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ABSTRACT

Cryptoprocta ferox, or fosa, is the largest living endemic carnivoran of Madagascar, with presumably high
dispersal capacity, and for which no broad scale phylogeographic study has been conducted to date.
This species is considered “Vulnerable” by the IUCN and the subject of a captive breeding program;
approximately 113 individuals are held in 57 zoos. The aim of this study was to examine the genetic
structure and polymorphism within both captive and wild populations, to determine possible lineage
variation, and to make recommendations for the captive breeding program. For this purpose, we analyzed
three mitochondrial (Cytochrome b, ND2, Control Region) and one nuclear (Beta-fibrinogen intron 7)
markers. The results showed an overall low level of genetic polymorphism, likely related to its dispersal
capacity, and some genetic structure possibly associated with geographical barriers, such as large rivers.
The genetic diversity of the captive population was greater than that of wild individuals included herein,
suggesting that the captive population encompasses a considerable proportion of the genetic diversity of
the species. This genetic variability is presumably the consequence of frequent imports of wild animals
into zoos from different areas of Madagascar, and subsequent exchanges between zoos. Based on the low
overall genetic polymorphism of the species and the absence of deeply divergent lineages, we recommend
the continued mixing of captive animals. Our results may help the management of the fosa in the wild
and in captivity, which is crucial for a species that faces many threats in the wild, in particular habitat
degradation and hunting pressure. In any case, enhanced protection of the species and its forested habitat
is urgently needed.

© 2018 Deutsche Gesellschaft fiir Sdugetierkunde. Published by Elsevier GmbH. All rights reserved.

Introduction

management units (Manel et al., 2003). Dispersal capacity is known
to have a major influence on population genetic structure and gene

Knowledge of population genetic structure for species under flow (Cushman and Lewis, 2010). Home range area, geographic
threat is crucial, allowing for the identification of conservation or range, and body mass are the most important predictors of dispersal
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capacity in mammals (Whitmee and Orme, 2013).
Cryptoprocta ferox Bennett, 1833 (family Eupleridae), also
known by the vernacular name fosa or fossa, is a solitary carnivo-
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Fig. 1. Distribution of Cryptoprocta ferox based on IUCN (2016) in grey, and from
Goodman (2013) (dots), and localities of samples (color dots) used in this study.
Green: Ankarafantsika; dark blue: Ambinda, Beanka Forest; white: Ambavaniasy;
pink: Ambadira; light blue: Kirindy (CNFEREF) Forest; yellow: Kirindy Mitea; red:
Ranomafana National Park. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).

close to the Malagasy mongooses (Galidiinae) or to the other Eup-
lerinae (falanouk and Malagasy civet; see Yoder et al., 2003; Poux
etal., 2005). The fosa is the largest living terrestrial predator on the
island, sexually dimorphic, with larger males in nature reaching a
body mass of over 10 kg. Its diet includes principally mammals, with
lemurs often representing the main prey (Rasoloarison et al., 1995;
Dollar et al., 2007; Goodman, 2009; Liithrs and Dammhahn, 2010;
Lithrs et al., 2013). Their hunting techniques are linked to particu-
lar anatomical features, including large footpads, semi-retractable
claws, and flexible ankles (Taylor, 1989; Veron, 1999), allowing
them to move and hunt with considerable dexterity both on the
ground and in trees.

This species has large home ranges of up to 26 km?2 and daily
movements of up to 5-7 km (Dollar, 1999; Hawkins, 2003; Liihrs
and Kappeler, 2013). Fosas occur at low densities in forested habi-

tats (Hawkins and Racey, 2005; Gerber et al., 2010), to which they
are generally restricted, and have the broadest distribution of any
Eupleridae (see Fig. 1). The fosa is classified as Vulnerable (IUCN,
2016) because of habitat loss, hunting, other forms of persecution,
and the effects of introduced carnivorans (Farris et al., 2015, 2016;
[UCN, 2016). Madagascar has indeed undergone a massive reduc-
tion of its forest cover over the last decades, and few large blocks
remain (Harper et al., 2007; Irwin et al., 2010). Human population
growth and socio-economic problems drive reduction and degra-
dation of natural habitat, and wildlife hunting is common (Irwin
etal., 2010). Even though some endemic mammal species may have
adapted to environmental degradation (e.g., members of the sub-
family Tenrecinae), large predators, such as the fosa, are affected
by habitat destruction and anthropogenic disturbance.

Molecular studies on the other Malagasy euplerids (Galidiinae
species: Bennett et al., 2009; Jansen Van Vuuren et al., 2012; Veron
et al., 2017; Euplerinae: Eupleres goudotii, Veron and Goodman,
2018) have shown some phylogeographic structure, particularly in
Galidia elegans. Given that C. ferox is a large animal with implicitly
higher dispersal capacity, it might be anticipated to exhibit little
phylogeographic structure and low genetic polymorphism. How-
ever, the genetic structure of this species has not been examined
across its range.

Captive breeding programs in zoological parks aim to support
the survival of endangered species (Ebenhard, 1995; Gippoliti,
2011), although the ultimate goals and efficiency of such pro-
grams have been debated (Snyder et al., 1996; McPhee, 2003;
Alroy, 2015). Captive breeding of Cryptoprocta started in 1974,
and has been notably successful; a total of 316 individuals have
been held in captivity and, in 2014, as reported in the studbook,
the living population was 136 individuals housed in 57 institu-
tions around the world (Reiter, 2015); more recent unpublished
information has the figure at 113 individuals (T. Tetzlaff, pers.
comm.). As early as 1954, this species was held in the Smithso-
nian National Zoological Park (NZP, Washington, D.C., USA), and
since 1985, exhibited at the San Diego Zoo (California, USA). In
Europe, it has been exhibited in the Basel Zoo (Switzerland) since
1972. The first captive breeding in Europe started in 1974 at the
Montpellier Zoo (France) (Albignac, 1975) and in North America in
1989 at San Diego Zoo. To date, only one zoological garden in Asia
holds this species (Ueno Zoological Gardens, Tokyo, Japan; Reiter,
2015). The Parc Zoologique et Botanique de Tsimbazaza (PBZT,
Antananarivo, Madagascar), has had successful captive breeding
since 2011 (Reiter, 2015).

According to the Cryptoprocta studbook (Reiter, 2015), wild
caught animals have been transferred to zoos around the world,
in 1954 and 1966 (NZP), 1967 (San Diego Zoo), 1972 (Basel;
Naples, USA), 1973 (Montpellier), 1980 (Johannesburg, South
Africa), 1981 (Basel), 1995 (private, then to Duisburg, Germany;
Tilburg, Netherlands), 1997 (San Antonio, USA), 1998 (Bester, South
Africa), 1999, 2000, and 2009 (PBZT), 2000 (Bester, South Africa;
Cedar Creek, USA), 2002 (Omaha, USA), and 2003 (Lubbock, USA).
Information on the original geographic origin on Madagascar of
these captive animals is unknown, with the exception of those
brought to Montpellier Zoo in 1973, which came from the east coast
(Albignac, 1975). Exchanges of animals between zoos in Mada-
gascar, Europe, and North America have been conducted to help
maintain the genetic diversity of the species (Reiter, 2015). No
molecular studies have investigated the genetic diversity of the
captive fosa population, specifically the presence of different lin-
eages, which is crucial for the correct management of a captive
breeding program.

There are several other reasons for the need of detailed analy-
ses of genetic divergence in populations of Cryptoprocta. A larger
species, C. spelea, is known to have occurred on the island and
its presumed extinction is thought to have taken place in the
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past few millennia (Goodman et al., 2004; Crowley, 2010; Meador
et al., 2017); however, it is in the realm of possibility that rem-
nant populations are still extant. Further, on the basis of local folk
taxonomy, it has been suggested that two forms of fosa occur on
the island - fosa mainty or “black Cryptoprocta” and fosa mena
or “reddish Cryptoprocta”; the latter form is said to be smaller
than the former (Decary, 1950). Hence, there are aspects that
potentially call into question the monotypic taxonomy of living
Cryptoprocta.

The purpose of this study was, therefore, to 1) evaluate
the genetic polymorphism and geographic structure of wild
fosa across its natural range, 2) identify potential geographic
lineages/conservation units, 3) identify lineages of the cap-
tive breeding animals, and 4) evaluate the degree of genetic
polymorphism of the captive population. For this purpose, we
analyzed genetic diversity of wild and captive individuals of
this species using sequences from three mitochondrial and one
nuclear markers. These data provide insight into the dispersal
capacity of this large predator, or other factors, such as envi-
ronmental, that may have influenced the geographic structure
and patterns of genetic polymorphism in this species. These
data may also reveal management units and help to detect
the presence of different lineages and genetic polymorphism in
captive populations. The results of this study should be useful
for the management of Cryptoprocta in the wild and captiv-
ity.

Material and methods
Sampling, extraction, PCR and sequencing

We analyzed 69 samples (blood, tissues, hair, teeth, and
dry tissues from museum specimens) of animals referred to as
Cryptoprocta ferox (Table 1, Fig. 1). DNA was isolated follow-
ing a cetyl trimethyl ammonium bromide (CTAB)-based protocol
(Winnepenninckx et al., 1993). For museum (dry tissue) and tooth
samples, we added dithiothreitol (DTT 1 M, ca 8-15 L per extract)
during tissue lysis to break up disulfide bonds, and we increased
the lysis time (up to 72 h).

We sequenced three mitochondrial fragments: Cytochrome b
(Cytb), NADH dehydrogenase subunit 2 (ND2), and the hypervari-
able region 1 of the Control Region (CR), using previously described
primers (Cytb: Veron and Heard, 2000; Veron et al., 2004, 2014;
ND2: Sorenson et al., 1999; CR: Palomares et al., 2002). To pro-
vide an evolutionary assessment independent from mitochondrial
markers, we also amplified the nuclear marker Beta-fibrinogen
intron 7 (FGB) using primers of Yu and Zhang (2005).

Polymerase chain reactions (PCRs) were performed as in Veron
et al. (2014), with annealing temperatures of 50°C for Cytb
and ND2, 61°C for CR, and 59°C for FGB. PCR products were
sent to Eurofins Genomics (Ebersberg, Germany) for purification
and sequencing (on Applied Biosystem® 3730XL DNA Analyzer).
Sequences were edited and aligned manually using Bioedit (version
7: Hall, 1999).

Phylogenetic and haplotypic network analyses

Phylogenetic analyses for each marker were performed using
Neighbor-Joining (NJ) and Maximum Likelihood (ML), as imple-
mented in MEGA6 (Tamura et al., 2013). We rooted the
phylogenetic analyses with representatives of the six other genera
of Eupleridae, and one Herpestidae, Urva fusca. For ML, the best-
fitting model was estimated prior to the analyses using MEGAG,
following the Akaike information criterion (AIC). The selected
model was implemented in the ML analyses and node robustness

Table 2
Summary of Cytb intraspecific distances within Eupleridae species (this study and
Veron et al., 2017).

Overall mean Range of pairwise N
intrageneric distance distances

Eupleres 0.4% 0-1.4% 10
Galidia 1.5% 0-3% 12
Galidictis 0.6% 0-1,2% 8
Mungotictis 0.3% 0-2% 56
Salanoia 0.5% 0-1,2% 10
Cryptoprocta 0.6% 0-2% 39

was assessed through 1000 bootstrap replicates. Trees were visu-
alized using FigTree 1.4.0 (Rambaut, 2012). We compared resulting
topologies and node support; nodes were considered as supported
when bootstrap values were >70%.

We employed DNAsp 5.10 (Librado and Rosas, 2009) for defin-
ing haplotypes. Network (v 4.6, www.fluxus-engineering.com) was
used to construct haplotype median-joining networks (Bandelt
et al., 1999) for each of the fragments. We computed genetic
distances (p-distances within and between groups) and genetic
diversity (haplotype and nucleotide diversity) using MEGA6 and
DNAsp5.10.

Pedigree of captive breeding populations

We used the information (parents and sex) of the 316 captive
Cryptoprocta ferox from the 2014 Studbook (Reiter, 2015) to recon-
struct the genealogy using Pedigraph 2.4 (Garbe and Da, 2008).

Results
Genetic analyses

A total of 71 individuals (our 69 samples presented herein and
two from GenBank, see Table 1) was analyzed for the four frag-
ments. New sequences have been deposited on GenBank (Accession
numbers: MG452145 to MG452301). A few samples, particularly
teeth and dried tissue from museum specimens, as well as some
poorly preserved hair samples, yielded no or partial sequences
(see Table 1). Only 17 samples yielded sequences from the three
mitochondrial regions, including those from fours zoos and three
localities of wild individuals, and only 14 of these yielded sequences
for the four fragments. However, the CR fragment was obtained for
most samples (65).

The Cytb fragment (length: 1140 bp; number of variable sites:
26; number of parsimony informative sites: 22; n=39) showed an
overall mean distance of 0.6% (see Table 2). The ML tree (model
GTR+G+], Fig. A 1) showed poor resolution and little structure,
apart for one clade including captive individuals in different zoos.

The CR fragment (length: 535 bp; number of variable sites: 47;
number of parsimony informative sites: 42; n=65) showed an over-
all mean distance of 2.1%. The ML tree (model HKY +G; Fig. A 2)
was better structured than that derived from Cytb, and composed
of two main clades: 1) an animal from Beanka Forest (central west,
near Ambinda), one individual from Ranomafana (central east), and
some zoo individuals; and 2) all the other wild and zoo individuals.

The ND2 fragment (length: 1044 bp; number of variable sites:
10; number of parsimony informative sites: 9; n=25) displayed an
overall meandistance: 0.2%. The ML tree (model GTR + G +1) showed
poor resolution, and only one small group of zoo individuals clus-
tered together.

The FGB fragment (length: 665 bp; number of variable sites: 1;
number of parsimony informative sites: 1; n=28) provided little
information, and the only variable site appeared to be heterozy-
gotic.
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Table 3

73

Genetic diversity estimates within Eupleridae species (this study and Veron et al., 2017). N: number of samples; n: number of sites used; h: number of haplotypes; Hd:
haplotype diversity, Pi: nucleotide diversity; S: number of polymorphic sites; and k: average number of nucleotide differences. For Cryptoprocta, data for Cytb are shown for
all individuals, and separately for wild individuals and zoo individuals; and also, the information is provided for a longer fragment (incomplete sequences deleted).

Cytb CR FGB
N n h Hd Pi S Kk N n h Hd Pi S Kk N n h Hd Pi S k
Eupleres 8 321 2 0.2500 0.00078 1 0.250 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
Galidia 12 253 5 0.8636 0.01270 7 3.212 13 401 11 0.9744 0.04572 60 18333 5 3381 0 0 0 0
Galidictis 8 1118 5 0.7857 0.01035 27 11.571 4 381 2 05000 000131 1 0.500 8 665 1 0 0 0 0
Mungotictis 56 1125 6 0.5130 0.00124 27 1394 51 502 19 0.8361 0.01806 39 9.065 46 589 4 03903 0.00007 1 0.043
Salanoia 10 248 3 0.7333 0.00565 3 1.400 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
Cryptoprocta-all 39 251 4 0.5857 0.00456 3 1.144 65 404 11 0.5890 0.01856 34 7498 28 587 1 0 0 0 o0
Cryptoprocta-wild 29 253 4 03128 0.00224 4 0.567 51 424 7 0.3490 0.00693 24 2444 ND ND ND ND ND ND ND
Cryptoprocta-zoos 11 593 3 0.6545 0.00368 5 2.182 14 436 5 0.7582 0.03685 34 16066 ND ND ND ND  ND ND ND
Cryptoprocta-Cytb-long 36 686 4 0.5317 0.00223 6 1.530
Cryptoprocta-wild-Cytb-long 27 1129 3 0.2108 0.00159 19 1.801
Within Cryptoprocta, the Cytb pairwise distances ranged from
H2 0.0 to 2.0% (Table 2). The Cytb distances between localities ranged

©-

H1

@

H4

@

H5

Fig. 2. Median joining network of Cytb haplotypes. The size of each circle is propor-
tional to the haplotype frequency; the shortest link corresponds to one mutation.
For color definitions, see Fig. 1.

Cytb haplotype networks were constructed using all sequences,
and then only the most complete sequences (longer analyzed frag-
ment). With all sequences (251 bp, n=39, see Table 3, Fig. 2, Fig. 2),
four Cytb haplotypes were obtained, each separated by one to two
mutations; H2 grouped wild individuals from several localities in
the southwest; H1 included wild individuals from the east and
north-west and from zoos in Paris and Montpellier; H4 comprised
a wild animal from the central west (Beanka Forest) and zoo indi-
viduals, and H3 clustered only captive individuals. When using a
longer fragment (686 bp, n=36), we also obtained four haplotypes,
separated by one to three mutations; H2 grouped several localities
from the southwest, while other haplotypes each comprised one
field locality and zoo samples.

We obtained 11 CR haplotypes (404 bp, n=65, see Table 3,
Fig. 3) separated by one to 32 mutations; they are grouped into
several haplogroups. One corresponded to the northwest region
(H1, H2, H5, H7), also including samples from zoos in Duisburg,
Paris, and Montpellier; one in the southwest region (H3, H4); one
in the center-west region (H10), and closely related individuals
(H11) from Duisburg zoo (Germany) and Parken zoo (Sweden). The
southeast individuals (H8, H9) formed two very distant haplotypes
(separated by 19 mutations).

We obtained three ND2 haplotypes (852 bp, n=25, see Table 3)
separated by one to six mutations. The main haplotype, H1, assem-
bled individuals from field localities and one zoo individual, while
other haplotypes grouped individuals from zoos.

Measures of polymorphism were calculated for each marker,
and separately for wild and zoo individuals (see Table 3). The
results showed low haplotype and nucleotide diversity for C
ferox (lower than other analyzed euplerids, with the exception
of Mungotictis), and a comparatively higher genetic diversity in
the captive Cryptoprocta (based on Cytb, n=11; and CR, n=14)
as compared to the wild animals (based on Cytb, n=29; and CR,
n=>51).

from 0.0 to 0.8% (Table A 1). The distances between the four
Cytb haplotypes obtained with all sequences (haplotypes based
on the 251 bp shared by all sequences) ranged from 0.2 to
0.8% (using the complete Cytb sequences, i.e. 1140bp). Within
Cryptoprocta, the CR pairwise distances ranged from 0.0 to 3.0%,
and the CR distances between localities ranged from 0.0 to
1.8%.

Genealogy of captive Cryptoprocta

The genealogy included 316 individuals, with information on
sex and parentage taken from the studbook (Reiter,2015). The pedi-
gree obtained was complex, with no isolated lineages. This result is
consistent with the numerous exchanges between zoos of breeding
Cryptoprocta (Fig. A 3; Reiter, 2015).

Discussion

Cryptoprocta ferox is the largest living terrestrial predator
on Madagascar, occurring across much of the island (Goodman,
2013), and with considerable dispersal capacity, particularly asso-
ciated with forest ecosystems (see Liihrs, 2012). Hence, as would
be anticipated based on these life-history traits and that for-
est cover was much more extensive on the island until recent
historical times, this species, based on samples from across a
good portion of its geographic range, including different for-
est biomes, shows low intraspecific genetic polymorphism (e.g.
Cytb: average: 0.6%, ranging from 0.0 to 2.0%, and almost no
polymorphism for FGB, which has been shown to vary within car-
nivoran species, see e.g. Patou et al., 2010; Veron et al., 20153,
2015b). The measured level of polymorphism was lower than
that of another relatively broadly distributed euplerid, Galidia ele-
gans (Cytb: average: 1.5%, range: 0-3%, Veron et al., 2017), also
sampled in different forest biomes. Galidia is distinctly smaller
in body size (655-965 g), largely forest-dwelling, and with more
limited dispersal capacity than Cryptoprocta (Goodman, 2009).
The level of genetic polymorphism in Cryptoprocta is similar to
those measured in the other euplerids (Veron et al., 2017; Veron
and Goodman, 2018), but in all cases these taxa are smaller in
body size than Cryptoprocta and with more restricted geographic
ranges.

A comparison of CR results of Cryptoprocta and Mungotictis
samples from the Toliara Province in the central west to south-
ern portions of the island (from this study; Jansen van Vuuren
et al,, 2012; Veron et al., 2017), illustrates the differences between
these two genera. For Mungotictis, we found strong polymor-
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H3

Fig. 3. Median joining network of CR haplotypes. The size of each circle is propor-
tional to the haplotype frequency; the shortest link corresponds to one mutation.
For color definitions, see Fig. 1.

phism (19 haplotypes for 51 individuals, and with 36 mutations
between the most far apart haplotypes). In contrast, for Crypto-
procta, we observed low levels of polymorphism (two haplotypes
for 42 individuals, separated only by one mutation; see Table A 2;
Fig. A 4). Although this difference could be associated with sam-
pling limitations, it nonetheless indicates important differences
in genetic variation patterns between these two monotypic gen-
era.

Mungotictis, which lives in small groups over a vital domain of
ca 12-50ha (see Razafimanantsoa, 2003; Schneider et al., 2016), is
strictly forest-dwelling, unknown in open habitats or heavily dis-

turbed forest zones, and has lower dispersal capacity with daily
travelled distances of 2200 m (Albignac, 1976; Razafimanantsoa,
2003; Goodman, 2009; Jansen Van Vuuren et al., 2012). In con-
trast, Cryptoprocta is larger, has larger home ranges (up to 26 km?)
and can cross long distances (e.g. 7.3km in 16 h, Hawkins, 2003),
particularly in forest ecosystems, and occasional forays into anthro-
pogenic habitats (Lithrs and Kappeler, 2013; Liihrs et al., 2013).
These aspects might help explain certain inferences associated
with dispersal in the fosa and population admixture illustrated
by the low mitochondrial DNA polymorphism, and the absence
of nuclear DNA polymorphism. The past few decades has seen
considerable levels of deforestation in the northern portion of
the Toliara Province, resulting in notable fragmentation of the
regional forests (Zinner et al., 2014). Given the measured levels
of polymorphism in these two genera of euplerids, this would
imply that, before habitat fragmentation, Cryptoprocta dispersed
across the landscape at a distinctly higher rate than Mungotic-
tis.

In Cryptoprocta, as in smaller euplerids, we obtained some
geographic structure, although the genetic distances remained
quite low between regions in the fosa. Individuals from the
northwest (Ankarafantsika) and east (Ambavaniasy), distinctly dif-
ferent biomes, shared the same Cytb haplotypes. This could be
explained by the fact that the elevational range of this genus
spans from near sea-level to about 2500 (Goodman, 2013),
and, hence, dispersal over the principal north-south aligned
mountain range that bisects the island would presumably not
pose a barrier, specifically when forest cover was more exten-
sive.

As expected, the sampled populations from the central west,
from a limited geographical areas (Ambadira, Kirindy [CNFEREF]
Forest, and Kirindy Mitea), were closely related, and shared the
same Cytb haplotypes or belong to the same CR haplogroups.
Despite the limited geographical distance to the above named
populations (from around 220 km to 340 km), the individual from
the Beanka Forest, a bit further north, was genetically very dis-
tinct (15 mutations between their CR haplotypes; 2 mutations
between their Cytb haplotypes). This could be explained by the
separation of these areas by the large and meandering Tsiribi-
hina River, which has its headwaters in the eastern portion of
the island, and could limit Cryptoprocta dispersal between the
two regions. Watersheds are known to act as important barriers
for other terrestrial vertebrates (see e.g. Goodman and Ganzhorn,
2004; Wilmé et al., 2006). Surprisingly, the two individuals from
Ranomafana National Park (center-southeast) were quite distant
from each other. These results are difficult to explain, but the
genetic data from this site are limited (only CR sequences) due
to degraded DNA available from these poorly preserved sam-
ples.

One important result of this study is the higher genetic
diversity of captive Cryptoprocta as compared to wild animals.
This can be partially accounted for by certain portions of the
island not being represented within the samples used in this
study. In turn, the higher genetic diversity of captive Crypto-
procta can be explained by the regular sourcing of wild animals
into captivity until 2009, based on the studbook (Reiter, 2015).
Also, there is good representation of wild lineages found in
the current study within zoo populations, as shown by the
shared haplotypes between natural populations and animals in
zoos. Moreover, we found one zoo lineage that was not repre-
sented in the sampled wild populations. Similarly, information
from 26 microsatellite loci of 28 fosas from nine European zoos
suggested good levels of genetic polymorphism (Vogler et al.,
2009).

The genealogy obtained from the studbook provides some
background on the parentage of captive born animals, but given
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the lack of information on the origin of wild animals brought
into captivity, little can be gleaned on the associated phylo-
geography of the recuperated lineages. The one exception is the
individuals sent to the Montpellier zoo in 1973, which were
apparently from the northeast coast (Albignac, 1975). These ani-
mals were in fact genetically close to wild individuals from
the northwest (Ankarafantsika), and not from the northeast as
would have been expected based on their origin. However, our
results also showed that wild individuals from east and the
west (Ankarafantsika and Ambavaniasy) were quite close to each
other.

The genetic diversity and presence of different lineages in Cryp-
toprocta held in zoos bodes well for the captive breeding program.
Most importantly, data reported herein indicate that further indi-
viduals from the wild would not be required for reinforcing or
increasing genetic diversity of the zoo populations. As we found
no evidence that wild populations contain strongly divergent lin-
eages, we suggest that there is no evidence for and the need to
recognize separate conservation units (Manel et al., 2003). As illus-
trated by our analyses, zoo populations have a strongly mixed
pedigree.

Further, based on the absence of strongly divergent lineages, no
evidence of extant populations of C. spelea was found, nor strong
genetic differences that might align with variable morphs or taxa
based on folk taxonomy as circumscribed by the fosa mainty and
fosa mena (Decary, 1950).

As the fosa does not commonly occur in human-dominated
landscapes (Logan et al., 2015), conservation programs associated
with this species should focus on forest habitat protection (see e.g.
Kremen et al., 2008) and maintain or reestablish forest corridors
linking forest fragments, as proposed for other organisms (see e.g.
Schwitzer et al., 2013; Ramiadantsoa et al., 2015). Also, actions
should be conducted to reduce human hunting pressure through
different types of rural public education programs, and to manage
invasive carnivorans that are known to affect the density of native
species (Farris et al., 2015, 2016, 2017) and introduce different dis-
eases (Pomerantz et al., 2016; Rasambainarivo and Goodman, in
press).

While this current study provides important information on
patterns of genetic variability in Cryptoprocta, additional genetic
studies on wild populations are urgently needed. New samples
can be obtained through non-invasive sampling techniques or
trapping-releasing wild animals; in the latter case, this needs
to be conducted by experienced field staff. In particular, sam-
ples are required from zones not covered in the current study.
These new analyses should add further insights, specifically to
improve geographic coverage, detect other lineages, and conduct
finer scale population genetic studies. In particular, it would be
crucial to test if habitat fragmentation is affecting the genetic
diversity and structure of the species (see e.g. Rivera-Ortiz et al.,
2015).
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