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Abstract. A total of 39 strains of Anopheles stephensi, an important urban malaria vector,
were collected from various parts of India and maintained in the insectary for this study.
Based on the egg-float ridge number, 19 strains were classified into ecological variants and
32 strains were exposed to chlorpyrifos and propoxur to investigate their resistance status.
Filter paper containing freshly laid eggs was taken, the ridge numbers on the floats were
counted under the microscope, and strains were classified into ecological variants. Of
the 19 strains, 18 were of ‘type form’, with ridge numbers ranging from 15 to 21. The
Papareddipalya (PRP) strain belonged to the ‘intermediate form’, with 14 to 17 ridge
numbers. Larval bioassays were carried out according to the procedure of the WHO. For
chlorpyrifos, the lowest LC50 value was 0.00107mg/l (Padmanabhanagar strain) and the
highest value was 0.0403mg/l (GOA-A strain). Furthermore, the lowest LC90 value was
0.00368mg/l (Delhi strain) and the highest was 0.1746mg/l (GOA-A strain). For
propoxur, the lowest LC50 value was 0.00029mg/l (Goraguntepalya strain) and the
highest value was 0.0037mg/l (JP Nagar strain). Moreover, the lowest LC90 value was
0.00094mg/l (Goraguntepalya strain) and the highest value was 0.0115mg/l (JP Nagar
strain). The tolerance values ranged from 1.26 to 37.68 for chlorpyrifos and from 1.34 to
12.77 for propoxur. All the type forms were from urban and semi-urban locations, and the
intermediate strain was from a semi-urban location. The bioassay results indicated that the
strains of An. stephensi were more susceptible to propoxur than to chlorpyrifos.
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Introduction

Mosquito-borne diseases take a heavy toll on
human lives. Due to its blood-sucking behaviour, a
female mosquito is able to transmit pathogens and
parasites that cause serious diseases including

malaria, filariasis, dengue haemorrhagic fever,
Japanese encephalitis, yellow fever and chikungu-
nya. These emerging and resurging diseases result
in high burden of disease that reflects inadequate
implementation and/or impact from current con-
trol measures (WHO, 2009).

According to the latest estimates, there were
about 207 million cases of malaria in 2012 and
an estimated 0.62 million deaths (WHO, 2014).
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In India, 0.2 million deaths have been reported to
occur annually due to malaria (Dhingra et al., 2010).

Medically important species of mosquito belong
to three genera: Anopheles; Aedes; Culex. About 455
named species and 40 unnamed members of
complexes recognized as distinct morphological or
genetic species of Anopheles have been identified
(Harbach, 2007). In India, about 58 species of
Anopheles are prevalent, of which six are primary
vectors of malaria and four are secondary vectors
(Nagpal and Sharma, 1995). The six primary vectors
are distributed as follows: Anopheles culicifacies in
rural areas, An. stephensi in urban settings, An.
fluviatilis in plains and foothills, An. minimus in
foothills of the northeast, An. dirus in jungles of
northeastern states and An. sundaicus in the islands
(Andaman and Nicobar) (Dev and Sharma, 2013).
Anopheles stephensi Liston (Diptera: Culicidae), the
primary urban vector, has been reported to account
for about 15% of the incidents of malaria in India
(Shetty, 2002a).

Anopheles stephensi was classified as two geo-
graphical races based on the number of ridges on
the egg float; urban An. stephensi was regarded as
the type form and the rural variety as mysorensis.
Later, several examinations revealed the presence of
three variants: type form; mysorensis; intermediate
(Sweet and Rao, 1937; Rao et al., 1938). The numbers
of ridges for the variants are 14–22 (type form),
9–15 (mysorensis) and 12–17 (intermediate). The
type and intermediate forms have been found in
urban and semi-urban areas and reported to be
vectors; the mysorensis form has been found to be
predominant in rural areas and reported as a
non-vector (Subbarao et al., 1987; Shetty et al., 1999).
The type form has been found to be exclusively
domestic in all seasons, whereas mysorensis
occupies the outdoor niche during monsoon and
post-monsoon seasons with a spillover into dom-
estic sites during summer periods of ecological
stress (Nagpal et al., 2003).

Due to urbanization, there is a surge in
construction activity. This creates ideal conditions
for mosquito breeding, and the migration from
endemic areas accounts for the high number of
incidents of mosquito-borne diseases; therefore,
either the parasites or the vectors should be
controlled. The strategy adopted to curtail mos-
quito-borne disease transmission in urban settings
is through anti-larval operations (Tiwari et al., 2010).
There is a widespread use of insecticides because
they are effective, convenient to apply and
economical.

Indiscriminate application of insecticides leads
to the development of resistance. Susceptibility
studies act as a resource in resistance surveillance,
which provides baseline data for programme
planning, insecticide dose selection, detection of

resistant individuals at an early stage, and
continuous monitoring of the effect of insecticides
on resistance (WHO, 1981; National Research
Council, 1986). The determination of general
resistance spectra is the first stage in the investi-
gation of any insecticide-resistant population
(Hemingway, 1981). For this purpose, the indigenous
mosquito species should be collected and
their minimum effective dosages such as LC50 and
LC90 values for different insecticides should be

Table 1. Strains of Anopheles stephensi collected from
different geographical regions of India

Serial
no. Locality

Strain
code Collected as

1 Aurangabad AGB1 Larvae
2 Bannerghatta Road2 BGR1 Larvae
3 Basaveshwaranagar2 BSN1,3 Larvae
4 BTM Layout2 BTM3 Larvae
5 Cambridge Layout2 CLO1 Larvae
6 Chamarajpet2 CRP1,3 Larvae
7 Chennai CHN1 Larvae
8 Delhi DEL1 Larvae
9 Dollar’s Colony2 DLN1,3 Larvae
10 Gandhinagar2 GDN1,3 Larvae
11 Gandhinagar-Mysore MYS1 Larvae
12 Goa-A GOA-A1 Larvae
13 Goa-B GOA-B1 Larvae
14 Goraguntepalya2 GGP1 Larvae
15 Hebbal2 HBB1,3 Larvae
16 JP Nagar2 JPN1,3 Larvae
17 Jnanabharathi Campus2 JBC1,3 Larvae
18 Jodhpur JDP3 Larvae
19 Kengeri2 KGR1,3 Larvae/adults
20 Kolar KLR3 Larvae/adults
21 Mahalakshmipuram2 MLP1 Larvae
22 Mangalore I K13 Larvae
23 Mangalore II K23 Larvae
24 Mangalore III K33 Larvae
25 Mangalore-A MGL-A1 Larvae
26 Mangalore-B MGL-B1 Larvae
27 Murgeshpalya2 MGP3 Larvae
28 Nelamangala NMG1,3 Larvae
29 Padmanabhanagar2 PBN1 Larvae
30 Papareddipalya2 PRP1,3 Larvae/adults
31 Pondicherry PDC1 Larvae
32 Pune-A PUN-A1 Larvae
33 Pune-B PUN-B1 Larvae
34 Punjab PNJ1 Larvae
35 Shimoga SMG1 Larvae
36 Subashnagar2 SBN1 Larvae
37 Tumkur TMK1,3 Larvae
38 West of Chord Road2 WCR1 Larvae
39 Yeshwanthpur2 YSP1,3 Larvae

1 Strains used for larval bioassay.
2 Strains from Bangalore.
3 Strains used for egg-float ridge number studies.
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evaluated. Based on the results obtained in the
laboratory, an effective optimum dosage for field
applications can be determined. The status of
insecticide susceptibility/resistance has to be
reviewed periodically to either continue or dis-
continue specific insecticides. Vector control oper-
ations require monitoring insecticide susceptibility
to determine dosage, establish baseline levels for
future resistance work, and evaluate the effects of

insecticides on disease incidence and vector
behaviour.

Therefore, the aim of the present work was to
study the ecological variations in An. stephensi
based on the egg-float ridge numbers in different
populations, and also their resistance status under
laboratory conditions to two insecticides: chlorpyr-
ifos (an organophosphate insecticide) and propoxur
(a carbamate insecticide).
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Fig. 1. Map of Bangalore, Karnataka, showing the mosquito collection sites. 1, Bannerghatta Road; 2, Basaveshwaranagar;
3, BTM Layout; 4, Cambridge Layout; 5, Chamarajpet; 6, Dollar’s Colony; 7, Gandhinagar; 8, Goraguntepalya; 9, Hebbal;
10, JP Nagar; 11, Jnanabharathi Campus; 12, Kengeri; 13, Mahalakshmipuram; 14, Murgeshpalya; 15, Padmanabhanagar;
16, Papareddipalya; 17, Subashnagar; 18, West of Chord Road; 19, Yeshwanthpur.
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Materials and methods

Anopheles stephensi – strains and maintenance

A total of 39 strains of An. stephensi from various
parts of India (Table 1) were used in this study, of
which 19 were from Bangalore (Fig. 1) and 20 from
other parts of the country (Fig. 2). Colonies were
maintained in the insectary following the procedure
of Shetty (1983), in cages with iron frames covered
with cotton mosquito net. Adults were fed with 10%
sucrose solution on soaked sterilized cotton, and
females were provided with blood meal on
restrained mice 5 days after their emergence.
Water-filled plastic cups lined with filter paper
were placed inside the cages for oviposition. Gravid
females laid eggs 48 h after taking the blood meal.
The eggs were kept for 72 h to ensure complete

hatching. Larvae were reared in white enamel pans
containing filtered tap water and fed with pow-
dered yeast tablets on a regular schedule through-
out the larval period. To avoid scum formation,
water in the pans was changed every day. Pupation
began 8–10 days after hatching. Pupae were
transferred into wide-mouthed bottles and emer-
ging adults were released into their respective
cages. These stocks were maintained at a tempera-
ture of 25 ^ 1 8C with relative humidity of 75 ^ 5%
and 10 h of photoperiod throughout the course of
investigations.

Egg-float ridge number

For each strain, the fresh (unhatched) eggs laid
by the blood-fed females, along with the filter paper
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Fig. 2. Map of India showing the mosquito collection sites. 1, Aurangabad; 2, Chennai; 3, Delhi; 4, Gandhinagar-Mysore;
5, Goa-A; 6, Goa-B; 7, Jodhpur; 8, Kolar; 9, Mangalore I; 10, Mangalore II; 11, Mangalore III; 12, Mangalore A;
13, Mangalore B; 14, Nelamangala; 15, Pondicherry; 16, Pune-A; 17, Pune-B; 18, Punjab; 19, Shimoga; 20, Tumkur.
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provided for oviposition, were placed under the
microscope for counting the egg-float ridge num-
bers (10 £ magnification, LABO, Bioplan XL,
Jupiter Scientific Company, Salem, Tamil Nadu,
India). Based on the number of ridges on the egg
floats, the strains were grouped into type (14–22
ridges),mysorensis (9–15) and intermediate (12–17).
The percentage distribution of ridges in each strain
was calculated according to the procedure of Shetty
et al. (1999).

Insecticides

Two insecticides were used in the present study:
chlorpyrifos (an organophosphate insecticide) and
propoxur (a carbamate insecticide).

Chlorpyrifos (21.5% E.C.) is one of the most
commonly used insecticides in agriculture, horti-
culture andmosquito control. It is non-systemic and
kills by direct contact or ingestion. The IUPAC
nomenclature is O,O-diethyl O-3,5,6-trichloro-2-
pyridylphosphorothioate with the molecular for-
mula of C9H11Cl3NO3P. It acts on the nervous
system of insects by inhibiting acetylcholinesterase.

Propoxur (Baygon – 2% E.C.) is a crystalline
derivative of carbamic acid. It is a non-systemic,
contact and stomach poison and used against
mosquitoes in outdoor areas. Propoxur is one of
the chemicals that has, to a large extent, replaced
DDT in mosquito control (McEwen and Stephen-
son, 1979). It has residual poisonous or toxic activity
when it is in direct contact with the target pest

(Hartley and Kidd, 1983). The IUPAC nomenclature
is 2-isopropoxyphenyl methylcarbamate with the
molecular formula of C11H15NO3. It has been
approved by and registered with the Central
Insecticide Board and Registration Committee, the
Ministry of Agriculture, Government of India, the
WHO, and Environmental Protection Agency, USA,
for use against household pests including mos-
quito. As with other carbamates, propoxur blocks
the production and action of cholinesterase,
paralyzing the nervous system of insects and
causing a rapid ‘knockdown’ effect.

Larval bioassays

Susceptibility tests were carried out according
to the procedure of WHO (2005). Different concen-
trations (mg/l) of chlorpyrifos were prepared in
denatured alcohol (98ml absolute alcohol þ 2ml
ethyl methyl ketone) and propoxur in water. A total
of 25 late third-instar larvae were transferred into
glass bottles, each containing the test concentration
(249ml of dechlorinated tap water þ 1mg/l stock
concentration), with four replicates. Mortality was
assessed after 24 h. Mortality data from bioassays
were corrected by natural control mortality using
Abbot’s formula (Abbott, 1925); LC50 and LC90 were
calculated by log-dose probit analysis (Finney,
1971). We set up a control by adding 1ml of
denatured alcohol/water to 249ml water. If more
than 10% of the larvae pupated during the course
of the experiment, the test was discarded.

Table 2. Percentage distribution of egg-float ridge numbers for the different strains of Anopheles stephensi

No. of ridges on egg float

Serial no. Strain No. of eggs 14 15 16 17 18 19 20 21 Range Mean ^ SD Variety

1 BTM 100 69 31 17–19 17.62 ^ 0.929 Type
2 BSN 100 4 24 72 16–18 17.68 ^ 0.548 Type
3 CRP 100 4 32 64 17–19 18.6 ^ 0.568 Type
4 DLN 100 19 81 16–17 16.81 ^ 0.394 Type
5 GDN 169 17.8 59.2 19.5 3.5 16–19 17.08 ^ 0.714 Type
6 HBB 157 14.0 58.6 17.8 9.6 15–18 16.22 ^ 0.807 Type
7 JPN 100 12 9 79 19–21 20.67 ^ 0.682 Type
8 JBC 159 22.0 63.5 14.5 16–18 16.92 ^ 0.601 Type
9 JDP 163 18.4 38.7 24.5 18.4 16–19 17.42 ^ 0.993 Type
10 K1 104 26 32.7 23 12.5 5.8 15–19 16.39 ^ 1.169 Type
11 K2 124 15.3 22.5 21 30.6 10.5 15–19 16.98 ^ 1.255 Type
12 K3 135 12.6 60.0 21.5 5.9 16–19 17.20 ^ 0.733 Type
13 KGR 147 25.2 49.7 15.6 9.5 16–19 17.09 ^ 0.886 Type
14 KLR 197 18.8 61.9 19.3 16–18 17.0 ^ 0.618 Type
15 MGP 210 12.9 24.3 51.4 11.4 17–20 18.60 ^ 0.842 Type
16 NMG 100 7 17 3 73 17–21 20.35 ^ 1.192 Type
17 PRP 172 19.8 65.7 10.5 4.0 14–17 14.98 ^ 0.683 Intermediate
18 TMK 100 77 23 16–17 16.23 ^ 0.422 Type
19 YSP 100 12 83 5 16–21 17.08 ^ 0.960 Type
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The tolerance/resistance ratio was calculated by
dividing the LC50/LC90 value of a strain by the
LC50/LC90 value of the least resistant strain for each
insecticide (Boike et al., 1989).

Results

The various strains of An. stephensi used in this
study along with the strain codes are presented in
Table 1. The ridges on the egg floats of the 19 strains
were counted and the percentage distribution
calculated for each strain. Based on the number of
ridges, each strain was classified as type form,
intermediate form or mysorensis. Of the 19 strains
studied, 18 (BTM, BSN, CRP, DLN, GDN, HBB,
JPN, JBC, JDP, K1, K2, K3, KGR, KLR, MGP,
NMG, TMK and YSP) were classified as type form.

The PRP strain was classified as intermediate
form (Table 2).

Larval susceptibility status to chlorpyrifos is
presented (Table 3 and Fig. 3). Among the strains,
GOA-A showed the highest LC50 value
(4 £ 1022 mg/l) followed by GGP (3.474 £
1022 mg/l), SBN (2.871 £ 1022 mg/l), GDN
(2.644 £ 1022mg/l) and BSN (2.479 £ 1022mg/l);
the lowest LC50 was shown by PBN (1.07
£ 1023mg/l) followed by PUN-A (1.35 £ 1023mg/
l), DEL (1.42 £ 1023mg/l), JPN (1.5 £ 1023mg/l)
and DLN (1.68 £ 1023mg/l). The GOA-A strain
showed the highest LC90 value (1.7466 £ 1021mg/l),
followed by GGP (1.3896 £ 1021 mg/l), SBN
(1.013 £ 1021mg/l), GDN (1.003 £ 1021mg/l) and
PNJ (9.638 £ 1022mg/l); the lowest LC90 value was
shown by DEL (3.68 £ 1023mg/l), followed by PBN

Table 3. LC50, LC90, regression equation, coefficient of correlation, x 2 and tolerance/resistance ratio (RR) values of
chlorpyrifos for the different strains of Anopheles stephensi

RR

Strains LC50 (mg/l) LC90 (mg/l) Regression equation r x 2 1 LC50
2 LC90

3

AGB 1.98 £ 1023 1.022 £ 1022 y ¼ 1.7974x þ 0.871 0.9566 2.7481 (df ¼ 5) 1.8527 2.7762
BGR 1.096 £ 1022 5.834 £ 1022 y ¼ 1.7633x 2 0.3605 0.9907 0.9360 (df ¼ 5) 10.2475 15.8545
BSN 2.479 £ 1022 8.937 £ 1022 y ¼ 2.2983x 2 2.801 0.9956 2.2677 (df ¼ 5) 23.1641 24.2858
CHN 4.3 £ 1023 1.787 £ 1022 y ¼ 2.0705x 2 0.4535 0.9438 2.1581 (df ¼ 5) 4.0227 4.8557
CLO 2.54 £ 1023 9.7 £ 1023 y ¼ 2.1982x 2 0.2851 0.9970 1.2346 (df ¼ 5) 2.3709 2.6348
CRP 2.33 £ 1023 1.805 £ 1022 y ¼ 1.4405x þ 1.5891 0.9348 2.7854 (df ¼ 6) 2.1803 4.9040
DEL 1.42 £ 1023 3.68 £ 1023 y ¼ 3.0845x 2 1.636 0.9706 0.4982 (df ¼ 5) 1.3244 1.0013
DLN 1.68 £ 1023 6.91 £ 1023 y ¼ 2.0816x þ 0.369 0.9577 2.3403 (df ¼ 5) 1.5679 1.8782
GDN 2.644 £ 1022 1.003 £ 1021 y ¼ 2.2107x 2 2.5656 0.9878 1.3474 (df ¼ 5) 24.7125 27.2554
GGP 3.474 £ 1022 1.3896 £ 1021 y ¼ 2.126x 2 2.5277 0.9793 0.2048 (df ¼ 5) 32.4651 37.7618
GOA-A 4.033 £ 1022 1.7466 £ 1021 y ¼ 2.0109x 2 2.2506 0.9507 0.6520 (df ¼ 6) 37.6891 47.4627
GOA-B 1.693 £ 1022 5.789 £ 1022 y ¼ 2.397x 2 2.7389 0.9425 0.2275 (df ¼ 5) 15.8204 15.7308
HBB 9.81 £ 1023 3.085 £ 1022 y ¼ 2.5723x 2 2.6955 0.9713 0.4648 (df ¼ 5) 9.1689 8.3840
JBC 3.62 £ 1023 1.057 £ 1022 y ¼ 2.7509x 2 2.0387 0.9338 1.3622 (df ¼ 5) 3.3831 2.8718
JPN 1.5 £ 1023 1.151 £ 1022 y ¼ 1.4484x þ 1.8466 0.9773 0.9218 (df ¼ 5) 1.4055 3.1265
KGR 1.345 £ 1022 4.111 £ 1022 y ¼ 2.6378x 2 3.2527 0.9816 0.7850 (df ¼ 5) 12.5666 11.1700
MGL-A 3.72 £ 1023 2.155 £ 1022 y ¼ 1.6788x þ 0.6838 0.9771 0.7109 (df ¼ 6) 3.4803 5.8567
MGL-B 1.76 £ 1023 7.96 £ 1023 y ¼ 1.9564x þ 0.6045 0.9833 4.2904 (df ¼ 6) 1.6494 2.1635
MLP 2.55 £ 1023 9.14 £ 1023 y ¼ 2.307x 2 0.5511 0.9935 0.4956 (df ¼ 5) 2.3813 2.4840
MYS 2.94 £ 1023 9.36 £ 1023 y ¼ 2.5466x 2 1.2873 0.9640 1.8356 (df ¼ 5) 2.7512 2.5448
NMG 6.16 £ 1023 2.437 £ 1022 y ¼ 2.142x 2 0.9747 0.9819 0.9831 (df ¼ 6) 5.7533 6.6230
PBN 1.07 £ 1023 4.38 £ 1023 y ¼ 2.0891x þ 0.7608 0.9585 2.4577 (df ¼ 5) 0.9996 1.1914
PDC 3.44 £ 1023 1.085 £ 1022 y ¼ 2.564x 2 1.5027 0.9699 1.6440 (df ¼ 5) 3.2123 2.9482
PNJ 7.88 £ 1023 9.638 £ 1022 y ¼ 1.7711x þ 1.5904 0.9818 1.1768 (df ¼ 5) 7.3657 26.1910
PRP 2.165 £ 1022 7.019 £ 1022 y ¼ 2.5058x 2 3.3581 0.9572 1.4460 (df ¼ 5) 20.2356 19.0745
PUN-A 1.35 £ 1023 7.92 £ 1023 y ¼ 1.6689x þ 1.4423 0.9757 1.6949 (df ¼ 5) 1.2658 2.1520
PUN-B 2.82 £ 1023 8.44 £ 1023 y ¼ 2.6914x 2 1.5963 0.9728 2.6132 (df ¼ 5) 2.6395 2.2943
SBN 2.871 £ 1022 1.013 £ 1021 y ¼ 2.3377x 2 3.0838 0.9650 0.0375 (df ¼ 6) 26.8297 27.5266
SMG 3.26 £ 1023 1.216 £ 1022 y ¼ 2.2373x 2 0.6224 0.9685 3.1039 (df ¼ 5) 3.0452 3.3056
TMK 1.86 £ 1023 7.8 £ 1023 y ¼ 2.0519x 2 0.3454 0.9689 0.9827 (df ¼ 6) 1.7339 2.1201
WCR 1.619 £ 1022 6.552 £ 1022 y ¼ 2.1079x 2 1.7646 0.9529 3.6451 (df ¼ 5) 15.1292 17.8054
YSP 4.35 £ 1023 1.662 £ 1022 y ¼ 2.1996x 2 0.8043 0.9819 0.6853 (df ¼ 6) 4.0683 4.5170

1 Statistically non-significant (P , 0.05).
2 Tolerance RR50 ¼ LC50 of a strain/LC50 of the PBN strain.
3 Tolerance RR90 ¼ LC90 of a strain/LC90 of the DEL strain.

Ecological variations in Anopheles stephensi 53



(4.38 £ 1023mg/l), DLN (6.91 £ 1023mg/l), TMK
(7.80 £ 1023mg/l) and PUN-A (7.92 £ 1023mg/l).
x 2 values were found to be non-significant at
P , 0.05.

Larval susceptibility status to propoxur is
presented (Table 4 and Fig. 4). Among the strains,
JPN showed the highest LC50 value (3.7 £ 1023

mg/l), followed by YSP (2.16 £ 1023mg/l), JBC
(1.88 £ 1023mg/l), AGB (1.46 £ 1023mg/l) and
PRP (1.04 £ 1023mg/l); GGP showed the lowest
LC50 value (2.9 £ 1024mg/l), followed by PDC
(3.9 £ 1024mg/l), MGL-B and PUN-A (4 £ 1024

mg/l) and CRP (4.2 £ 1024mg/l). JPN showed the
highest LC90 value (1.159 £ 1022mg/l), followed by
YSP (7.64 £ 1023mg/l), JBC (6.16 £ 1023mg/l),
AGB (5.62 £ 1023mg/l) and WCR (4.75 £ 1023mg/
l); GGP showed the lowest LC90 value (9.4 £ 1024

mg/l), followed by PDC (1.07 £ 1023mg/l), CRP
(1.15 £ 1023mg/l), MGL-B (1.17 £ 1023mg/l) and
PUN-A (1.34 £ 1023mg/l). x 2 values were found
to be non-significant at P , 0.05.

For chlorpyrifos, the LC50 values ranged from
1.07 £ 1023 to 4 £ 1022mg/l and the LC90 values
ranged from 3.68 £ 1023 to 1.7466 £ 1021mg/l. Its
mean ^ SD LC50 value was 9.57 £ 1023 ^ 0.0109
mg/l and its LC90 value was 3.91 £ 1022 0.044mg/l.
For propoxur, the LC50 values ranged from
2.9 £ 1024 to 3.7 £ 1023mg/l and the LC90 values
ranged from 9.4 £ 1024 to 1.159 £ 1022 mg/l.
Its mean ^ SD LC50 value was 8.2 £ 1024 ^
0.00066mg/l and its LC90 value was 2.8 £ 1023 ^
0.0022mg/l (Table 5).

For chlorpyrifos, the lowest LC50 tolerance
values were 1.26 (PUN-A), 1.32 (DEL), 1.40 (JPN),
1.56 (DLN) and 1.64 (MGL-B); the highest values
were 37.68 (GOA-A), 32.46 (GGP), 26.82 (SBN),
24.71 (GDN) and 23.16 (BSN) (Table 3). The lowest
LC90 tolerance values were 1.19 (PBN), 1.87 (DLN),

2.12 (TMK), 2.15 (PUN-A) and 2.16 (MGL-B); the
highest values were 47.46 (GOA-A), 37.76 (GGP),
27.52 (SBN), 27.25 (GDN) and 26.19 (PNJ) (Table 3).
The LC50 tolerance values ranged from 1.26 to 37.68,
with a mean ^ SD of 8.9526 ^ 10.198. The LC90

tolerance values ranged from 1.19 to 47.46, with a
mean ^ SD of 10.6484 ^ 11.9642 (Table 6).

For propoxur, the lowest LC50 tolerance values
were 1.34 (PDC), 1.37 (MGL-B), 1.39 (CRP), 1.44
(CRP) and 1.48 (MGL-A); the highest values were
12.77 (JPN), 7.45 (YSP), 6.47 (JBC), 5.02 (AGB) and
3.57 (PRP). The lowest LC90 tolerance values were
1.13 (PDC), 1.22 (CRP), 1.24 (MGL-B), 1.42 (PUN-A)
and 1.64 (PNJ); the highest values were 12.32 (JPN),
8.12 (YSP), 6.55 (JBC), 5.98 (AGB) and 5.05 (WCR)
(Table 4). The LC50 tolerance values ranged from
1.34 to 12.77, with a mean ^ SD of 2.8361 ^ 2.3066.
The LC90 tolerance values ranged from 1.13 to 12.32,
with a mean ^ SD of 3.0720 ^ 2.3443 (Table 6).

From the present study, we found that the strains
BGR, BSN, GDN, GGP, GOA-A, GOA-B, KGR, PRP,
SBN and WCR were resistant (.10-fold tolerant to
chlorpyrifos), while all were susceptible to propoxur
except JPN, with a tolerance level of 12.77. The
results indicate that the strains of An. stephensi were
more susceptible to propoxur than to chlorpyrifos.

Discussion

The marked differences in the behaviour of An.
stephensi had led to the existence of biological races
being proposed. Two populations, type form and
mysorensis, were reported on the basis of differences
in egg length, width and number of ridges on the
egg float (Sweet and Rao, 1937). Puri (1949)
designated them as sub-species; however, Rutledge
et al. (1970) found the two forms to be sympatric and
interbreeding and thus considered them variants
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Table 4. LC50, LC90, regression equation, coefficient of correlation, x 2 and tolerance/resistance ratio (RR) values of
propoxur for the different strains of Anopheles stephensi

RR

Strains LC50 (mg/l) LC90 (mg/l) Regression equation r x 2 1 LC50
2 LC90

3

AGB 1.46 £ 1023 5.62 £ 1023 y ¼ 2.1828x þ 0.2775 0.9807 0.7124 (df ¼ 5) 5.0246 5.9810
BGR 4.8 £ 1024 2.07 £ 1023 y ¼ 2.0266x þ 1.5862 0.9992 0.0249 (df ¼ 6) 1.6676 2.2028
BSN 8.3 £ 1024 2.2 £ 1023 y ¼ 3.0058x 2 0.7625 0.9752 1.1446 (df ¼ 5) 2.8491 2.3435
CHN 5.8 £ 1024 1.66 £ 1023 y ¼ 2.7835x þ 0.0974 0.9987 0.0911 (df ¼ 5) 1.9902 1.7704
CLO 6.1 £ 1024 2.49 £ 1023 y ¼ 2.1002x þ 1.2488 0.9808 1.5599 (df ¼ 6) 2.1072 2.6453
CRP 4.2 £ 1024 1.15 £ 1023 y ¼ 2.9149x þ 0.2734 0.9822 0.7370 (df ¼ 5) 1.4425 1.2234
DEL 6.3 £ 1024 2.13 £ 1023 y ¼ 2.4322x þ 0.6189 0.9829 1.6470 (df ¼ 6) 2.1822 2.2619
DLN 7.9 £ 1024 2.59 £ 1023 y ¼ 2.4787x þ 0.2973 0.9855 0.6874 (df ¼ 5) 2.7215 2.7572
GDN 6 £ 1024 1.96 £ 1023 y ¼ 2.478x þ 0.5982 0.9886 0.7769 (df ¼ 6) 2.0606 2.0882
GGP 2.9 £ 1024 9.4 £ 1024 y ¼ 2.5466x þ 1.2594 0.9640 0.9827 (df ¼ 5) 1.0000 0.9963
GOA-A 6.9 £ 1024 2.79 £ 1023 y ¼ 2.1011x þ 1.1408 0.9948 0.4369 (df ¼ 6) 2.3681 2.9708
GOA-B 4.8 £ 1024 2.8 £ 1023 y ¼ 1.6627x þ 2.21 0.9963 0.1947 (df ¼ 5) 1.6429 2.9831
HBB 5 £ 1024 1.57 £ 1023 y ¼ 2.5912x 2 0.5877 0.9783 1.8710 (df ¼ 5) 1.7394 1.6737
JBC 1.88 £ 1023 6.16 £ 1023 y ¼ 2.4803x 2 0.6391 0.9642 3.0947 (df ¼ 6) 6.4724 6.5535
JPN 3.7 £ 1023 1.159 £ 1022 y ¼ 2.5847x 2 1.6394 0.9877 0.8062 (df ¼ 6) 12.7733 12.3274
KGR 7.7 £ 1024 2.93 £ 1023 y ¼ 2.205x þ 0.8402 0.9866 0.4434 (df ¼ 5) 2.6552 3.1180
MGL-A 4.3 £ 1024 1.6 £ 1023 y ¼ 2.2542x þ 1.3138 0.9884 0.9007 (df ¼ 5) 1.4890 1.6981
MGL-B 4 £ 1024 1.17 £ 1023 y ¼ 2.7456x þ 0.6055 0.9719 1.2456 (df ¼ 5) 1.3747 1.2407
MLP 7.5 £ 1024 2.99 £ 1023 y ¼ 2.1217x þ 1.027 0.9886 0.9115 (df ¼ 6) 2.5716 3.1818
MYS 7.5 £ 1024 2.99 £ 1023 y ¼ 2.1217x þ 1.027 0.9886 0.9115 (df ¼ 6) 2.5716 3.1818
NMG 5.2 £ 1024 1.70 £ 1023 y ¼ 2.4768x þ 0.7587 0.9939 0.4846 (df ¼ 6) 1.7783 1.8033
PBN 6.7 £ 1024 2.08 £ 1023 y ¼ 2.6146x þ 0.2215 0.9962 0.0920 (df ¼ 5) 2.3185 2.2084
PDC 3.9 £ 1024 1.07 £ 1023 y ¼ 2.9166x þ 0.3603 0.9847 0.9211 (df ¼ 5) 1.3440 1.1391
PNJ 4.4 £ 1024 1.55 £ 1023 y ¼ 2.3632x þ 1.1056 0.9693 0.9076 (df ¼ 5) 1.5329 1.6462
PRP 1.04 £ 1023 3.42 £ 1023 y ¼ 2.4725x þ 0.0158 0.9763 1.3701 (df ¼ 5) 3.5769 3.6339
PUN-A 4 £ 1024 1.34 £ 1023 y ¼ 2.4549x þ 1.0575 0.9756 3.1487 (df ¼ 5) 1.3919 1.4265
PUN-B 7.3 £ 1024 2.95 £ 1023 y ¼ 2.1018x þ 1.0889 0.9898 0.6337 (df ¼ 6) 2.5027 3.1381
SBN 9.4 £ 1024 3.22 £ 1023 y ¼ 2.3954x þ 0.274 0.9878 0.5063 (df ¼ 6) 3.2397 3.4212
SMG 5.1 £ 1024 1.75 £ 1023 y ¼ 2.4017x þ 0.8929 0.9885 0.5481 (df ¼ 5) 1.7689 1.8615
TMK 5 £ 1024 1.55 £ 1023 y ¼ 2.615x þ 0.5533 0.9642 1.7263 (df ¼ 5) 1.7302 1.6473
WCR 9.9 £ 1024 4.75 £ 1023 y ¼ 1.8795x þ 1.2494 0.9877 0.2273 (df ¼ 5) 3.4127 5.0521
YSP 2.16 £ 1023 7.64 £ 1023 y ¼ 2.3338x 2 0.4489 0.9878 0.6131 (df ¼ 5) 7.4542 8.1297

1 Statistically non-significant (P , 0.05).
2 Tolerance RR50 ¼ LC50 of a strain/LC50 of the GGP strain.
3 RR90 ¼ LC90 of a strain/LC90 of the GGP strain.
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and not sub-species. Classification of the vector into
ecological variants has a propounding effect on
disease transmission (Shetty et al., 1999). The type
and intermediate forms that are predominant in
urban and semi-urban areas have been reported
to be vectors, while mysorensis, reported to be
predominant in rural areas, has been determined to
be a non-vector (Sweet and Rao, 1937; Rao, 1984;
Subbarao et al., 1987; Shetty et al., 1999). The result of
the present study is in accordance with the earlier
reports where type and intermediate forms have
been found in urban and semi-urban areas. In the
Jiroft district of Iran,An. stephensiwas themysorensis
form, where the ridge number ranged from 10 to 14
(Mehravaran et al., 2012).

Wide use of insecticide treatments is indispen-
sable in almost all crop and public health
programmes, especially those for vector control.
The rational use of insecticides depends on a broad
knowledge of the susceptibility and irritability levels
of malaria vectors. This knowledge enables us to take
all necessary precautions to prevent the occurrence
of resistance, and to prepare in advance a plan for
coping with it at the early stages of its development
in the field (Vatandosst and Borhani, 2004).

To indicate a strain is resistant, a 10-fold increase
in LC50 is necessary for mosquito larvae, while a
4-fold increase is sufficient for adult mosquito in
comparisonwith the susceptible control (Brown and
Pal, 1971). In the present study, a maximum 37.68-
fold tolerance was observed in GOA-A compared
with the least resistant strain (PBN) for chlorpyrifos
and a 12.77-fold tolerance in JPN comparedwith the
least resistant strain (GGP) for propoxur. Based on
the results, it is clear that the tolerance values for
chlorpyrifos and propoxur among many strains
show more than a 10-fold tolerance, indicating

resistance to these insecticides. The correlation
coefficient (r) indicates that the observed values
fall around the regression line. The r values are
strong when placed between 0.8 and 1.0. All the
r values obtained in the present study are .0.9,
indicating close proximity to the regression line.

Insecticide susceptibility studies have been
carried out in different species of mosquito for
both larvae and adults derived from the Cauvery
basin and its tributaries from Thalakaveri to
Makedatu in Karnataka (Shetty, 2002b). Suscepti-
bility studies for various classes of insecticides,
including organochlorines, organophosphates, car-
bamates, synthetic pyrethroids and botanicals, have
been carried out on three major mosquito vector
species (Ghosh et al., 2002; Kashyap and Shetty,
2011; Shetty et al., 2006, 2007, 2010, 2012). The
genetic basis of chlorpyrifos (Chandrakala and
Shetty, 2006) and propoxur (Sanil and Shetty, 2010)
resistance and their cytological basis (Shetty et al.,
2013) have been studied. The susceptibility status of
An. stephensi to DDT, BHC, propoxur, malathion,
fenthion and deltamethrin (Mukhopadhyay et al.,
1997) has been reported in India. Anopheles stephensi
from southern Iran (Manouchehri and Yaghoobi-
Ershadi, 1988), An. pulcherrimus from southeast Iran
(Zahirnia et al., 2002) and Russia (Sorokin et al.,
1991), and An. sacharovi from Iran (Yaghoobi-
Ershadi et al., 2001) have been found to be
susceptible to the propoxur treatment.

Adults of An. culicifacies from Surat, India
(Raghavendra et al., 2010) and Anopheles gambiae
from Nigeria have been found to be susceptible to
propoxur (Olayemi et al., 2011); Anopheles maculi-
pennis from Turkey has been found to be resistant
(Akiner, 2014). Larvae of An. stephensi and Anopheles
subpictus from Gujarat and Rajasthan, India (Tikar

Table 5. Range, mean ^ SD and confidence limits (CL) of LC50 and LC90 for chlorpyrifos and propoxur

LC50 LC90

Insecticides Range Mean ^ SD 95% CL Range Mean ^ SD 95% CL

Chlorpyrifos

(n ¼ 32)

1.07 £ 1023 (PBN) to

4.03 £ 1022 (GOA-A)

9.57 £ 1023

^ 0.01

0.00 576–0.0133 3.68 £ 1023 (DEL) to

1.74 £ 1021 (GOA-A)

3.91 £ 1022

^ 0.04

0.02 379–0.05 457

Propoxur

(n ¼ 32)

2.9 £ 1024 (GGP) to

3.7 £ 1023 (JPN)

8.2 £ 1024

^ 0.0006

0.00 058–0.00 105 9.4 £ 1024 (GGP) to

1.159 £ 1022 (JPN)

2.8 £ 1023

^ 0.002

0.002117–0.00 365

Table 6. Range, mean ^ SD and confidence limits (CL) of LC50 and LC90 resistance ratios for chlorpyrifos and propoxur

LC50 LC90

Insecticides Range Mean ^ SD 95% CL Range Mean ^ SD 95% CL

Chlorpyrifos
(n ¼ 32)

1.26 (PUN-A) to
37.68 (GOA-A)

8.9526 ^

10.198
5.388–12.5167 1.19 (PBN) to

47.46 (GOA-A)
10.6484 ^ 11.9642 6.4671–14.8292

Propoxur
(n ¼ 32)

1.34 (PDC) to
12.77 (JPN)

2.8361 ^

2.3066
2.0299–3.6422 1.13 (PDC) to

12.32 (JPN)
3.0720 ^ 2.3443 2.2527–3.8913
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et al., 2011) have been found to be tolerant to
chlorpyrifos (0.025mg/l). Anopheles dthali and An.
fluviatilis from southern Iran (Hanafi-Bojd et al.,
2006) and An. gambiae from Bénin, West Africa
(N’Guessan et al., 2010) have been found to be
susceptible to chlorpyrifos-methyl; An. sinensis
from the Republic of Korea has been reported to
be resistant to chlorpyrifos (Chang et al., 2013).
Mixed results from different parts of the world are
a serious concern, and underline the importance of
monitoring and understanding resistance levels
and their mechanisms. From the present study,
although some geographical strains showed resist-
ance to both insecticides, An. stephensi was found to
be more susceptible to propoxur than to chlorpyr-
ifos. Baseline information from this experiment will
serve as a guide for future application of insecti-
cides to different strains of An. stephensi.

The first step is to assess trends in frequency of
the resistance gene(s) through susceptibility tests,
and to investigate the efficacy of insecticides using
bioassays. The most effective insecticides giving
100% possible kill should be used in rotation in
vector control programmes (Kasap et al., 2000).
Application of inappropriate insecticides without
an understanding of the prevailing resistance
mechanisms may lead to control failure. Hence,
periodic monitoring of insecticide resistance status
is an important criterion in vector control pro-
grammes (Shetty et al., 2012). The rate at which an
insecticide becomes ineffective depends on the
selection pressure for resistance, which is deter-
mined by monitoring, and how often and for how
long the insecticide is being used (Hudson, 1983).

Conclusion

The type form of An. stephensi was found in
urban and semi-urban areas and the intermediate
form in semi-urban localities. The forms are usually
vectors, and are distributed throughout the urban
localities in and around Bangalore. The different
strains across India showed that they were more
susceptible to propoxur than to chlorpyrifos.
Hence, propoxur can be preferred and used ahead
of chlorpyrifos. Close cooperation is necessary
among health, agriculture and ecosystem analysts
to understand insecticide use. The data provided in
the bioassays provide the preliminary information
important for subsequent investigations into the
mechanisms of resistance.
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