Ann, Inst. Statist. Math.
Vol. 49, No. 4, 667679 (1997)

ESTIMATING DIFFUSION COEFFICIENTS FROM COUNT DATA:
EINSTEIN-SMOLUCHOWSKI| THEORY REVISITED

N. H. BINGHAM! AND BRUCE DUNHAM?2

! Statistics Department, Birkbeck College (University of London),
Malet Street, London WCIE 7HX, UK.
2 Mathematics Department, University of Nottingham, Notiingham NG7 2RD, U.K.

(Received November 21, 1995; revised June 27, 1996)

Abstract. The problem of estimating diffusion coefficients has been consid-
ered extensively in both discrete and continuous time. We consider here an
approach based on counting occupation numbers of diffusing particles. The
problem, and our approach, are motivated by statistical mechanics.
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1. Introduction

The classical Einstein-Smoluchowski theory of diffusion arose in the early
years of this century from demonstrations of the reality of atoms and molecules
and the experimental determination of Avogadro’s number. The work of Einstein
(1905, 1906; 1926/56) is reviewed in its historical context by Pais ({1982), Chap-
ter 11); the closely related work by Smoluchowski (1906, 1916) is discussed by Kac
((1985), Chapter 3). Excellent—and now classical—surveys of the theory were
given by Chandrasekhar (1943), Kac ((1959), ITI, §§21--28). As Chandrasckhar
((1943), p. 52) remarks, ‘what is perhaps of even greater significance is that we
have here the first example of a case in which it has been possible to follow in
all its details, both theoretically and experimentally, the transition between the
macroscopically irreversible nature of diffusion and the microscopically reversible
nature of molecular fluctuations.” Equally striking is Kac’s comment ((Kac (1959),
pp. 132, 140), on Svedberg’s classic data set—517 counts, all in the range from 0
to 6): “To deduce a number of the order of 10°* from Svedberg’s numbers none
of which exceeded 6 is downright miraculous! Here then is again a result whose
worth cannot be judged on its mathematical merits alonc.’

Our motivation here is two-fold. TFirst, we are able to revisit the classic
treatments of Chadrasekhar (1943} and Kac (1959) armed with the powerful tech-
nigues of extensive subseguent developinents. Second, the resulting work provides
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an interesting complement to the sizeable recent hiterature on statistical inference
for stochastic processes, and in particular for diffusion processes, reviewed be-
low. Specifically, we apply our methods, based on count data, to the estimation
of the parameters of the Ornstein-Uhlenbeck processes—and, as a limiting case,
Brownian motions—arising in the Eingtein-Smoluchowski theory.

We turn now to statistical inference for diffusion processes, confining ourselves
here to the most basic case, of a diffusion X = (X,) with drift coeflicient b, constant
or of known functional form b{#, X;), and diffusion coefficient o, governed by a
atachastic differential squation

dX, = bdt + odW;, Xo==x

with W = (W,) Brownian motion. The statistical problem of estimating b and o,
given data (X, : 0 < s < t) in continuous time, is now classical, and is treated
in, for example, Tiptser and Shiryaev ((1978), Chapter 17), Kutoyants ({1980/84),
Chapter III). We point out, however, that ¢ is determined in principle, with
probability one, from the quadratic variation of X over [0,¢] for any t > 0; see e.g.
Feigin ((1976), Section 5).

The estimation problem in discrete time—with data {X(¢,)), where t; = 4/2”
(0 < i < 2"7T), say—has been much studied recently. See for instance Genon-
Catalot et al. (1992}, Genon-Catalot and Jacod (1993, 1994) and the references
cited there, Florens-Zmirou (1993), Brugiere (1993).

We consider here a different approach, where the data arise, not from track-
ing a diffusing particle in time, discrete or continuous, bul by counling vccupation
numbers of a population of diffusing particles within a particular region of ob-
servation. This sctting originates in statistical physics, where the particles are
in suspension in a liquid. As mentioned above, the classical application here of
estimating diffusion coefficients--—a measure of the mobility of particles—is estima-
tion of Avogadro’s number (sec Subsection 6.1 for details). A second area where
such techniques are classical is biology, where one is to estimate the mobility ot
spermatazoa, blood cells etc. (Subsection 6.2).

We describe the model—which arises in the classical Einstein-Smoluchowski
theory of diffusion—in Section 2 below, summarising the facts we need on the
relevant Smoluchowski processes in Section 3. We discuss the statistics of Smolu-
chowski processes in Section 4, and apply this to the estimation of the relevant
Ornstein-Uhlenbeck parameters in Section 5. We close with some remarks and
references in Section 6.

2. The model

We cangider a suspension of particles in a fluid, in equilibrium. Such a sys-
tem may be considered at three levels: the microscopic level, of fluid molecules;
the mesoscopic level, of diffusing particles {supposed large compared to the fluid
molecules but small compared to the region of observation); and the macroscopic
level, where a small region within the fluid vessel is kept under observation.

We confine ourselves to the simplest case, the classical model for the Einstein-
Smoluchowski theory ol diffusion, cousidered by Chandrasekhar (1943) and Kac
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((1959), Chapter III). We assume that the system is in equilibrium, and that
particles enter the region A of observation at the instants of a Poisson process,
of rate A say {sec e.g. Doob (1953), VIIL5 for background to these assumptions).
The mean length of time that a particle spends in A between entering and exiting,
«r say, is the parameter of principal interest, as 1/¢ is a measure of the mobility
of the particles. This is related to the mean number p of particles present in A by
Little’s formula g = Aw (see e.g. Mehdi (1991), §2.6). The velocity V; of a particle
is governed by a stochastic differential equation of Ornstein-Uhlenbeck type,

(2.1) dV, = —AV,dt + cdW,,

where 3 is the drag coefficient and the first term represents frictional forces, the
second bombardment by the molecules of the fluid. Tt is convenient to write

2 = 282D,

then the velocity V; given V; has density (in one dimension for convenience)
278D (1 — ™) 7! exp (—%(V — Vo 7)?/(BD(1 - e‘zf”))) :

so the limit density as £ — oo is N (0,80}, normal with mean 0 and variance 8D.
The process is the Ornstein-Uhlenbeck velocity process with diffusion coefficient D
and relazation time L1/H3. LThe limit distribution must coincide with the Maxwell-
Boltzmann distribution N{0, k7'/m) of statistical mechanics (k is Boltzmann's
constant, T the absolute temperature, m the particle’s mags), so

(2.2) 8D = kT/m.
The covariance is r(s,t) = DF~ (e Blt—sl _e=Pl+s)) whence (s = t+u, s,t — o0)
the limiting covariance and correlation are DZ~te=dlul g=flul

Integrating the velocity process to get the Ornstein-TThlenbeck displacement

process X = (X;), one finds

EX, —xo+ 871 — e Y1,
var X; = 2Dt + DA7H{=3 + de Pt — 734

For ¢ large compared to the relaxation time 1/ (typically 1/8 = O(107%) to
O(1071%) seconds in the statistical physics setting), one has approximately

EX: ~ xq, var X; ~ 2Dt,

and X, is approximated by a Brownian motion started at X, with diffusion coef-
ficient D. The approximation

var X, — 2/



670 N. H. BINGHAM AND BRUCE DUNHAM

is the Finstein relation; for background, see e.g. Lebowitz and Rost (1994) and
the references cited there. For the derivation of the Ornstein-Uhlenbeck process
above, sce Chandrasekhar {(1943), I1.1,2, I11.2,3), for the approximation by Brow-
nian motion see Nelson ((1967}, §§4, 9), and for the Maxwell-Boltzmann law, see
e.g. Gross (1982). A detailed derivation of the Ornstein-Uhlenbeck dynamics at
mesoscopic level from dynamic assumptions at microscopic level is given by Diirr
et al. (1981),

Because individual particles may be difficult to observe directly, or track over
time, one may instead observe the number N, of particles present within the
region A at time t. The process N := (N, : t > 0} is called a Smoluchowski process
in honour of Smoluchowski’s pioneering work; in the physics literature, the use
of count data (N,)} to study the dynamic parameters D, 2 {or «, A} is called
number fluctuation spectroscopy; see e.g. Brenner et al. (1978) for background and
references. :

3. Smoluchowski processes
We turn to the law of the Smoluchowski process.

PrROPOSITION 3.1. In the Smoluchowski process N = (N;), Ny is Poisson
distributed with mean u = aX, the mean number of particles in A,

Proor. This is an instance of Campbell’s theorem (for which see e.g. Moran
(1984), Feller (1971}). See Hall ((1988), §2.1), or Takacs ((1962), §3.2, Theorem 1)

for an alternative approach.

There are two other points of view from which Smoluchowski processes may
be considered. The first is that of the infinite-server queue M /G /oo (M for the
Markovian character of the input stream, a Poisson process, G for the general
service-time distribution, co for the number of servers), when N, is the ‘queuc-
size’, or number of customers being served; see e.g. Takdcs ((1962), Chapter 3).
More generally, the Smoluchowski process is a shot-noise process; for background
and references, see e.g. Moran (1984), Feller {1971). The second—which concerns
us more—is that of coverage processes. Here, we work with reduced data I(N; > 0)
rather than with count data N;. That is, we merely record whether or not the
region A is occupied by one or more particles at time t. Let £; be the time at
which the i-th particle enters A, n; be the time it spends in A before exiting. The
intervals I; := (£,,& +n;) are called segments. Their union = U:; I; is called
a (simple, linear) Boolean model, the most basic type of coverage process. The
connected components of T (intervals when A is oceupied) are called clumps, the
connected components of the complement of I (when A is empty} are called spac-
ings. A thorough treatment of coverage processes, and in particular the statistical
estimation theory of their parameters, is given in Hall (1085, 1988); our treatment
of reduced data is based on this. Note that the clumps and spacings are the busy
periods and idle periods in the language of queueing theory. For a treatment of
the non-equilibrium case from this viewpoint, see Rick cf af. (1993).
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Working with reduced data I(N; > 0), it is the clumps and spacings, ralher
than the segments, that are directly observable. The first task is to relate the
distribution C(-} of clump-length with the distribution G of segment-length (recall
that G has mean o).

PROPOSITION 3.2. (i) The mean clump-length v is given by Smoluchowski’s

formula
v = EC = (e"* —1}/A.

(ii) The Laplace-Sticltjcs transform C' of C' is given by

(3.1) Cls) := fn " e dC (x)
~1

— 14+ ; - (A ]Om et exp(—)\/ot(l - G(:r))dac)dt)

(iii) The variance of clump-length is finite if and only if that of segment-length
18 finite, and then
( em\ _ 1)2

var C = 2e®* )1 foo (exp()\ [00(1 — G(x))dzx) — 1) dt — 2

o

PRrRooOF. This is Theorem 2.2 of Hall (1988). For (i), (ii), see also Kac ((1959),
I11.28.10, 111.28.8).

Since G has mean «, a = [J°(1 — G(z))dz, so

Pt) = %fo (1 - G())da

is a distribution function. Using the language of renewal theory to interpret a
particle’s lifetime as the time it spends in A, this identifies P(¢) as the residual
lifetime law in equilibrium (or, at great age),

P(t) = P(a given particle will have left A
by time ¢ | the particle is in 4 at time 0)

(see e.g. Feller {1971), V1.7, X1.3). Herc P(t) (or rather 1 — P(#)) is Smoluchowski’s
key concept, his probability after-effect or Wahrscheinlichkeitsnachwirkung. Note
that

P'(0) = 1/a,

our measure of particle mobility.
The function P{t), which relates to an individual particle, is closely related
to another function, p(t), which refers to the region A under observation:

p(t) == P(N, =0 | Ny — 0)
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(because the system I8 in equilibrium, the model is stationary under time-shifts,
0 also p(t) = P{Nipe = 0| Ny = 0)). For the next result, recall the Kingman
theory of regenerative phenomena (Kingman {1964, 1972)).

ProrosiTiON 3.3. (i) The epochs of emptiness of A, (I(N; =0} : t > 0},
formn a regenerative phenomenon in Kingman’s sense, with Kingman p-function
p(t).

(ii) The functions p(t), P(t) are linked by

p{t) = exp( )\f (1 — G(x))dx) = exp(— [ min(t, 2)dG(z)) = exp(—AaP(t)).

(i) The right-derivative p'(0) = p'(0+) of p(t) at the origin exists, and
—p'(0) =
PrROOF. (i) The form of equation () is characteristic of the Kingman theory,

and identifies the p-function; the remaining calculations are casy. See e.g. Kingman
({1964}, (22), {40)), Kingman ((1970), (3), (4)), Kingman ((1972), {2.5.12)}.

The Smoluchowski process (V) is not in general Markovian, There are two
ways to handle the mathematical difficulties this poses. ‘'I'he first is to pass from
count data {N;) to reduced data I(N, = 0) and use the regenerative property
above at epochs when Ny = 0. This essentially uses the lack of memory property
of the exponential distribution {Poisson character of the input stream) to give a
partial substitute for the Markov property, holding only at state 0.

The second approach is to model N, by an emigration-immigration process,
a particular case of a birth-death process with birth-rates A, = A (reflecting the
Poisson input stream of rate A} and death-rates p,, = n/a (reflecting a propensity
of each particle present to exit at rate 1/a, the particle mobility). The process N
is then Markovian, and one can estimate A and a by standard estimation theory

for Markov processes {see Subsection 4.B). This model has been considered in
some detail hy Rartlett ((1978), §§32 41, .31, R3), wha compares it (§5.21) with
the general case; see also Chandrasekhar ((1943), §II1.3). Mathematically, this
model specialises from the M/G /oo queue to the M/M /oo queue (this involves
an approximation, discussed further in Subsection 6.3). It is interesting to note
that Smoluchowski’s formula v = (e®* — 1)/ now follows from that for the mean
recurrence time of state 0 in a birth and death process (Keilson (1965)).

4. Statistics of Smoluchowski processes

4.A  TDhscrete time

Bartlett (1978} gives a discrete-time treatment by maximum-likelihood (§8.3),
and also applics time-series methods (§9.13). Lindley (1956) also gives several
time-series methods. A detailed discussion of design of experiments in this context
is given by Brenner et al. {1978), who also give extensive references to the literature
and mention numerous applications.
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4.B  Continuous tirne, count duta

We specialise here to the emigration-immigration model of Section 3
(M/M /oo gquene), with N Markovian. The standard estimation theory for birth-
and-death processes, for which see e.g. Billingsley ({1961}, §7), applies directly to
(N,). For birth-rates A; and death-rates p;, the log-likelihood is given by

£, = T2 u{t)log A + B2, di(t) log pi — EZ g1 (B)(Ai + i)y

with u,;(¢). d;(#) the number of jumps in [0,¢] from state i up to i+ 1 and down to
i — 1, v(t) the time spent in state 7. Here A; = A, p; = i/av, s0

1 £
Lo, X) = U(t)logh — D{t) log v + X°d, (t) logi — tA — f Nydu,
@ Jo

where U (t), D(t) are the number of jumps up and down, j[f Nydu = Z5%iy;{f) the
total time spent in A by all particles. Thus (U(t), D(¢t), fot N,du) is a sufficient

statistic for (o, A} (Billingsley {1961), Example 7.2). The maximum-likelihood
estimators are

t
(1/&)(®) — D)/ fo Nudu,  At) — U/,

the occurrence-exposure rates. For backeround and references, sec e.g. Keiding
(1975), Daley and Vere-Jones ({1988), §13.3).

Both estimators are consistent and asymptotically normal with rate v/t
(Rillingsley (1961)). Note that D(#), U(t} and jot N, du grow at rate { a.s., whereas
U{t) — D(t), the change in the number of particles in A, is likely to remain small
as the process is in equilibrium. Thus the sample mean

1 t
[ty == / N,du,
t Jo

used to estimate p = ah, differs little from )\(t) /{1/&)(t). We may (and shall)
thus regard A and i, as second parameters subsidiary to a, as equivalent. It is
interesting to note that, since the input stream is Poisson with rate A, so is the
output stream (for this and other properties of queueing output processes, see e.g.
Daley (1976), or Asmussen {1987), I11.4). We could thus use A(t) := D(t)/t as an
alternative estimator for A, and then ji(t} = A(¢)/(1/&)(¢), reflecting pp = Aa more
simply.
4.C  Continuous time, reduced data

For convenience, write A := 1/X. Our reduced data (N, = 0) give us

(i) lengths Ey, Es, ... of successive periods of emptiness (spacings), expo-
nentially distributed with parameter A, mean A;

(i1} lengths Cy, Cy, ... of successive periods of occupation (clumps) separating
the F;, with law C and mean .
The E, and C; are all independent (Kingman (1964) or (1972)).
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By Smoluchowski’s formula,

We form the sample means

~

1 1
A:=-3"E;, 4:=2¥"C,.

p o1 v p LM
By the central limit theorem,

V(A —A8) - N(0,6%(4)), VAl —7) = N(©0,0%(7))  (n— o),

where the limiting variances follow by calculation on the exponential law or by
Hall’s result, Proposition 3.2(iii).

The parameter of interest, the mobility 1/a, is not directly observable, but
since

Ve = f{A,7) == 1/(Alog(1 + 7/A)),

we form the empirical estimator

(1/&),, = 1/(Ayn log(1 + 4n/An)).

By first-order Taylor expansion (‘delta method’},
Vi ((1/a), — (1/a)) — N(0,0%(1/))  (n — o0)

where

o (1/a) — o (AYDF /DAY + 0 (1)(Of /0y)

(sce e.g. Rao (1973), §62.4). So given a long enough sequence of lengths Ey, Cy, . . .,
E,,C,, we may estimate the mobility 1/a to arbitrary precision.
4D Comparison

The statistical efficiencies of the methods in 4.B for count data and 4.C for
reduced data are not directly comparable. In 4B, the asymptotic variances are
functions of the parameters ¢, A, and may be calculated by standard estimation
theory, as in Billingsley (1961). However, in 4.C the asymptotic variance depends,
through Hall’s result (Proposition 3.2(iii)) on the whole function Q) (or P(t)),
which in turn depends on the details of the geometry of the region 4. We return
to this comparison in Subsection 6.3 below.

5. Ornstein-Uhlenbeck parameters

There arc two aspects to the work described above: the Smoluchowski process
N at macroscopic level, with parameters a, A (or o, p) estimable as above, and the
Ornstein-Uhlenbeck dynamics of the particles at mesoscopic level, with parameters
D, . We turn now to the relations between the two, following Chandrasekhar
((1943), I11.1-3). First,

(5.1) var[N((i + 1)) — N(iT)] = 2uP(7T)
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(Chandrasekhar {1943), (361)), and

(5.2) PO -1 o f / plt, 3, y)dady,

where p(#, @, y) is the transition density of the Ornstein-Uhlenbeck displacement
process with parameters D, 8 (cf. Chandrasekhar (1943), (380)).

We work in one dimension for simplicity. Use of the limiting Maxwell-
DBoltzmann distribution and a flux argument gives

) ro - () (#2)7 - () (22)"

where o, v are the surface area and volume of the region A of observation {Chan-
drasekhar (1943}, (414)), both assumed known. Thus 8D can be estimated from
our estimate of 1/a = P'{0).

The argument may be carried through much more generally: although the
functional form of P(t) requires detailed knowledge of the transition density, the
derivative P'{0) does not. Indeed, Lindley {1956) identifies P'(0) with a mcasure of
pariial mobility under only weak qualitative assumptions on the velocity density.

The theory above leads naturally to an estimate of 8I); to estimate D and
(3 separately requires a different approach, using Brownian rather than Ornstein-
Uhlenbeck dynamics. Hecall that, for time-scales ¢ large compared to the relax-
ation-time 1/3, the Ornstein Uhlenbeck process with parameters D, 8 approxi-
mates the Brownian motion with diffusion parameter IJ, in a sense made precise
in, e.g., Theorem 9.3 of Nelson (1967) (cf. Chandrasekhar {1943), I1.2). Of course,
this approximation, valid only for ¢ >» 1/3, precludes use of P'{0) as above—and,

as (4) now becomes
1 —|z —y|? —3/2
A [A /A exp ( ADt (4w Dt) dxdy,

one now has P(t) ~ ct*/? as t | 0, so P'(0) = co (Chandrasekhar {1943), (403)).
Working in one dimension for simplicity, with A the width of A, one may perform
the integrations in (5.4), obtaining

(5.4) Pt)=1-

h
2v Dt

Since P(t) may be estimated from the sample variance of counts N (it) at interval
t by (5.1}, the diffusion coefficient 12 may be estimated from this, and hence 3
from our previous estimate of Dg.

~ P(t) ~

(t — 00).
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6. Remarks

6.1 Estimation of Avogadro’s number

The classic motivation for the Einstein-Smoluchowski theory mentioned
above, and discussed in detail in Chandrasekhar {1943), was the experimental
estimation of Avogadro’s number. The drag coefficient 5 in (2.1) is given by
Stokes’ law:

3 = 6ran/m,

with @ the particle radius, m the particle mass, 5 the viscosity of the fluid (for
background and restrictions, like flow of low Reynolds number, particles very large
compared to fluid molecules, etc., see e.g. Lamb (1932/93), §342). Now 8D =
kT /m, where the Boltzmann constant &k is K/N, with ¥ Avogadro’s number and
R the universal gas constant (the constant in Boyle’s law PV = RT: see e.g.
Fliigge (1959}, p. 25). Thus (2.2) is

RT

(6.1) 8D = N
Assuming R known from Boyle’s law and T, m measured, Avogadro’s number
N may be estimated from an estimate of FD. Thus methods such as those of
Section 4, which lead to estimates of 8D, will provide more accurate means of
estimating N than the classical methods of Section 5, which lead to estimates of
D. As we remarked in the Introduction, this was the original motivation for this
study.

Of course, much more accurate methods of measuring Avogadro’s number are
available nowadays. See e.p. Seviried et al. (1992) for an X-ray diffraction method
accurate to 1.1 parts per million.

6.2  Applications to bislogy

We cite two areas of biological importance.

{a} Mobility of spermatazoa: following the classic experiments by Lord Roth-
schild (1953), a thorough treatment of Rothschild’s problem along the lines of
Smoluchowski’s work was given by Lindley. For subsequent theoretical develop-
ments, see Ruben (1963).

(b} Mobility of leukocytes: a detailed study of movement of white blood cells
is given by Brenner et al. (1978), who also give further references.

6.3 The exponential service-time assumption

We return to the comparison between the results of the M/G/oc analysis
of Subsection 4.C and the M/M /oo analysis of Subsection 4.B, in the light of
Section 5.

The ‘service-time distribution’—distribution of the length of time a particle
apends in A between entering and its first subsequent exit - clearly depends on
the details of the geometry of A. [The length of time spent in A also depends, of
course, on the velocity of entry, so one should average this over the limiting velocity
law, the Maxwell-Boltzmann law, in equilibrium.] Finding this law in general is
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an intractable problem, and so the simplifying ‘M /M /o0’ assumption---that the
law is exponential—is useful as a general approximation, as in Bartlett (/1978),
§5.21).

The guestion remains, however, of deriving this law—for simpiicity, in the
simplest case, of one dimension with A an interval [a,b]--from the Crnstein-
Uhlenbeck dynamics of Section 5. We leave this question open here, reforring
only to the remarks in Rogers and Williams ({1994}, p. 54) on the intractability
of the (non-Markov) Ornstein-Uhlenbeck displacement process, and citing Doer-
ing et al. (1980a, 1080b), Hesse (1891) for relovant approximations. However,
this process may be approximated by a Brownian motion, as in Secticn 5, for
time-scales long compared to the relaxation time. The Brownian analogue of the
problem above degenerates (because particles exist instantaneously on entering
la,b]). However, the exit-time law of a particle started within (a, b) is known; see
e.g. Rogers and Williams ((1994), I, (9.3), (9.4)), Feller ((1971), X, (5.9)); the
sulution involves the Jacobi theta-functions. Use of Poisson’s summation formula
gives a rapidly-convergent series expansion from which the tail-behaviour for large
time can be read off. This is approximately exponential, which provides support
for the applicability of the M /M /oo approximation.

The questions raised above motivate current work on approximations related
to the exponential service-time assumption by the first author and Pitts. We
close by noting the interesting fact {pointed out to us by a referee) that Milne
(1970) showed that, given A, the service time distribution G is identifiable from a
realization of each of the input and output processes.
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