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a  b  s  t  r a  c t

Conservation  and management  of environmentally  suitable  areas, that support  survival  and  persistence

of  species,  are  keys  to  protect  wildlife  in their natural  habitat. Populations  of Himalayan musk  deer

Moschus  leucogaster, an  endemic  species  in  Asia, are  listed as  endangered in the  IUCN  red  list, requiring

immediate  conservation actions before  their  extinction  in the wild.  In order to model  and  map  the  current

and  future  (under  projected  climate change  settings)  climatically-suitable  area  for  the  species,  Maxent

modeling  technique, that  requires  presence-only  records,  was  employed.  As predictors,  we  extracted  19

bioclimatic  variables from  ‘WorldClim’  database  with  a  ∼1 km  spatial resolution  and  used  10 uncorre-

lated  bioclimatic  variables  as inputs. As indicated  by  a  high  area under  ROC  curve (AUC) value (>0.9),

Maxent  well  performed and  predicted  climatically-suitable  habitat for  the  species  along  the Hindukush

Himalaya,  where  the  species  is known  to occur.  Annual  mean  temperature  appeared to most  influence

the  distribution  of potential  habitat for  the  species.  An  expansion of species’  habitat  was noticed  in the

Indian  and  Tibetan  part  of species  range,  suggesting  a potential  future  effect  of climate  change  on the

species  distribution.  The findings  of this study  could assist  wildlife managers  in devising  conservation

plans for  the  current  and future  conservation of the  species  in the  context  of climate  change. This  is  the

first  study  to model  and map  the  current  and  future  distribution of the  species  in  its range.

©  2017 Deutsche  Gesellschaft  für  Säugetierkunde.  Published  by  Elsevier  GmbH.  All rights  reserved.

Introduction

With different levels of biodiversity increasingly being endan-

gered or threatened with extinction by  manifold factors (both

deterministic and stochastic), one of the biggest challenge con-

servationists face today is  to turn this tide and maintain integrity

and functionality of ecosystems (Millenium Ecosystem Assessment,

2005). This challenge has been further amplified by  effects of cli-

mate change with an array of varying consequences over space and

time (Parmesan and Yohe, 2003; Thomas et al., 2004; van Gils et al.,

2016). Numerous conservation strategies, varying with type, scale,

and magnitude of threats, have been developed by  conservation-

ists (Brooks et  al., 2006). Within these contexts, species distribution

models (SDMs) have been widely developed to estimate, predict,
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and map  species geographic ranges over time (Elith and Leathwick,

2009).

Various algorithms, with increasing computational capabilities,

have been devised for SDMs and their use vary with objectives and

available data (Guisan and Zimmermann, 2000; Elith and Graham,

2009). These techniques establish relationships between sites of

known species occurrences and environmental factors that are pre-

sumed to affect their presences or absences. These relationships

allow to  interpolate and extrapolate geographic distributions in

novel areas and/or under a changed scenario setting (for exam-

ple, scenarios predicted under climate change). Among the SDMs,

Maximum Entropy Modeling (Maxent) technique, that requires

presence-only records (i.e., latitude/longitude of  species occur-

rence points) of the species, is  being widely used for estimation

and prediction of a species’ geographical range (Phillips et al., 2006).

Moreover, increasing availabilities of  species occurrence data have

extended its application in conservation biogeography, especially

regarding rare and declining species with incomplete information

(Phillips et al., 2006). Consequently, Maxent appear as important

http://dx.doi.org/10.1016/j.mambio.2017.02.007
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tool to gain insights into current ranges and potential range-shifts

due to climate change effects over time (see Phillips et al., 2006;

Franklin, 2010).

A  rare species whose distribution has not yet been modeled, is

the Himalayan musk deer  Himalayan musk (Moschus leucogaster).

This species inhabits high alpine environments of Bhutan, north-

ern India, Pakistan, Nepal, and China (Green, 1986; Grubb, 2005;

Yang et al., 2003); i.e., high altitude region along the Hindukush

Himalaya. This species is also treated as a subspecies of alpine musk

deer (Moschus chrysogaster). Actually literatures indicate that both

M. leucogaster and M.  chrysogaster are interchangeably treated as

Himalayan musk deer and/or alpine musk deer in these regions.

However, range map  from IUCN red list specifies that the musk

deer species in  this range is Himalayan musk deer (i.e., M. leuco-

gaster). Hence, the species of concern in  this study is treated as M.

leucogaster. Populations of musk deer are declining primarily due

to habitat loss and overexploitation (Yang et al.,  2003; Timmins

and Duckworth, 2015). Consequently, the species have been listed

in Appendix A  of CITES and as endangered in  red list of Interna-

tional Union for Conservation of Nature (IUCN). However, studies

of the species are so  far scattered, largely local and confined to small

geographic scale. Hence, the identification of climatically-suitable

areas  for the survival and persistence of the species could poten-

tially aid  in  the current and future conservation of  the species.

The current study is  directed towards modeling and mapping,

for the first time, the current distributional range of the species,

and attempts to  predict the future range under projected climate

change scenario, using a  Maxent model. In addition, it  aims to pro-

vide qualitative insights into the climatic variables that potentially

affect the habitat distribution of the species.

Material and methods

Eighty-five  unique geographic coordinates (i.e. Lati-

tude/Longitude) of the species’ occurrences were used in the

study. These geographic coordinates represent presence locations

of the species and were recorded based on sightings of fecal pellets

of the species. Musk deer have easily recognizable ‘latrine-sites’

(with heap of fecal pellets) that make recording of the species’

presence easy. These data were collected from randomly sur-

veyed potential habitat of the species in  Bhutan, Nepal, India,

and Pakistan in  between 2013 and 2015; hence the occurrence

points are from the geographic range of the species along the

Hindukush Himalaya from Pakistan to Bhutan (for details about

the area and data collection see, Abbas et al., 2015; Ilyas, 2014;

Khadka and James, 2016). Nineteen bioclimatic variables with a

30 arc-second spatial resolution (approximately 1  km resolution)

for two time periods: ‘current’ and ‘future’ (for the year 2050),

were used as predictors and extracted from the ‘WorldClim’

database (url: worldclim.org; Hijmans et al., 2005). The database

consists of  projected climate for the years 2050 and 2070, with

four different scenarios of greenhouse gas trajectories i.e., Repre-

sentative Concentration Pathways (RCPs). Because of  varying level

of greenhouse gas concentration trajectories envisioned for the

future and their inherent effect on climate, climatic surfaces data

for a modest scenario i.e., RCP6.0 averaged from three randomly

selected General Circulation Models (GCM: BCC-CSM1-1, CCSM4,

GISS-E2-R) for the year 2050 were used for projecting the future

geographic range of the species.

Pearson’s correlation coefficients among the current nine-

teen bioclimatic variables in the database were determined (see

Appendix), and when the correlation coefficient between the vari-

ables was found to be significant (i.e. r ≥ 0.9, p <  0.01), only one

variable from a set of highly correlated variables was used to

reduce the problems due to multi-collinearity (Dormann et al.,

2013).  Consequently, of  the 19  bioclimatic variables extracted from

‘WorldClim’, 10 bioclimatic variables i.e. annual mean temperature,

mean diurnal range, isothermality, temperature seasonality, mean

temperature of wettest quarter, annual precipitation, precipitation

of driest month, precipitation seasonality, precipitation of warmest

quarter, and precipitation of coldest quarter were used as inputs for

the model. Since the ecology of the species is largely unknown, we

used all the 10 uncorrelated variables as inputs rather than filtering

them out to variables that otherwise would be considerably linked

to the survival of the species. Moreover, our major focus was  to

map climatically-suitable geographic area (i.e., prediction) rather

than description of the process (i.e., explanation). We  used Maxent

(version 3.3.3k; http://www.cs.princeton.edu/∼schapire/maxent/;

Phillips et al., 2006) as a modeling platform (with auto features,

5000 iterations and default settings). For background samples (i.e.

pseudo-absences), to estimate the bioclimatic layers across the

entire extent, Maxent was  made to select only the countries with

presence locations (i.e., Bhutan, Nepal, India and Pakistan). In so

doing, we limited the pseudo-absences to areas that were surveyed

for the species, potentially providing the background samples with

the same bias as presence locations (Elith et al.,  2011).

Model was developed in Maxent using the occurrence points (i.e.

latitude and longitude) and current climatic variables and was pro-

jected for the future climatic variables. The model was  replicated

100 times in  order to get an average estimate (since machine learn-

ing techniques are notorious for their inability to produce unique

solutions), and hence the output is an average of  100 replications.

Maxent produces a continuous raster map  of habitat suitability

with values ranging from 0 to 1 (0  indicating a non-suitability,

1 indicating a  perfect suitability). Continuous map  produced by

Maxent was exported to  ArcGIS (version: 10.4.1). A binary map  of

climatically-suitable and unsuitable geographical areas was  cre-

ated in ArcMap using ‘maximum test sensitivity plus specificity

logistic threshold’ in the Maxent output file called ‘maxentResults’.

This threshold was  found to  maximize the sum of sensitivity and

specificity and hence was  considered to perform as  well as the

‘presence/absence’ models (see Liu et al., 2016). Performance of

the model was  evaluated using a  metric called ‘Area Under the ROC

(receiver operating characteristic) curve’ or ‘AUC’ (Swets, 1988) and

test omission error (i.e., fraction of  presences predicted absent). The

AUC metric, whose value ranges between 0 and 1,  is  a threshold-

independent measure of a  model’s ability to  discriminate presence

from absence (or background). An  AUC value of 0.5 indicates that

the model performance is not  better than random, while value >0.9

indicates high model performance (Peterson et al., 2011). ‘Subsam-

pling’ procedure was  executed in Maxent for model validation.

Seventy percent of the occurrences data were used to train the

model while the remaining 30 percent were used to  test it. The

relative contribution of different bioclimatic predictors to  the dis-

tribution model was evaluated using percent variable contribution

and jackknife procedures in Maxent (Elith et al., 2011).

Results

Average test AUC value for the model was  0.98 (±0.003 SD)  and

average training AUC value was 0.992 (±0.0007 SD). Also, aver-

age test omission error for the threshold used was 0.01 indicating

a good performance of the model. Annual mean temperature was

the strongest predictor of musk deer habitat distribution with 71.4%

contribution. Similarly, the other climatic variables that were noted

important for musk deer habitat distribution were precipitation

seasonality (i.e., coefficient of variation), temperature seasonality

(SD*100), and annual precipitation. Annual mean temperature of

∼6◦ C, precipitation seasonality of ∼68, temperature seasonality of

∼5690, and annual precipitation of ∼721 mm were noted as the
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Table 1
Relative contribution of different bioclimatic variables to Maxent model for climatically-suitable habitat distribution of  Himalayan musk deer. Percent contribution values

are  averaged over 100 replicate runs. General statistics show the bioclimatic profile of the species. Only the variables with contribution >1% are shown.

Variable Percent Contribution Mean Standard Deviation

Annual Mean Temperature (◦C) 71.4 6.18 0.28

Precipitation seasonality (CV) 7.6 68.2 0.8

Temperature seasonality (SD × 100) 5.5 5690 179

Annual precipitation (mm)  5.3 721 52

Precipitation of  Coldest Quarter (mm)  4 124.6 10.3

Mean Diurnal Range (◦C) (Mean of monthly (max temp − min  temp)) 2.5 10.5 0.09

Precipitation of  Driest Month (mm) 1.2  9.9 0.91

Fig. 1. Relationship between annual mean temperature and probability of presence of musk deer. The  curve depicts the mean (±SD) response calculated over  100 replicates.

Fig. 2. Relationship between precipitation seasonality and probability of presence of musk deer. The curve depicts the mean (±SD) response calculated over 100 replicates.

optimal bioclimatic conditions for musk deer’s habitat distribu-

tion (Table 1;  Figs. 1–4). Jackknife results showed ‘annual mean

temperature’ as  the most useful information by itself, and hav-

ing the most information that is  not  present in other variables,

for model predictability (i.e., with highest regularized training gain

and AUC value). Model predictions matched the collected occur-

rences  of musk deer in  Bhutan, Nepal, India, and Pakistan and also

showed potential geographic range in China (Fig. 5  and 6). Future

geographic distribution of  the species is predicted to  expand mostly

in the Indian and Tibetan region of China (Fig. 6).
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Fig. 3.  Relationship between temperature seasonality and probability of presence of musk deer. The curve depicts the mean (±SD) response calculated over 100 replicates.

Fig. 4.  Relationship between annual precipitation and probability of presence of musk deer. The curve depicts the mean (±SD) response calculated over 100 replicates.

Discussion

This is  the first study to model and map  the potential current and

future distribution of climatically-suitable habitat of Himalayan

musk deer in  its whole range. Maxent accurately predicted the cur-

rently available occurrences; hence the maps created maps could

be used to design detailed surveys to explore populations of the

species in the predicted geographic area. It appears that the species

has a narrowly-distributed climatically-suitable habitat, along the

Hindukush Himalaya, with majority of climatically-suitable cur-

rent habitat in Indian and the Tibetan region of species’ range. The

current distribution of climatically-suitable area, as predicted from

the study, did not completely match the expert-based IUCN range

map of the species (red contours in  Figs. 5 and 6). Yet, notable is

the potential habitat range in Pakistan and Tibetan region of China

which is not encompassed in  the IUCN range map  although the

species have been recorded in those areas (see  Yang et al., 2003;

Abbas et al.,  2015). Hence, the current distribution map  from the

study offers an avenue for further exploration of the species in the

area predicted suitable in  the study. We believe that the current dis-

tribution map, as predicted from this study, meets the necessity of

identifying potential areas that demand conservation concern. We

recommend the protection and management of potentially suitable

key areas predicted by the model even if the species don’t currently

occur there. This might require cooperation between countries and

the design of a  joint, international management plan.

The  expansion of climatically-suitable habitat in the future in

Indian and Tibetan part of the species’ range suggest a potential

reshuffling of species’ distribution in  the future (see Parmesan and

Yohe, 2003); presumably to track the optimum or adaptive cli-

matic niches and keep pace with the effects of changing climate for

survival. This is in  accordance with the theoretical predictions of cli-

mate change on a wide variety of taxa and climates (Hersteinsson

and Macdonald, 1992; Pounds et al., 1999; Warren et al., 2001;

Parmesan and Yohe, 2003). The geographic range of the species is

distributed in  between the latitudinal range of 300–380 N (i.e. in
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Fig. 5. Current climatically-suitable area for Himalayan musk deer as determined by the model. Yellow boundary line shows the geographical boundary of conflict. (For

interpretation of  the references to  color in this figure legend, the reader is  referred to the web  version of this article.)

temperate areas), where the magnitude of climate change effects

is predicted to  be greater (Parmesan, 2007), because of projected

relatively high rise in  temperature and variation in precipitation

patterns at those latitudes and altitudes (IPCC, 1996; Hughes, 2000)

(for maps showing the evolution of climatic conditions between

the current state and 2050 in the study area, see Appendix). There-

fore, effects of climate change on  the species are inevitable, since

a narrow range of annual mean temperature, low precipitation

seasonality, and low annual precipitation appear to be the major

determinants to its habitat distribution. As for other taxa, tem-

perature has been found to be a  major component structuring

distribution of Himalayan species (Elsen et  al., 2017). However, how

and to what extent these climatic changes will affect the species

cannot be explained with certainty primarily because of knowledge

gap and incomplete information about the ecology of the species.

Yet we can hypothesize that the effects would be direct via  physio-

logical/phenological effects and indirect via cascading effects on

resource bases or both. Since evidences suggest that temperate

species have relatively broader thermal tolerance (Chan et al., 2016;

but see Elsen et al., 2017), the latter hypothesis however would

be more reasonable to test in  the future studies to better under-

stand the effects of climate change. Nevertheless, design of new

conservation areas and expansion of existing conservation areas

towards the predicted potentially suitable geographic area could

aid in conservation of the species.

It is noteworthy that climatic variables are not the sole fac-

tors driving species distribution over space, although their crucial

role in determining the geographic range of many species is undis-

putable  (Andrewartha and Birch, 1954; IPCC, 1996; Venier et al.,

1999). Other ecological factors like dispersal pattern and capac-

ity, resource distribution and availability, ecological interactions,

habitat selection etc. deserve well considerations, and better inte-

grations within SDMs to  predict a better picture of their distribution

over space (Guisan and Thuiller, 2005; Elith and Leathwick, 2009).

Incomplete availabilities of such data, to fully integrate the ecolog-

ical theories of species into modeling process, have in  part added

some limitations to this study. Other factors that contribute to

the uncertainties and limitations of SDMs are; sample size, sam-

pling bias, spatial resolution of predictors including their choices,

multi-collinearity; that deserve well considerations during model-

ing process (Stockwell and Peterson, 2002; Kadmon et al., 2004;

Segurado et al., 2006). Maxent, however, has been invoked to

perform considerably well with small sample sizes as well with

optimal predictive power (see Wisz et al., 2008). Although we tried

to deal with issues of multi-collinearity (by dropping highly cor-

related variables) and background sampling bias (by picking the

background samples from the area of  occurrences records only),

yet we acknowledge the possible uncertainties in  our findings,

due in part to  other potential issues (for example, biotic interac-

tions, dispersal capacity, phenology) that could not be dealt and/or

integrated into the modeling process. Inclusion of biologically rel-

evant factors in modeling process in  future would further refine

the predicted distribution map of environmentally suitable habi-

tat for the species. Yet, the predicted suitable area from the study

is climatically-conducive to the survival of the species; hence the
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Fig. 6. Future climatically-suitable area for Himalayan musk deer as predicted by the model along with the expansion and contraction of area under projected climate change.

area deserves considerable concern for conservation of the species

in the context of climate change.

SDMs are increasingly and diversely used in conservation bio-

geography with relatively good success (Austin et al., 1990; Elith

and Burgman, 2002; Ferrier, 2002). Of notable beauty of  these tech-

niques is an easily understandable and interpretable output, in

the form of binary maps (i.e. habitat-suitability maps), required

by wildlife managers for conservation actions and risk analyses.

Although interpreting habitat and its suitability from patterns of

occurrence can sometimes be misleading (van Horne, 1983), which

is usually the case with high population size; yet for a small popu-

lation size of Himalayan musk deer, it is unlikely to misinform the

suitability of habitat by the occurrence points of the species used

here. This, however, requires exploration of musk deer populations

in the predicted geographical space for validity. It is  expected that

the findings of the current study could assist wildlife managers and

other stakeholders in  conservation planning and sound manage-

ment decisions of,  declining and threatened, Himalayan musk deer

in the context of climate change.
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