (non-
homogeneous) Poisson process, reference prior, repairable systems, tests of hy-
potheses, Weibull process.

1. Introductian

The power law process is a non-homogeneous Poisson process {X(¢},¢ > 0}
with intensity function A(t) = Bt9-1/af o > 0, A4 > 0, and mean-value function
A(t) = E(X(t)) = (t/a)”. This process has been widely used to model reliability
growth (Crow (1982)}, software reliability, and repairable systems {Ascher and
Feinhold (1984) and Rigdon and Basu (1989)). In view of the argnments of Ascher
(1981), we prefer the phrase power law process to the alternative name, Weibull
process, available in the literature to describe the X (t) process.

Statistical hypothesis testing for the parameters o, G have been considered
in the literature from a frequentist standpoint. See Rigdon and Basu (1989) for
a review in this regard. Hypotheses about the shape parameter @ often have
interpretations for the system that is modeled by X(£) process. When 3 =1, the
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694 RAMA T. LINGHAM AND 8. SIVAGANESAN

power law process becomes a homogeneous Poisson process and the frequency ot
failures is time-independent. For 3 > 1, the frequency of failures increases with
time, while for 8 < 1, the failure frequency decreases with time. Thus, from the
view point of system reliability, the hypotheses H| : 8 = 1, Hs : 8 > 1 and
Hy o 3 < 1 respectively mean that the system is experiencing no change over time,
degradation over time and improvement over time. Frequentist testing of point
null hypotheses of the type H; have been derived under two sampling schemes,
namely failure truncation and time truncation. In the former protocol, a pre-
determined number, n, of successive failure times of the X (£) process are obtained
for inference regarding a and 3. For example, failure times of a “complex type
of aircraft generator”, stopped after the thirteenth failure, due to Duane (1964),
and discussed by Rigdon and Basu (1089) and by Bar Lev et al. (1092} is given in
Table 1:

Table 1. Failure times in hours for the aircraft generator.

i = Failure number g, = Failure time

1 35
2 166
3 205
4 341
5 488
6 567
7 731
8 1308
9 2050
10 2453
11 3115
12 4017
13 4596

In time-truncation, the observation of the failures is restricted to a pre-fixed
interval [0,%g], and the number of failures, X (o}, along with the failure times
during this interval, are recorded. Here, we are concerned only with testing for
4 under failure truncation. Qur results in the case of time-truncation will be
reported elsewhere.

In this paper, we take a Bayesian approach to the problem of testing H;,
1 = 1,2, 3 using reference priors for {«, 5) and the new criterion, called the Intrinsic
Bayes Factor (IBF), due to Berger and Pericchi (1996), where problems of model
selection and hypotheses testing are addressed. In the next section, we describe
briefly the IBF methodology. In Section 3, towards implementation of the methad
to solve our problem, expressions for IBEF’s are derived and the asymptotic behavior
of the IBF is established. Finally, computations of the IBF for, and our conclusions
from, the data in Table 1, are presented in Section 4.
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2. The IBF methodology

In the context of general hypotheses testing, the IBF approach of Berger and
Pericchi {(1996) can be summarized as follows,

Let Y = (Y¥1,...,Y,) be an observable with ¥ ~ f(y | ), where #¢© is a
finite-dimensional parameter. Suppose we wish to test the hypotheses H, : 8¢9,
where ©; C ©,i = 1,2,...,q. Bayesian hypotheses testing proceeds by selecting
a prior distribution 7;(@) for # under H;, together with the prior probability p; of
H; being true, i — 1,2, ..., q. The posterior probahility that H; is trne is then

-1

(2.1) P(H, |y) = Z g,

where, B,,, the Bayes factor of H, to H,, is defined by

. m;(y) f(—)j fly | 0)m;(0)d6
(2.2) Bji = mi(y)  Jo J(y 10m(0)d6’

m;(y) being the marginal or predictive density of Y under H;. The posterior
probabilities in (2.1) are then used to select the most pl‘Lu‘aible hypothesis.
If one were to use some non-informative priors 7.V (6), (2.2) becomes

v My Jo, fly |8)r Y (8)de
omN(yy T fo, Sy O)nN(9)de’

(2.3)

Being usually improper, 7V are defined only up to arbitrary constants.

Hence, the Corro%pondmg Bayes factor, BY i, 1s indeterminate. One solution
to this 1ndeternnncmcy problem, due to Borger and Pericchi (1996}, begins with
the assumption that we can split the data vector ¥ into y(#), the so-called training
sample, and the remainder of the data, y(—¢), such that

(2.4) 0<md(y®) <oo, Vi=1,2,...,q

In view of (2.4), the posteriors N (@ | y(£)) are well-defined. Now, consider the
Bayes factors, B;;(£), for the rebt of the data y{—#), using 7N (@ | y(£)) as the
priors:

Jo, f(y f) |8, y(O)m Y (8| y(£))dd

fo, Fy(=£) | 6, y(e))7 Y (0 | y(£))do
_ nN N
= Bj; x Bz’j (y(£))

(2.5) By (4) =

where Bﬁ is given by (2.3) and

(2.6) B (y(6)} = m{ (y(6))/m (y(6)).



696 RAMA T. LINGHAM AND 5, SIVAGANESAN

In {2.5), any arbitrary ratio, ¢;/c; say, that multiples Bﬁ’ would be cancelled
by the ratio ¢;/¢; forming the multiplicand in ij (y(£}). Also, while the expression
for B;;(f) apparently requires the conditional distribution of y(—£) given y(#),
{2.6) renders Bj;{#) in terms of the simpler marginal densities of y(¢).

As training samples play a fundamental role in our testing H;,1=1,2,...,q,
we will need

DerINiTION 2.1. A training sample y(£), will be called proper if {2.4) holds
and mindmal (MTS) if it is proper and none of its subsets is proper.

Berger and Pericchi (1996) advocated various summaries based on B;;(€)'s in
{2.5) from many training samples to test H;, ¢ = 1,2,...,q. Generically termed

the Intrinsic Bayes Factor (IBF), two summaries are given by

DEFINITION 2.2. The Arithmetic Intrinsic Dayes factor of II; to H; is

L
1
(2.7a) Bt = 13 Bnu(0).
=1

The zeometric Intrinsic Bayes factor of H; to H; is

I 1/L
(2.7b) nar (H Bﬂ(e))

where L 1s the number of all possible minimal training samples {the typical de
pendence of L on the sample size n, here suppressed, will be indicated by L,).

Introducing Correction Iactors, CI'A;; and CFG,;, through {2.6) by

L
of 1 -
(2.82) CFA, = CFA,, (L)% — E :B (y(£),
1/Ln
(2.8) CEFGyy = CFGj(Ln) (HB {ywﬂ)

we obtain from (2.5), (2.7a}), {2.7b), (2.8a) and (2.3¥b)

{2.9a) Bi! = B x CF Ay,
(2.9b) Bl = BN x CFGy;.

This re-write of the IBF’s will be used in the rest of the paper.

Remarks 2.1. (i) One can calculate the posterior probability of H; using
(2.1), where By, is replaced by B2’ from (2.9a) and (2.9b).
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(ii) Though other versions of the IBF are available, sce Berger and Pericchi
(1996), we will discuss, in this paper, only the arithmetic and the geometric IBF’s
given by (2.9a) and (2.9b).

The IBF methodology provides a new approach to model selection and hy-
potheses testing. Berger and Pericchi (1996) have demonstrated that it can be
implemented even in many non-standard situations. Tt is fully automatic in the
sense of requiring only default or standard noninformative priors for its computa-
tion. Most importantly, it seems to correspond to very reasonable actual Bayes
factors (asymptotically, as n — o0), provided the correction factor CFA;;{L,) in
(2.9a) and (2.9b) almost surely converges, as n — 00, to a non-zero value. In or-
der for this convergence to hold, the hypothesis H; must typically, in some sense,
be “more complex” than the hypothesis H;. Unfortunately, in many problems,
it is often not clear which hypothesis (if either} is more complex. For example,
in the context of the Power Law process, there is no natural way to pick one of
the hypotheses Hy : 3 =1, Hy : 8 > 1 and Hy : 3 < | as being more complex
than any of the remaining two. This is typically the case when hypotheses are, as
in this example, not nested. Following Berger and Pericchi (1696}, we therefore
introduce the encompassing hypothesis Hy : 3 > (0. The idea here is to formulate a
hypothesis which is (minimally} more complex than the hypotheses being tested.
It should be noted here that, if one were to test hypothesis using the Geometric
Bayes factors, then complications regarding the choice of a more complex hypoth-
esis do not arise and an encompassing approach is not needed. See Berger and
Pericchi (1996} for details regarding the encompassing approach to model selection
and hypotheses testing.

Returning to the general set up introduced earlier in this section, supposc
that H;, + = 1,2,...,q are nonnested hypotheses. Suppose also that H; is nested
in a certain hypothesis, Hy say, Vi = 1,2,...,q, so that Hy is the encompassing
hypothesis. Assume further that 7y(#) is the prior for § under Hy. Then, we have

DerINITION 2.3, (Berger and Pericchi {1996)) The encompassing arith
metic IBF of H; to H; is given by

By CFA4;
2.10 oAt 26 pN i0 L<i i<
( ) Jt B g2 CFATO ? — L! j —_ q}

0y

where Bﬁ and CF A, are given respectively by (2.3) and (2.8a) and (2.8b).

Remarks 2.2. (i) In implementing (2.10) in any given situation, minimal
training samples (see Definition 2.1) have to be defined relative to all the (g + 1)
hypotheses H;,i=10,1,2,... .49

(i) The posterior probabilities of H;, i = 1,2,...,q, given by (2.1), would
become, in this encompassing apptroach,

-1

(2.11) P, | y) = pr
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Using the posterior probabilities, which are computed through (2.11), we can test
H,i1=1,2,...,q.

3. Intrinsic Bayes Factors

This section is organized as follows. In Subsections 3.1 to 3.5, we discuss
various aspects of testing H;, ¢+ = 1,2,3 from the point of view of arithmetic
Bayes factors in (2.7a). In Subsection 3.1, we determine the MTS, given the data
Y = (¥1,---,Yn). In Subsection 3.2, we derive expressions for the IBF’s given by
(2.9a) and (2.9b) for two types of MTS. In Subsection 3.3, we establish the L,
and almost-sure convergence of the correction factor in (2.8a} and (2.8b) relating
to one type of MTS. Expected Intrinsic Bayes Factors are presented in Subsection
3.4. In Subsection 3.5, we derive the intrinsic priors under H;, i — 1,2,3. Finally,
in Subsection 3.6, we summarize our results for testing H;, i = 1,2,3. using the
geometric Bayes factors in (2.7b).

3.1 Minimal training Samples

The goal here is to determine the set of all possible MTS’s for the data v. To
this end, we use Definition 2.1 and the reference priors m¥{c, 3), i = 0, 1,2, 3, say,
corresponding respectively to Hy : 3 >0, Hy : =1, Hy: 8> 1and Hy: 7 < 1.
For an excellent. review of, and algorithms to derive, reference priors in general, see
Berger and Bernardo {1992). In view of the advantages of using reference priors in
deriving the IBF that have been demonstrated by Berger and Pericchi (1996) we
focus, in this paper, solely on the reference priors. It can be shown (sce (A.2) and

its proof in Appendix} that the reference priors for H;, 7 = 0, ..., 3 are respectively
given by .

1
(3.1) w (a, B) = —1{a> 0,4 > 0)

af

(3.2) 7 (@) = 1&1(@ > 0)

1
(3.3) (e, B) = :;af(a >0,8>1)

1
(3.4) fr;;"(a,ﬁ)zgél(a>o,o<ﬁ< 1),

where, for any set A, I{A} means the indicator function of A. It should be noted
here that (3.1) corresponds to one of the priors used by Bar-Lev et al. (1992) (see
equation (2.2), with v — 1, of their paper), who were concerned with estimation
and prediction problems relating to the power law process.

We now derive the marginals with respect to the reference priors given by
(3.1) to (3.4). For this, we first observe that the joint pdf of {¥1,...,Y,) is given
by

-1

(35) f(yh---,ynla,ﬁ):(i)n(ﬁl%)ﬁ e ()],

-

Oy <y < - <yn-
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Moreover, the marginal pdf of ¥, | < k < m, 15 given by

—ak ,
(36) |0 = ol Lo { - (£)7)

and the joint pdf of (¥, Y;), 1<k <£<nis

2., —28
Flye,ye | o, 8) = I‘(gﬁ_ﬂ(ykyf)ﬁ_l

e @ -l e}

Now, we introduce some notation for the marginals that we will use. For § =
0,1,2,3and 1 <k < £ <mn, let mi(y), m:(ys,ve) and m;{y) be respectively the
marginal densities of Y, (Y, Yz) and Y = (Y1,...,Y,) under the hypothesis H;.
Thus, for example,

may) = [0 ) f "y | a0 B (@, B)dadB.

It is easy to verily that mg(ys) is infinite for any 1 < k& < n. The expressions
for the other marginals can be written in simple closed forms. In the following
lemma, we give the marginals for any two observations. Proof is routine and hence
is omitted.

LEmmA 3.1. Forn>2and 1 <k < ¥ <n, we have

1

mo(yk:yﬁ) = vﬁ—T?
Yy log (—)
Yk

k/¢
my (Y, ye) = LJ‘B (yk;k +1,¢— k) ,

Yulie Ye
1 k
ma(yr,Ye) = —————Fg (y“;k‘,f— k) :
Y Ye
e log (—)
Yk
and
Wlfg(ykryf) - 1 T}E |:J-_FB (Z_kak7g_k):|
2 £
Yrye log (—)
Yk

where fp(x;a,b) and Fg(x;a,b) are, respectively, the pdf and the cdf of the Beta
(a,b) distribution, evaluated at x.

It is clear from the above that the marginal density of (Y}, Yp) is finite for all
1 <k < £ < n under cach hypothesis, and hence we conclude that any training
sample of size two is an MTS.
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3.2  Arithmetic Bayes factors

The marginals corresponding to the whole data y can also be expressed in
closed forms. We give these in the following lemma. Again, the proof involves
routine calculations and is omitted.

LEMMA 3.2,
mo(y} = T(n)T(n — 1y, "Q~ " 1e®,
ma(y) = T{n)y,”,
ma(y) = mo(y)(1 — Fy2(2Q, 2(n - 1))),
and

ms(y) = mo(y) — ma(y),
where Q = 377, log(?%i‘-) and F2(x,v) is the cdf of the x2 random variable eval-
uated at .

Now, we give the expressions for the various Bayes factors. In line with
the notation in Section 2, we let Bﬁ(k,f) and B}}’ represent the Bayes factors
computed using the MTS {yg, ye} and the full data, respectively. Thus, we get
the following from Lemmas 3.1 and 3.2.

THEOREM 3.1. Forn>2and 1 <k <€ <n, we have
k He Yk
Bk H="10 (*) (—;k+l,f—k)
104k, €) P; g r /a e

BNk, €) = Py (’Z’;;k,e k)

Bin(k, 6) = 1 — B (k,€)

Bl =T(n —1eQ—"—Y

Bl = 1/[1 — F2(2Q,2(n ~ 1))]
By — By, /(BY, — 1).

Now, the arithmoetic intrinsic Bayes factors B, (i = 1,2,3), and B?—,f, (1<
i,7 < 3), are given by (see (2.7a), (2.7b) and (2.10)}

(3.7) BL =BY xCFA,,
and
CF A,
0f _ npN 0
(3.8) B)! = B x CFAy

where CF A,q is the correction factor {see (2.8a} and (2.8b)) given by

(3.9) CFAL-(J:% > Y Bik.0).

2/ 1<k<é<n
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3.3 Choice of CFA and the asymptotics

As we have seen, the set of MTS’s include all training samples of size 2. it
is, however, not necessary to use the entire set of M'T'S’s in the calculation of the
correction factor. An interesting alternative is to use only the MTS’s which consist
of (two) consecutive observations. Then the corresponding correction factor and
the IBF’s are given, respectively, by

n—1
. * 1 N
(3.10a) CFA}Q = — ; BY (k,k + 1),
and
CFA:,
. BY — BN 0
(3.10k) re 2 X CFA;‘D

Then the IBF in (3.8) can be computed by using CF A%, in place of CFA;y. The
motivation for the use of CF A}, is the fact that the quantitics B (k. k + 1) are,
as will be shown, i.i.d. and hence CF A}, is an average of (n — 1) L.i.d. terms. In
fact, letting m, = (yk:‘Ll)k for k > 1, we can write CFAY, (1 = 1,2,3), using the
common expression (see Theorem 3.1},

n—1
. « 1 N
(311) CRAp = 7 3 o)

where g,(r) = —zlogz, g2(z) = z and gz{z} = 1 — z. That C'FAY, is the average
of (n - 1} 1.i.d. terms is now establighed by the following.

THEOREM 3.2. Let <Y, i > 1> be the occurrence times of the power law
process with mean function Ax) = (»ﬁ)ﬁ Then, the sequenice << Vi, i = 1 > of
rondom variables are independent, with a common Beta (3,1) distribution.

ProoF. Let n > 2 be a fixed but otherwise arbitrary integer. Then, it
suflices to show that Vi, Vo, ., V), | are independent, with a commaon Reta (3,1)
distribution. To this cnd, note that the joint p.d.f. of (Y},...,¥,,) is given by (3.5).
Consider the transformation of variables from (Yy,....Y,) to (Vi,...,V,_1,Y,),
whosce Jacobian is given by 271 /(n — 1}!. Thus, the joint p.df. of (Vi,...,V,_1,
Yy}, after some algebra, is

n-l nd lg (ynfe)?
: - Yn'™ €
{3.12) (H BUEB 1)) N kL N

o™ (n — 1)!

0z, <l,i—1,...,n—1, g, >0

i=1
The desired conclusion, and the theorem, follow immediately upon integrating y.,
out of the ecxpression in (3.12). O

As Berger and Pericchi (1996) pointed out, for the intrinsic Bayes factors
Bﬁ-" s Lo correspond, asymptotically, to actual Bayes factors, it is important that
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the correction factors converge, as 1 — oo. That this requitement is indeed
satisfied by CF A}}’s is contained in the following.

THEOREM 3.3. {a) lor k > 1, we have

E(Blu(kk+ 1) = 6/(3+1)°
BBk, k1 1)) =8/(811)
E(B(kk+ 1) =1/(8+1)
{(b) Fori—1,2, and 3, CFA}, in (3.10a) converges in L, and almost surely
to (ﬁfma (ﬁil) and (ﬁ}l-l)’ respectively.

Proor. Let U be a Beta (3,1) random variable. Then, for ¢ = 1,2,3,
E(BY(k,k +1)) = E(g:;(U)). Part {a) readily follows from this equation. From
(3.11) and Theorem 3.2, it is now clear that CF A}, 1 = 1,2,3, converge in L,
and almost suwrely to the stated limits, Now the result follows upon calculating

the expected values of ¢,(X), ¢ =1,2,3. 0

We have not been able to verify an analogous result for the corrections factor

CFAQ(} in (39)

3.4 The expected intrinsic Bayes factors

When the sample size is small, the correction factors can have high variability
{as statistics), and that may result in possible instability in the IBF’s. As a way
of overcoming this problem, Berger and Pericchi (1996) recommend replacing the
correction factors by their expectations, evaluated at the MLE’s of any parameters
that may be present. In the present context, using CFAY, from (3.10a) in place
of CFA;p in (3.7), the expected arithmetic intrinsic Bayes factors are defined by

1 = H, N
BN = B 5y X BRIBA K k4 D,
where £ is given by
. n—1
(3.13) fo—n/ Y log(Ya/Vi)
i=1

and is the MLE of 3 under Hy (sce p. 254, Rigdon and Basu (1989}). The expected
intrinsic Bayes factors B;-J,F I 1<4,5 <3, are then defined by

(3.14) BUFAI = BEAL BEAL

Thus, we get, using part (a) of Theorem 3.3 and the above definitions,
(3.15a) BYFAT = BN (30 + 1),

(3.15b) BYEAT = BN(Bo + 1)/ 5a

and

(3.15¢) BYFAL — BY /5.
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3.6 Intrinsic priors

The main motivation for the use of IBF is the fact that, for large samples,
it typically corresponds to actual Bayes factors with respect to some (reasonable)
priors. Such priors, when they exist, are called intrinsic priors. These priors are
neither unique nor necessarily proper. See Berger and Pericchi (1996) for further
motivation and details. We now turn to the derivation of one set of intrinsic priors,
7!, 1=1,2,3, say, for our problem. o this end, we denote the Bayes factor with
respect to a prior m; under H; and a prior m; under H;, 1 < 4,7 < 3, by By;. Then,
for j = 2,3,

(3.16) By = By ) )

where &1 = Y, /n is the MLE of o under H; and (é&;, 3,) is the joint MLE of (a, 8)
under Hy, 7 = 2,3. It may be noted that, with Bu given by (3.13),

32 = ma,x{l,BO}
B]' = min{l,g()}

am%fnﬂWM@mﬁ%R@mwﬂmﬂww}
Now comparing the expression for B;; in (3.16) with the one provided by
(2.10}, we find that the intrinsic priors will be the solutions of the equations

7 (65, BN (@ CFA} .
(3.17) 345, B3 ( )u pun__CFA*, j=2,3.
T (%sﬁj)ﬂl( 1) Jo
We let 71(-) = #{" () in (3.17) and seek 7; to satisfy
, (6, 8;) CFA* _
3.18 A AL AT | 1)) = =3¢ =23
( ) TT";:V(d’J,dfj)( +OP( )) CFA;OJ J H

Passing to the almost sure limit (as n — oo} under II; in {3.18), and letting, for

i=2,3

CFAj,
Al(a> ﬁ) IL].LH.}O CFA* 3

we get V{a, 8)e0;

Wj(aaﬂ) o ) sy
(319) W;\T(a’ﬁ) ﬂAJ(a:ﬁ)s 3_23'3
Now, using part (b) of Theorem 3.3, we obtain

1

(3.20) Aola, ) — B+ l)f{ﬂ > 1)
(321) Bofan ) = 510 < 5 < 1),
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To find a solution to (3.19) to (3.21), that is to find intrinsic priors 7 under
H;, i= 12,3, we use the fact that 7, (o) = ¥ (@) and write (for j = 2,3).

mi{a, 8) = 73 (8 | )i (),
and
(e} — ejni (a).

In the above, we have chosen 7?(a) to be of the same form as #{¥(a), except
tor a constant multiple ¢; (allowed for a possible need tor calibration). 'L'hus,
we confine our choice of {search of solutions for} m; to be m(a) = 7¥(a), and
7i(e, 8) = ¢;m (B | o) - 7 (a), for 7 = 2,3. Now, using (3.19), (3.1)-(3.4) and

Theorem 3.3, we get, for § = 2,3,

1 _ A(CMJB)
(8| ) = chﬁ :
Thus, in view of (3.20) and (3.21),
1
1 -t
and
1
m3(8 | a) = mG <A<,

Now, choosing c» = ¢3 = log 2 gives the following intrinsic priors:

1
w{(a) = aI(a > 0),

m(0) = <52 1(a > 0) m810) = qemaarn 6 D
and |
@) = 210> 0), wlBlo)=— 10<B<1)

(log2)(8 + 1)

The intrinsic priors given above are equivalent to a proper prior for # (given o), and
to an improper prior of the form ¢/« for the {common parameter) a. Existence of
such priors is certainly reassuring as it means that the IBF’s in {3.10b) correspond,
asymptotically, to the use of these priors, and hence to actual Bayes factors. Use of
these IBF’s, however, do not correspond to a properly calibrated Bayesian analysis,
due to the presence of log 2 in the (intrinsic) prior for o for Hy and Hy. Since o is
a scale parameter, the properly calibrated prior for & ought to be 1/, rather than
log2/c. Indeed, these IBF’s can be easily adjusted, for instance, by multiplying
B?ﬁ and B% by log 2, to obtain Bayes factors that do correspond to a properly
calibrated Bayesian analysis. Such an easy adjustment to the IBE’s is possible
here due to the simple form of the intrinsic priors, and to the fact that « is a scale
parameter.
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3.6  Geomelric inirinsic Bayes fuctors

We now summarize our results regarding the test of H;, ¢ = 1.2,3, using
the Geometric IBF’s defined in {2.7b) and the reference priors in 3.2} to (3.4).
Recalling from Subsection 3.1 that a typical MTS under H;, ¢ = 1,2, 3 18 {¥&, Ye b
where 1 < k < £ < n, we get from (2.9b)

(3.22) BSi' = BY, x CFGy;
where

n-1 n 1/(n(n—1)/2)
(3.23) CFGy; = [H 11 Bff(k.f)]

k=1 {é=k+1

By restricting to MTS’s of the type {we,ur11}, the correction factor in (3.23)
collapses to

1/(n-1)

n—1
(3.24) CFGy = [[ BNk, k+ 1)
=1

Although the encompassing approach is unnecessary in implementing the geomet-
ric Bayes factors, we shall find it convenient to compute B{}r (k,£) through the
relation

(3.25) BY (k,6) = B (k, 0)/ B {k, 0),

£) are given by Theorem 3.1. It follows from (3.25) and the relations

where Bjy(k, )
(k,k + 1) and Vi = (Y}/Ys,1)F implicit in (3.10a) and (3.11) that

among BY

Vi)

3.26a BNk k+1 _ ol = logV,

( ) 12( d ) gQ(Vk) g Vi
. Vi) Vilog Vi

3.26b Bk k+ 1) = BV _

( ) is( ) 93(Vi) 1 Vi

2 (Vi) Vi
3.26¢ BN(k k+1 _ (%) _ .
( ) 2.‘1( ) Q"}(Vk) 1 — Vk

We now turn to the derivation of intrinsic priors under the geometric approack.
Beginning with the simplier version of the correction factor, CFG;. in (3.24), we
note that

n—1
, , 1
(3.27) CFGY; = exp {E log Bf\; (k. k+ 1)}

{ Rl
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Since Vi's were shown in Theorem 3.2 to be ii.d. with a common Beta (3,1)
distribution, we obtain by applying the classical SLLN to (3.27) that, as n — oo,

(3.28) CFGy; Bexp {EHf (10g Bjig])} as.,

for £ = 1,2,3. It follows, after some simplification, from (3.26a), (3.26b), (3.26¢)
and (3.28) that, as n — oo,

(3.29) crGr, B2
B’
where logey = [ (logt)etdt,
i
(3.30) CFG13 =z 3 exp {h(ﬁ) — E} ,

def
where h(3) < Y30 k(n"fi-.@)

Now, the intrinsic priors via the geometric approach can be shown to obey
the equations

7w, (6, Al (1) .
3.31 95, P 1+ 0,(1)) = CFC3.
33 Wf(éj,ﬂj)m(dl)( o) !

"The following solution to {3.31) can now be obtained using (3.29) and (3.30) and
arguments similar to those used in Subsection 3.5. We omit the details.

HOE éf(a > 0)

i (a) ~ %I(Q >0), wl(F|w) = I(ﬁ > 1)

[32
wf@) = Pra>0),  wl(8la) = mow{ho- L H0<s <,

where cy = 0.561 and 3 = 0.741. Note that these intrinsic priors are very similar
to the ones derived via the arithmetic approach, tor large values of 3, i.e., for
§ > 1. This similarity does not, however, extend to the range 0 < 8 < 1, where
the two priors exhibit somewhat different shapes. Although it is not very clear
whether this could result in substantially different values for IBF’s, we suspect, that
they would not, since the range where the discrepancy occurs, viz: 0 < 3 < 1, is
small, and both priors are bounded. In particular, we find that these IBF values
are fairly close for the example in Section 4 (see Tables 3 and 4).
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4.  An example: aircraft generator data

We shall now summarize our findings regarding the test of Hy : 3 =1, Hy :
5> 1and Hy: 8 < 1, assuming that the data in Table 1 come from a power law
process. We first consider the case of arithmetic IBF’s using the reference priors
in (3.1) to (3.4).

In Tables 2 and 3, we provide the values of IBF's Bg!, B3V B and B3
for the two versions (3.9) and (3.10a) of the correction factor, namely CF A
and (TF' A%, other R%"”’R can he computed nging Table 3 (see (3.7) and (3.8)). Tt
should be noted that the numbers of MTS'’s used in computing CF A4 and CF A},
are L = 78 and L = 12 respectively.

It is clear from Tables 2 and 3 that, even though the number of MTS’s involved
in computing C'F A, is about six times the number of MTS’s used in CF A}, the
values of the IBF’s are comparable between these two types of correction factors.
Tu fact, Lhe values of B9 and B2 would get even closer, if Lthey were adjusted
by multiplying by log 2, as indicated at the end of Subsection 3.5. In addition
to the asymptotic properties of CF A}, {seec Theorem 3.3), this comparison gives
additional credence to using the simpler correction factor CF Aj, instead of CF A;g
in testing H,, i« = 1,2,3. It follows from Table 2 that Hs : 8 < 1 is the most
plausible hypothesis. We therefore conclude that the aircraft generator being
monitored is experiencing reliability improvement.

If we were to test Hy, Hy, Hy by assigning prior probabilitics py, pe, p3
respectively to these hypotheses, then, using B,?jAI ’s from Table 3 and equation
(3.8), we could compute the posterior probabilities of H;, i = 1,2, 3. For instance,
if we employ the IBF’s from Table 3 that correspond to reference priors and CFAY,,
and stipulate that p1 — p» = p3 = 1/3, then we get the following posterior
probabilities:

P(H, | data) = 0.14
P(H; | data) = 0.02
P(Hjy | data) = 0.84

As before, this illustration suggests that Hs : 3 < 1 is the most plausible hypoth-
esis.

Finally, in situations like the one involving the use of CF A}, where the number
of MTS’, L, is small, the use of the expected IBF’s (see (3.15a) and {3.15b)) is
degirable. For the example here, these values, under the reference priors, are
BYEAL — 1973 BYFAL = (0,167 and BIFA! = 0.008. It follows that Fs: 8 < 1is
the most plausible hypothesis. It is also noteworthy that the values of the expected
IBF's are remarkably close to the corresponding values in Table 3.

Remarks 4.1. 1t is easy to see that the Jeffreys priors, 71';] (e, B), say, under
H;, i=10,1,2,3 are given by

(o, B = %r(n >0,8>0)
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Table 2. Arithmetic TBTs of the encompassing Hy ta ¢, Ha and Hg under the reference prinre

BS’;:I using

Hypothesis CFA}, CFAp

Hy 4,403 5.18
Hz 17.178  25.037
Hy 0.776 0.864

Table 3. Arithmetic IBF's for H1, Ha and {3 under the reference priors.

Correction factor BT g9 B
CFA?, 10.713 0.176 0.016
CFAiq 5.509 0.166 0.029

Table 4. Geometric IRF’s for Hy1, H2 and Hj.

Choice of correction factor B B BS!
CFG 3.26 0.25 0.078
CFG* 7.82 0,19 0.024

i (a) = 21> 0)

e

g (e, 3) = é[(u > 0,0 1)
and
7 (w, B) = é[(u>0,0<ﬁ< 1).

These priors readily follow from the Fisher-Information matrix f(c, 5) in (A.1) of
the Appendix. Also, it should be noted here that these priors coincide with those
employed by Bar-lev et al. (1992); put v = 0 in equation (2.2) of their paper. The
expressiong of the varinug TREs under the Jeffreye priors; and their values for the
aircraft data, are given in Lingham and Sivaganesan(1996).

We now conclude this section by tabulating the geometric IBF’s under the
reference prior and using the two corrections factors in (3.23) and (3.24).

As before, we conclude from Table 4 that Hs 1 § < 1 is the most plausible
hypothesis.
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Appendix. Derivation of the reference prior

Therc has been much development recently on the derivation of reference
priors, beginning with the paper by Berger and Bernardo {1989). There, and in
the subsequent papers, the authors presented an algorithm to construct reference
priors when the parameters are classified into ordered groups according to their
inferential importance. Here, we derive the reference prior for (o, 3) using their
algorithm, and treating /3 as the parameter of interest, and « as the nuisance
parameter.

Using the likelihood obtained from (3.5), we get the Fisher information matrix

i+ €1

(A1) Hap=| # o
' T a8t
Q o?

where ¢; = E(UlogU) and ¢; = E[U(logU)?), with U having the Gamma {n, 1)
distribution. Thus, we write

2
ha(o, B8) = T2 = n[i’

hil(e, B) = |I|/{2| = n_ﬁz

where ¢3 = n{n + ¢;) — C2. Now,

Vha 1 /f
5(B) - v4(B)

my(er | 4) = Lag ey (@)

where 0 < a¢ < by < 00, and

w0 = [ Yz — mslog ( )

wg

Thus,

Next, we compute

B39 (log 1y (o, B)) = o ( ‘) |
ng=
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and write, for (0 < ¢ < dy < 0,

3

1
Wf(aa 6) x ”5(‘1, /6‘) CXpP {2 log nﬂQ } I(ae,be)(a)l(ce,de)(ﬂ)
1 1

n @ . mj(“e,be)(a)f(“’df)(ﬁ)'

Finally, the reference prior w{c,3) is given by

T h) 1
(A-Q) m(a, ) = Egﬂgom = @:

where we assume that a; < 1 < by, ¢p < 1 < dy and ay, ¢¢ — 0 and by, dy — 00 as
£ — 00.
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