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Celecoxib reduces hyperalgesia and tactile allodynia in diabetic rats
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A B S T R A C T

Background: In the present study we determined the antihyperalgesic and antiallodynic effect of

celecoxib in diabetic rats as well as the possible participation of opioid receptors in the mechanism of

action of celecoxib in these rats.

Methods: Experimental diabetes was induced by streptozotocin. Formalin (0.5%) was used to produce

hyperalgesia in non-diabetic and diabetic rats. von Frey filaments were used to determine the 50%

withdrawal threshold in diabetic rats.

Results: Oral administration of celecoxib (0.3–30 mg/kg) reduced formalin-induced nociceptive

behavior during phase 2. Systemic pre-treatment (�10 min) with naltrexone (3 mg/kg) prevented

celecoxib-induced antihyperalgesia in formalin-treated diabetic rats. Furthermore, naltrexone as well as

the d and k opioid receptor antagonists naltrindole (3 mg/kg) and 50-guanidino naltrindole (1 mg/kg),

respectively, fully prevented celecoxib-induced antihyperalgesia (10 mg/kg) in formalin-treated non-

diabetic and diabetic rats. Furthermore, celecoxib (0.3–30 mg/kg) produced an antiallodynic effect in

diabetic rats. Pre-treatment with naltrexone (3 mg/kg) fully prevented the antiallodynic effect of

celecoxib at 0.3, 3 and 10 mg/kg. In contrast, this dose of naltrexone only partially prevented the

antiallodynic effect of celecoxib 30 mg/kg. Naltrexone and naltrindole (3 mg/kg), but not 50-guanidino

naltrindole (1 mg/kg), fully prevented the antiallodynic effect of celecoxib in diabetic rats.

Conclusions: Data suggest that celecoxib produces an antihyperalgesic and antiallodynic effect in

diabetic rats. These effects seem to result from activation of m, d and k opioid receptors for

antinociception and m and d for antiallodynia. Celecoxib could be useful to treat neuropathic pain in

diabetic patients.

� 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Sp. z o.o. All rights

reserved.
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Introduction

Diabetes mellitus is one of the most common chronic medical
conditions affecting over 100 million people world-wide, of whom
up to 50% may develop diabetic neuropathy [1]. The treatment of
pain in diabetic patients is frequently unsatisfactory. Antic-
onvulsants, tricyclic antidepressants and opioids have become
Abbreviations: ANOVA, analysis of variance; COX-2, cyclo-oxygenase 2; NSAIDs,

non-steroidal anti-inflammatory drugs.
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the mainstay in the treatment of chronic neuropathic pain
[2,3]. However, these drugs often have a limited effect or they
may cause intolerable side effects. Therefore, other options of
treatment are needed.

The definitive role of prostanoids in neuropathic pain is still a
matter of debate. Several studies have shown the usefulness of
acute or repetitive administration of non-steroidal anti-inflamma-
tory drugs (NSAIDs) [4–8], when they are given before or
immediately after nerve injury. In contrast, other studies have
found that NSAIDs do not reverse established neuropathic pain in
rats [9–11]. Taken together, these data point that prostanoids play an
important role during development but not maintenance of neuro-
pathic pain. However, recent evidence suggests that prostaglandin
y Elsevier Sp. z o.o. All rights reserved.
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synthesis via cyclo-oxygenase 2 (COX-2) may contribute to the
maintenance of neurophatic pain as this protein is up-regulated in
the spinal cord and periphery after nerve injury [12–15]. In
agreement with this idea, intrathecal administration of the COX-2
inhibitors GW406381, celecoxib and etodolac have shown to reduce
tactile allodynia in neuropathic rats [16–19]. Furthermore, the
preferential COX-2 inhibitor meloxicam as well as the selective COX-
2 inhibitors SC-58125 and NS-398 are able to diminish established
hypersensitivity in diabetic rats [15,20–22].

Celecoxib exhibits anti-pyretic, anti-inflammatory and analge-
sic activities [23] attributed to the inhibition of prostaglandin
synthesis [24,25]. However, other mechanisms [19,26] including
endogenous opioids [26–28] have been proposed for this drug. The
effects of celecoxib in diabetic pain have been scarcely studied
[19,29,30]. Thus, the purpose of this study was to assess the
antihyperalgesic and antiallodynic effects of celecoxib in diabetic
rats. Furthermore, the possible participation of opioid receptors in
the antihyperalgesic and antiallodynic effect of celelecoxib in
diabetic rats was also determined.

Material and methods

Animals

Experiments were performed on adult male Wistar rats (body
weight range, 230–250 g) of 9–10 weeks of age. Rats were obtained
from the Facultad de Medicina, UNAM (México City). The animals
were housed and maintained at 22 � 2 8C under a 12-h light/12-h
dark cycle with free access to food and water. Experiments were
started at the same time (10:00 AM). Efforts were made to minimize
animal suffering and to reduce the number of animals used. All the
experiments followed the Guidelines on Ethical Standards for
Investigation of Experimental Pain in Animals [31] and were
approved by our local Ethics Committee (DACS, UJAT).

Induction of diabetes

Rats were injected with streptozotocin (60 mg/kg, ip) (Sigma,
St. Louis, MO, USA) to produce experimental diabetes [32]. Control
animals (age-matched) received distilled water. Diabetes was
confirmed 4 days after injection by measurement of tail vein blood
glucose levels with the Accu-Check Sensor Comfort glucometer
(Roche, Mexico City). Four weeks after streptozotocin injection,
glycemia was again determined and only animals with a final
blood glucose level �250 mg/dl were included in the study.
Experiments were started with numbers greater than six
considering that only 80–90% of the streptozotocin-treated rats
became hyperglycemic or survived at two weeks. Thus, groups had
to be started considering this fact.

Assessment of hyperalgesia

Hyperalgesia in non-diabetic and diabetic (four weeks) rats was
assessed using the 0.5% formalin test [33,34]. The rats were placed
in open plexiglas observation chamber for 30 min to acclimatize to
their surroundings; then were removed for formalin administra-
tion. Fifty microliters of diluted formalin (0.5%) were injected
subcutaneously into the dorsal surface of the right hind paw with a
30-ga needle. The animals were returned to the chambers and
nociceptive behavior was observed immediately after formalin
injection. Mirrors were placed in each chamber to enable
unhindered observation. Nociceptive behavior was quantified as
the numbers of flinches of the injected paw during 1 min periods
every 5 min, up to 60 min after injection [33,35]. Flinching was
readily discriminated and was characterized as a rapid and brief
withdrawal or as a flexing of the injected paw. Formalin induced
flinching behavior was biphasic [35]. The initial acute phase
(0–10 min) was followed by a relatively short quiescent period,
which was then followed by a prolonged tonic response
(10–60 min). Animals were used only once and at the end of the
experiment they were sacrificed in a CO2 chamber.

Assessment of allodynia

Tactile allodynia was tested in diabetic rats 4 weeks after
streptozotocin injection as previously reported [36]. Rats were
transferred to a clear plastic, wire mesh-bottomed cage and
allowed to acclimatize for 30 min. Von Frey filaments (Stoelting,
Wood Dale, IL, USA) were used to determine the 50% paw
withdrawal threshold using the up-down method of Dixon [37]. A
series of filaments, starting with one that had a buckling of 2 g, was
applied in consecutive sequence to the plantar surface of the right
hind paw with a pressure causing the filament to buckle. Lifting of
the paw indicated a positive response and prompted the use of the
next weaker filament whereas the absence of a paw withdrawal
after 5 s indicated a negative response and prompted the use of the
next filament of increasing weight. This paradigm continued until
four more measurements had been made after the initial change of
the behavioral response or until 5 consecutive negative (assigned a
score of 15 g) or four consecutive positive (assigned a score of
0.25 g) responses had occurred. The resulting scores were used to
calculate the 50% response threshold by using the formula: 50% g
threshold = 10(Xf+k@)/10,000. Where Xf = the value (in log units) the
final von Frey filament used [36], k = the value for the pattern
of positive and/or negative responses, and @ = the mean difference
(in log units) between stimulus strengths.

Withdrawal threshold assessment was performed immediately
before and every 30 min until 3.5 h after drug administration.
Allodynia was considered to be present when paw withdrawal
thresholds were <4 g. Diabetic rats not demonstrating allodynia
were not further studied.

Drugs

Streptozotocin, naltrexone, naltrindole and 50-guanidino nal-
trindole were purchased from Sigma (St. Louis, MO, USA). Celecoxib
was obtained from Pfizer, S.A. de C.V. (Mexico City, Mexico).
Streptozotocin was freshly dissolved in distilled water, protected
from light and immediately administered. Naltrexone, naltrindole
and 50-guanidino naltrindole were dissolved in 0.9% isotonic saline,
while celecoxib was dissolved in 40% polyethylene glycol.

Study design

Independent groups of animals were used for each experimental
condition. Dose–response curve for administration of celecoxib was
carried out giving vehicle or increasing doses of celecoxib (0.3–
30 mg/kg) 30 min before formalin injection into the right paw.

To determine the possible participation of the opioid system in
the antihyperalgesic activity of celecoxib in diabetic rats, naltrex-
one (a non-selective opioid receptor antagonist, 3 mg/kg) was
administered in combination with increasing doses of celecoxib
(0.3–30 mg/kg). Furthermore, naltrexone (3 mg/kg), naltrindole (a
d opioid receptor antagonist, 3 mg/kg) or 50-guanidino naltrindole
(a k opioid receptor antagonist, 1 mg/kg) was administered 10 min
before a fixed dose of celecoxib (10 mg/kg), which was given
30 min before formalin injection, and the formalin-induced
nociceptive behavior was assessed.

For the study of allodynia, rats received an oral administration
of vehicle (300 ml; 40% polyethylene glycol) or increasing doses of
celecoxib (0.3–30 mg/kg) and withdrawal threshold in non-
diabetic and diabetic (4 weeks) rats was measured for the next
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3.5 h. To determine the possible participation of the opioid system
in celecoxib-induced antiallodynic effect in diabetic rats, naltrex-
one (3 mg/kg) was administered in combination with increasing
doses of celecoxib (0.3–30 mg/kg). To explore the participation of
other opioid receptors, diabetic rats received a bolus injection of
naltrexone (3 mg/kg), naltrindole (3 mg/kg) or 50-guanidinonal-
trindole (1 mg/kg) 10 min before injection of a fixed dose of
celecoxib (10 mg/kg) and the withdrawal threshold was assessed.

Observer was unaware of the treatment in each animal. The
doses and the drug administration schedule of celecoxib, naltrex-
one, naltrindole and 50-guanidino naltrindole were selected based
on previous reports [38,39] and on pilot experiments in our
laboratory conditions.

Data analysis and statistics

All results are presented as the mean � SEM of 6 animals per
group. The curves were constructed by plotting the 50% withdrawal
threshold as a function of time. From these plots, area under the 50%
threshold withdrawal against time curve (AUC) was computed. For
the formalin test, the nociceptive behavior induced by the sc injection
of 0.5% formalin in non-diabetic and diabetic rats was registered as
the numbers of flinches of the injected paw during 1 min periods
every 5 min, up to 60 min after injection. In addition, the sum of
flinches was used to have a global measure of nociception, as
previously reported [15].

One- or two-way analysis of variance (ANOVA) followed by
Tukey’s test was used to compare differences between more than
2 treatments. Differences were considered to reach statistical
significance when p < 0.05.

Results

Formalin-evoked flinching behavior in non-diabetic and diabetic rats

Streptozotocin injection provoked hyperglycemia. The blood
glucose levels measured in these rats before (92.4 � 0.3 mg/dl) and
after streptozotocin (432.2 � 17.6 mg/dl) injection singnificantly
increased whereas that those in rats treated with saline did not change
(93.4 � 0.7 vs. 91.1 � 0.4 mg/dl). Diabetic rats also showed polyuria and
increased food and water intake as previously reported [22,33,38].
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Fig. 1. Time course of the nociceptive behavior induced by the subcutaneous injection of 0

of flinches counted during phase I and phase II in non-diabetic and diabetic rats subjected

from the non-diabetic group (p < 0.05), as determined by two-way ANOVA followed by th
Diabetic (4 weeks) and non-diabetic animals subjected to 0.5%
formalin showed a biphasic time-course as described elsewhere
[15] (Fig. 1A). Diabetic rats showed an increased sum of flinches
(p < 0.05), compared to non-diabetic rats (Fig. 1B), which confirm
the enhanced hypersensitivity reported in diabetic animals
[15,33,34].

Antihyperalgesic effect of celecoxib in non-diabetic and diabetic rats

Pre-treatement (�30 min) with celecoxib (0.3–30 mg/kg, po)
significantly (p < 0.05) diminished formalin-induced nociceptive
behavior during phase 2 in a dose-dependent manner in non-
diabetic (Fig. 2A, Fig. S1) and 4 weeks diabetic rats (Fig. 2B, Fig. S2).
Insets in panels A and B show the the time-course for the highest
dose of celecoxib tested. In contrast, celecoxib did not affect phase
1 of the formalin test in non-diabetic and diabetic rats (Inset in
Fig. 2, Figs. S1–S2).

Effect of opioid receptor antagonists on celecoxib-induced

antihyperalgesia in diabetic rats

Intraperitoneal pre-treatment (�10 min) with the non-selec-
tive opioid receptor antagonist naltrexone (3 mg/kg) prevented
celecoxib-induced antihyperalgesia in all doses during phase 2 of
formalin test in 4 weeks diabetic rats (Fig. 3, Fig. S3). Systemic
administration of naltrexone per se did not affect formalin-induced
flinching behavior in 4 weeks diabetic rats (Fig. 3). Furthermore,
naltrexone as well as the selective d and k opioid receptor
antagonists naltrindole (3 mg/kg) and 50-guanidinonaltrindole
(1 mg/kg), respectively, prevented (p < 0.05) the antihyperalgesic
effect of celecoxib (10 mg/kg) in both non-diabetic (Fig. 4A) and
4 weeks diabetic rats (Fig. 4B).

Antiallodynic effect of celecoxib in diabetic rats

Streptozotocin, but not saline, injection produced tactile
allodynia 4 weeks after injection (Fig. 5). In these diabetic rats,
oral administration of celecoxib (30 mg/kg), but not vehicle,
produced an antiallodynic effect (Inset Fig. 6). Furthermore, this
COX-2 inhibitor dose-dependently enhanced (p < 0.05) the 50%
withdrawal threshold indicating an antiallodynic effect (Fig. 6,
Fig. S4). In support of our data, other COX-2 inhibitor, meloxicam,
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Fig. 2. Dose–response curves of celecoxib (0.3–30 mg/kg, ip) in non-diabetic (A) and

diabetic (B) rats during phase 2 of the formalin test. Inset, in both plots, shows time

course of the antihyperalgesic effect for the highest dose of celecoxib used (30 mg/

kg). Data are expressed as the sum of flinches. Data are expressed as mean � SEM of

6 rats. * Significantly different from the vehicle (VEH) group (p < 0.05), by one-way

ANOVA followed by the Student–Newman–Keuls test.
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Fig. 3. Effect of naltrexone (NTX, 3 mg/kg, ip) on celecoxib (0.3–30 mg/kg, ip)-

induced antinociceptive activity in diabetic rats during phase 2 of the formalin

test. Data are expressed as the sum of flinches. Data are the mean � SEM of 6 rats.
* Significantly different from the vehicle (VEH) group (p < 0.05) and # significantly

different from the celecoxib group (p < 0.05), by two-way ANOVA followed by the

Student–Newman–Keuls test.
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Fig. 4. Effect of naltrexone (NTX, 3 mg/kg, ip), naltrindole (NLT, 3 mg/kg, ip) or 5-guanidin

activity in non-diabetic (A) and diabetic (B) rats during phase 2 of the formalin test. Data 

different from the vehicle (VEH) group (p < 0.05) and # significantly different from the celeco
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was able to diminish tactile allodynia in 4 weeks diabetic rats
(Fig. S5).

Effect of opioid receptor antagonists on celecoxib-induced

antiallodynia in diabetic rats

Intraperitoneal pre-treatment (�10 min) with the non-selec-
tive opioid receptor antagonist naltrexone (3 mg/kg) fully pre-
vented the antiallodynic effect of celecoxib 0.3, 3 and 10 mg/kg in
4 weeks diabetic rats (Fig. 7, Fig. S6). In marked contrast, this dose
of naltrexone only partially prevented the antiallodynic effect of
celecoxib 30 mg/kg in 4 weeks diabetic rats (Fig. 7, Fig. S6). In
addition, naltrexone as well as the selective d opioid receptor
VEH NTX NTL GNTI
0

50

100

150

Celec oxib  (10  mg/ kg)

*

#

B

#

#

onaltrindole (GNTI, 1 mg/kg, ip) on celecoxib (10 mg/kg, ip)-induced antinociceptive
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Fig. 6. Dose–response curve of celecoxib in diabetic rats. Four weeks after

streptozotocin injection, animals were treated with vehicle or celecoxib (0.3–

30 mg/kg, ip). Inset shows time course for the highest dose of celecoxib used

(30 mg/kg). Data are presented as the area under the 50% withdrawal threshold

against time curve (AUC). Data are the mean � SEM of 6 rats. * Significantly different
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Fig. 7. Effect of naltrexone (NTX, 3 mg/kg, ip) on celecoxib (0.3–30 mg/kg, ip)-

induced antiallodynic activity in 4 weeks diabetic rats. Data are expressed as the

area under the 50% withdrawal threshold against time curve (AUC). Data are the

mean � SEM of 6 rats. * Significantly different from the vehicle (VEH) group (p < 0.05)

and # significantly different from the celecoxib group (p < 0.05), by two-way ANOVA

followed by the Student–Newman–Keuls test.
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withdrawal threshold against time curve (AUC). Data are the mean � SEM of 6 rats.
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antagonist naltrindole (3 mg/kg), but not the selective k opioid
receptor antagonist 50-guanidino naltrindole (1 mg/kg), fully
prevented (p < 0.05) the antiallodynic effect of celecoxib
(10 mg/kg) in 4 weeks diabetic rats (Fig. 8).

Discussion

Antihyperalgesic and antiallodynic effect of celecoxib in non-diabetic

and diabetic rats

In the present study, we observed that systemic administration
of celecoxib was able to prevent formalin-induced flinching
behavior during phase 2 in non-diabetic and 4 weeks diabetic
rats subjected to noxious stimulation with 0.5% formalin. These
data agree with previous studies showing that systemic celecoxib
diminishes formalin- or carrageenan-induced hyperalgesia in
non-diabetic rats and mice [40–45]. Furthermore, our study also
agree with data showing that celecoxib reduces hyperalgesia in
diabetic rats [12,15,20,29]. In contrast, others have reported that
subcutaneous injection of celecoxib (10 mg/kg) does not diminish
hyperalgesia in Sprague-Dawley rats 5 days after streptozotocin
[30]. Discrepancy could be due to the dose of celecoxib (10 vs.
30 mg/kg) or time to assess hyperalgesia or allodynia (5 days vs.
4 weeks). Besides the antihyperalgesic effect of celecoxib in non-
diabetic and diabetic rats, we found that celecoxib and meloxicam
were able to reverse streptozotocin-induced tactile allodynia in
4 weeks diabetic rats. As far as we can determine, it is the first
report showing that celecoxib and meloxicam diminish tactile
allodynia in diabetic rats. However, there is evidence that celecoxib
reduces tactile allodynia in rats subjected to the brachial plexus
avulsion or chronic constriction injury [19,46]. Thus, it seems that
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celecoxib reduces hyperalgesia and allodynia in diabetic and
neuropathic rats. Since celecoxib is a selective COX-2 inhibitor
[25,47], our data suggest that COX-2 may have a participation in
streptozotocin-induced hypersensitivity. Regarding this, there is
evidence that COX-2 expression is up-regulated in the spinal cord
of rats subjected to painful diabetic neuropathy while intrathecal
injection of COX inhibitors relieves nociception in those animals
[12,15,20,48]. However, some studies have reported that celecoxib
and meloxicam may modulate potassium [19,49,50] and sodium
[51–53] channels in a COX-2 independent manner. It is currently
accepted that blockade of sodium channels [54–56] as well as the
activation of potassium channels [19,56] leads to inhibition of
tactile allodynia in neuropathic pain models. Other studies have
suggested that intraplantar or icv celecoxib may indirectly
stimulate opioid receptors [26,28]. Thus, it is likely that besides
COX-2 inhibition other mechanisms could be pivotal for the
antinociceptive effect of celecoxib in diabetic rats in the present
study.

Effect of opioid receptor antagonists in celecoxib-induced

antinociception

We found that the non-selective opioid receptor antagonist
naltrexone diminished the anthyperalgesic and antiallodynic
effect of celecoxib in non-diabetic and diabetic rats suggesting
that the anthyperalgesic activity of celecoxib in diabetic rats
involves activation of opioid receptors. Our data agree with
previous studies showing a naltrexone-sensitive hypoalgesic effect
of celecoxib in non-diabetic rats [27,41]. Furthermore, the selective
d and k opioid receptor antagonists naltrindole and 50-guanidino
naltrindole, respectively, prevented celecoxib-induced antihyper-
algesic effects in diabetic rats. These data imply that celecoxib may
activate m, d and k opioid receptors to produce antihyperalgesia in
diabetic rats. Similar observations have been reported in non-
diabetic rats [26,28]. The fact that bestatin, an inhibitor of the
metabolism of endogenous opioid peptides, increases celecoxib
effect in non-diabetic rats [27] further reinforces our suggestion.

It is worthy to state that naltrexone was able to fully prevent the
antihyperalgesic effect of all doses of celecoxib. In contrast, this
antagonist fully prevented the antiallodynic effect of all doses of
celecoxib (0.3–10 mg/kg) with exception of the greatest dose used
(30 mg/kg). These results suggest that the anthyperalgesic effects
of celecoxib in diabetic rats depend on the activation of opioid
receptors while the antiallodynic effect of this drug (at the greatest
dose) results from activation of opioid receptors plus other
mechanisms. Interestingly, naltrexone and naltrindole fully pre-
vented the antihyperalgesic effect of celecoxib (10 mg/kg) while
50-guanidino naltrindole partially prevented this effect suggesting
the participation of m and d, and at lesser extent k, opioid
receptors. In marked contrast, naltrexone and naltrindole fully
prevented the antiallodynic activity of celecoxib while 50-
guanidino naltrindole did not affect such effect suggesting the
participation of m and d, but not k, opioid receptors. The
mechanisms of how celecoxib could activate opioid receptors
are at present unknown. It seems that celecoxib does not directly
bind opioid receptors, even though opioid receptor antagonists
blocked their effects. Thus, it is likely that celecoxib may release
endogenous opioids, which in turn could activate opioid receptors
[27] to produce antinociception. Regarding the site of action for
celecoxib, there is evidence that intrathecal injection of COX
inhibitors relieves nociception in diabetic animals [12,15,20,48].
Thus, the opioid receptors present in the dorsal horn could the
target of celecoxib in this study.

Recent studies have pointed that the main mechanism
responsible for the antiallodynic effects of celecoxib may not be
related to COX-2. This idea is based on the fact that (1) Selective
COX-2 inhibitors does not reverse established neuropathic pain in
rats [7,9,11,57,58]; (2) Celecoxib activates Kv7/M K+ channels and
reduces tactile allodynia in diabetic and neuropathic rats with a
potency and efficacy which is inversely related to their COX-2
inhibitory activity [19]; (3) Celecoxib activates the cannabinoid
CB1 receptors [26]; and (4) Celecoxib blockades sodium channels
[51–53,58] and this effect has been related to inhibition of tactile
allodynia [59]. Thus, activation of potassium channels, blockade of
sodium channels, activation of opioid receptors (this study; [27])
or a combination of these could be a more likely mechanism of
action for this drug in diabetic rats.

Final considerations and limitations

The relevance of formalin-induced hyperalgesia and allodynia
to the painful diabetic neuropathy in humans is unclear. However,
the fact that formalin injection leads to peripheral and central
hypersensitivity [60] suggest that formalin-induced hyperalgesia
and allodynia in diabetic animals could have a correlation with the
peripheral hyperexcitability that promotes pain in some diabetic
patients [61,62].

Our data suggest that, besides m and d opioid receptors,
celecoxib could stimulate Kv7/M K+ channels to produce its
antiallodynic effect. A limitation of our study was not to assess the
possible participation of Kv7/M K+ channels in diabetic rats.
Inhibition of COX-2 to explain the antiallodynic effect of celecoxib
is unlikely as other COX-2 inhibitors are unable to reduce
established neuropathic pain in rats [63,64] although this has
been disputed [14].

In conclusion, our results suggest that the antihyperalgesic and
antiallodynic activity of celecoxib in diabetic rats involve opioid
receptors.
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