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A multi-arm response-adaptive allocation design is developed for circular treatment
outcomes. Several exact and asymptotic properties of the design are studied. Stage-wise
treatment selection procedures based on the proposed response-adaptive design are
also suggested to exclude the worse performing treatment(s) at earlier stages. Detailed
simulation study is carried out to evaluate the proposed selection procedures. The
applicability of the proposed methodologies is illustrated through a real clinical trial
data on cataract surgery.
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1. Introduction

The primary concern of any clinical trial is to maintain ethics while allocating subjects to different treatments under
study especially when human lives are involved as experimental units. A response adaptive design uses the available
allocation and response data and assigns a greater fraction of subjects to the treatment performing better. But the myopic
strategy of favouring the better performing treatment causes imbalance in treatment allocation and eventually leads
to a loss in power of a concerned statistical test. A loss in power not only reduces the treatment effect discrimination
ability but also increases the trial size. Increased trial size increases the number of assignments to the inferior treatments
and hence reduces the ethical impact. Therefore, a reasonable allocation design must consider ethics (i.e. favouring
the better treatment for further allocation) as well as efficiency (i.e. high discrimination ability to identify a departure
from the equality of treatment effects). A detailed description of related aspects can be found in the book length
treatments (Atkinson & Biswas, 2014; Baldi Antognini & Giovagnoli, 2015)

However, most of the response adaptive designs, available in literature, are developed for two treatment trials and
only a few are available for multiple treatments. Further, almost all the available response-adaptive designs are either
for binary, or for conventional continuous (often termed ‘‘linear’’) treatment responses. But angular responses are natural
outcome in the context of several biomedical studies (e.g. in orthopaedics and ophthalmology). The usual (i.e. linear)
continuous probability distributions fail to model circular data due to their bounded domain and periodicity and hence
makes the analysis of circular data significantly different from that of linear data (Fisher, 1993; Jammalamadaka &
SenGupta, 2001). Naturally, applying an allocation design for linear continuous responses circular response trials, is not
only inappropriate but may also lead to ambiguity.

Despite several occurrences of circular data in several clinical trials, there is scanty literature on response-adaptive
allocation designs involving circular responses. Considering both the ethical and efficiency issues within the same
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framework, a two treatment allocation design for circular response, perhaps the earliest in literature is found in
Biswas, Dutta, Laha, and Bakshi (2015). Specifically, the allocation design was developed by minimizing the total number
of failures subject to a fixed precision, where circular responses are categorized as success or failure by means of a
relevant cut off. But setting a cut off often incorporates subjectivity and discards information. Consequently, in a later
work Biswas, Bhattacharya, and Mukherjee (2017) introduced the concept of a ‘‘better treatment’’ by avoiding any cut
off based categorization for treatments producing circular outcomes. The definition of better treatment depends on
the circular distance from a preferred direction; the lower is the distance, the better the treatment and hence avoids
subjectivity. The allocation design of Biswas et al. (2017) is invariant to the choice of circular distance function and hence,
works well for any circular response distribution.

In the current work, extending the notion of a ‘‘better treatment’’ to multiple treatment scenario, we introduce the
concept of a ‘‘most promising’’ treatment and suggest an allocation function for multi treatment circular responses trials
in Section 2. The response adaptive implementation of the derived allocation function in real situations together with
related large sample result is discussed in Section 3. Section 4 explores the theoretical as well as empirical properties
of the proposed design in extensive detail. Redesigning results of a real clinical trial adopting the proposed allocation is
also added in Section 4. Again in multi-treatment trials, often the goal is to select the treatment arm which outperforms
other treatment arms. However with multiple treatments, treatment selection procedures are available for binary and
continuous responses (Atkinson & Biswas, 2014; Bandyopadhyay & Biswas, 1999, 2002) only. Therefore, in Section 5, we
suggest and evaluate a treatment selection procedure using response adaptive randomization in stages, in which the less
promising treatments are dropped in stages until a single treatment emerges as the winner. Finally, Section 6 summarizes
the findings of the current work with a discussion on related and upcoming issues.

2. The proposed allocation designs

Consider a clinical trial with t (> 2) competing treatments. Let Yk denote a typical response from a patient treated
by the kth treatment, where the response is circular in nature and hence has a distribution belonging to some circular
family of distributions, k = 1,2,..t. As circular data is periodic in nature, such observations cannot be compared with each
other numerically. Therefore, if the response is circular, a treatment producing conventionally higher (or lower) response
cannot be declared as ‘‘promising’’. In fact, fallacious conclusions may be reached if such responses are analysed using
existing methods. To circumvent this problem, the comparison among circular treatment responses can be made with
respect to a reference point, called the preferred direction. A preferred direction is often set by the practitioners according
to the requirement of the study. For example, in medical studies related to shoulder movement, it is usually seen that
a perfect shoulder allows 90◦ of internal rotation (Jain, Wilcox III, Katz, & Higgins, 2013), and the preferred direction
should be taken as 90◦ in that context. Intuitively, a treatment is promising if it produces responses near the preferred
direction.

Specifically, if μ0 is the known preferred direction for a certain clinical trial, a response closer to μ0 is considered to
be the desired one. Naturally, the quality of a response is determined by the distance from the preferred direction. Since
the circular responses are not just numerical values but directions, simple subtraction of a response from the preferred
value would not give a meaningful distance measure . We, therefore, use a circular distance measure (Jammalamadaka &
SenGupta, 2001) defined by smaller of the two arc-lengths between the preferred angle and the response angle along the
circumference of a unit circle. Analytically, the circular distance between an arbitrary circular response ψ and preferred
direction μ0 can be expressed as d(ψ,μ0) = min(ψ − μ0, 2π − ψ − μ0) (see, Jammalamadaka & SenGupta, 2001, for
example). The distance d is a linear quantity having no periodicity and hence can be ordered conventionally.

Thus based on the distance criterion ‘‘d’’, for two treatments (1 and 2), treatment 1 is more promising than treatment
2 if we have d(Y1, μ0) < d(Y2, μ0) stochastically. Extending the idea for multiple treatments, kth treatment can
be considered as most promising if the corresponding distance metric d(Yk, μ0) is stochastically the least, that is, if
d(Yk, μ0) < min1≤j(�=k)≤td(Yj, μ0) stochastically. On the contrary, treatment k is considered to be least promising if d(Yk, μ0)
is stochastically the highest.

Being consistent with the notion of a promising treatment, we, therefore suggest the allocation probability for
treatment k as,

ρk = P
{
d(Yk, μ0) < min

1≤j(�=k)≤t
d(Yj, μ0)

}
, k = 1, 2, ..t.

Naturally,
∑t

k=1 ρk = 1 and if the treatments are equally promising or equivalently if d(Yk, μ0), k = 1, 2, . . . , t are
independently and identically distributed then ρk = 1

t , for every k. Moreover, if treatment k is most promising, stochastic
ordering ensures ρk >

1
t , k = 1, 2, ..t .. Hence the suggested allocation function ρk is capable of assigning larger number of

subjects to the better performing treatment arm. Further, it is worth mentioning that the criterion of promising treatment
remains valid for any circular response distribution. However, for the rest of the development, we set μ0 at 0◦ and derive
the analytic expression of ρk in the following lemma, the proof of which given in the Appendix.
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Lemma. If Fj and fj denote respectively the cumulative distribution function and density function corresponding to a circular
random variable Yj, representing response from the jth treatment arm, j = 1, 2, . . . , t, then

ρk =
∫ π

0

t∏
j(�=k)=1

Gj(y)fYk (y)dy−
∫ 2π

π

t∏
j(�=k)=1

Gj(y)fYk (y)dy,

where Gj(y) = FYj (2π − y)− FYj (y).

However, d∗(ψ,μ0) = 1 − cos(ψ − μ0) is often used as an alternative distance measure between ψ and μ0
(Jammalamadaka & SenGupta, 2001, p. 16). Interestingly, d(Yj, 0) > d(Yk, 0) is equivalent to d∗(Yj, 0) > d∗(Yk, 0) for
any (Yj, Yk), and hence, we essentially get the same allocation function even if the alternative distance metric d∗ is used.
Thus, without any loss of generality, we continue with the former distance metric assuming μ0 = 0◦.

3. Implementation of the allocation design in practice

The allocation function ρk, defined in the earlier section, involves unknown parameters of the response distribution.
If θk is the d-dimensional parameter vector corresponding to the kth treatment response variable Yk, then the allocation
function can be expressed as, ρk = ρk(θ), where θ = (θ1, θ2, . . . , θt )T . As data is obtained in each stage of the trial,
sequentially updated parameter estimates are plugged into the allocation function under consideration to determine the
allocation probabilities of the next subject. However, initially each of the treatment arms is assigned with n0 subjects and
parameters are estimated from the available data. Then the response-adaptive strategy starts from the (tn0+1)th subject
onwards.

Let δk,i be the treatment indicator taking the values 1 or 0 according to as the ith subject is assigned treatment k or not,
and Fi be the sigma algebra generated by the allocation-and-response data obtained up to and including the ith subject.
Then, the (i+ 1)st subject is assigned to treatment k with probability

P(δk,i+1|Fi) = ρk (̂θ
(i)
),

where ρk (̂θ
(i)
) is a strongly consistent estimator of ρk based on the available data up to and including the ith subject. We

suggest to use sequentially updated maximum likelihood estimators at each stage to modify the allocation probabilities
dynamically. In particular for the (i+1)th subject, we suggest to estimate θ by solving the likelihood equation, ∂�i(θ)

∂θ
= 0,

where �i(θ1, θ2, . . . , θt ) =∏i
j=1
∏t

k=1 {fk(ykj, θk)}δk,j is the likelihood of the data after i responses are obtained with ykj as
the response of the jth subject to treatment k.

Since for any allocation design, primary concern is ethics, we study the behaviour of the observed proportion of
allocation to different treatments. If we denote the number of allocations to treatment k out of n assignments by
Nkn = ∑n

i=1 δk,i, the observed allocation proportion to treatment k is simply Nkn
n . Now for an assessment of such a

proportion in the limit, we impose the following restrictions on the response distribution fk(., θk) and allocation function
ρk(θ1, θ2, . . . , θt ), k = 1, 2, ..t .

C1. There exists an open subset ω of the parameter space Ω containing the true parameter.
C2. The integral

∫
fk(y, θk)dy is twice differentiable with respect to θk under the integral sign and the first order partial

derivative of the likelihood function has finite moments order n for some n > 2.
C3. The likelihood �i(θ) admits all third order partial derivatives and such a derivative is bounded by some integrable

function for all θ ∈ ω.
C4. ρk(θ1, θ2, . . . , θt ) is continuous in each of its arguments for every k = 1,2,..t.

Then we have the following result.

Result. Under the conditions C1–C4 above, as n→∞
Nkn

n
→ ρk(θ)

almost surely for each k = 1,2,..t

Proof. Since N1n+N1n+ · · · +Nkn = n, under conditions C1–C4, we get that as n→∞, Nkn →∞ almost surely for each
k = 1, 2, ..t . Consequently, as n→∞ θ̂

(n) → θ almost surely.
Now consider the representation,

Nkn

n
= 1

n

n∑
j=1

{δk,j − E(δk,j|Fj−1)} + 1
n

n∑
j=1

ρk(θ̂
(j)
).

Then the first term on the right hand side of the above equation converges to zero almost surely as n → ∞ by the
martingale convergence theorem (Hall & Heyde, 1980). The second term converges almost surely to ρk(θ) as a consequence
of strong consistency of the parameter estimators and condition C4. �
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4. Performance evaluation of the allocation design

4.1. Performance measures

Performance evaluation of any allocation design has two aspects, namely ethics and efficiency. For most of the clinical
trials, ethical benchmark is set on the basis of the distribution of the allocations to different treatments. Thus expected
allocation proportions (EAP), defined by E(Nkn

n ), k = 1, 2, . . . , t are indicators of the allocation design’s ability to skew
the allocation towards the better performing treatment. Therefore, for the ethics, we use expected allocation proportion
(EAP) to different treatment arms. Again to measure efficiency, we use the power of a relevant test of equality of treatment
effects. However such a test is not a simple adaptation of the usual test of homogeneity for linear responses. In the context
of circular responses if μk is the mean direction associated with the kth treatment, then treatments j and k are equally
effective if d(μk, 0) = d(μj, 0) or equivalently if μk = μj( mod 2π ) or μk = 2π − μj( mod 2π ). Since, the distance
functions are linear in nature, we consider testing the null

H0 : d(μ1, 0) = d(μ2, 0) = · · · d(μt , 0) against the alternative H1 : At least one inequality in H0.
In order to perform the above test we assume treatment 1 as experimental and others as existing. Then motivated by

the usual contrast based homogeneity test statistic, we define the following statistic

Tn = (Cd̂)T
[
CΣ̂d̂C

T
]−1

(Cd̂),

where

d̂t×1 =

⎛⎜⎜⎝
d(μ̂1, 0)
d(μ̂2, 0)

...

d(μ̂t , 0)

⎞⎟⎟⎠ ,

C ¯t−1×t =

⎡⎢⎢⎣
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
. . .

...

1 0 0 · · · −1

⎤⎥⎥⎦ ,
Σ̂d̂ is the estimated dispersion matrix of d̂t×1 and μ̂k is a strongly consistent estimator of μk based on n observations,
generated through some allocation design. Naturally larger value of Tn indicates departure from the null hypothesis.

Further, directional hypotheses are often used in confirmatory trials. Consequently, we consider one of such hypotheses
and proceed using the framework of union intersection principle. Specifically, we consider treatment 1 as the experimental
and the others existing. Then assuming the underlying response distribution for the jth treatment as a member of the
circular family with mean direction μj, we consider testing equality of the treatment effects against the alternative that
the experimental treatment is at least as good as the existing treatment. Thus we consider testing H0 : d(μ1, 0) =
.. = d(μt , 0) against H1 : d(μ1, 0) < d(μj, 0), for at least one j �= 1. Since the null hypothesis is the intersection of
hypotheses H0j : d(μj, 0) = d(μ1, 0), j = 2, . . . , t and the alternative can be looked upon as the union of the hypotheses
H1j : d(μj, 0) > d(μ1, 0), j �= 1, we follow the union intersection principle of hypothesis testing. For testing H0j against
H1j, we suggest to use the statistic,

Wj = d(μ̂j, 0)− d(μ̂1, 0)√
σ̂2
1

N1n
+ σ̂2

j
Njn

,

where, σ 2
j is the asymptotic variance of d(μ̂j, 0) and σ̂ 2

j is the maximum likelihood estimator of σ 2
j , j �= 1. Naturally, a

right tailed test based on Wj is appropriate. Since rejection of H0j, j �= 1 indicates the rejection of the global null hypothesis
H0, we reject the global null hypothesis against the directional alternative if W ∗

n = maxj�=1 Wj is too large.

4.2. Competitors

Meaningful performance evaluation of any allocation design requires comparison of performance measure with existing
allocation designs. We therefore, consider the following competitors.

As the first competitor, we consider the framework of Biswas and Coad (2005) and suggest an allocation design based
on pairwise comparison. Note that superiority of treatment k can also be defined pairwise i.e. treatment k is superior if
separately for every j �= k, d(Yk, 0) < d(Yj, 0) stochastically. Summing the probabilities of such events we get a treatment

effectiveness measure for treatment k. Since the number of all such comparisons is
(
t
2

)
, we define the following allocation
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probability for treatment k

τk = 1(
t
2

) t∑
j(�=k)=1

P
{
d(Yk, 0) < d(Yj, 0)

}

= 1(
t
2

) t∑
j(�=k)=1

[∫ π

0
Gj(y)dy−

∫ 2π

π

Gj(y)dy
]
.

Naturally, τk = 1
t for equally performing treatments and is more than 1

t if treatment k is the most promising. Moreover,
the analytic expression of τk enables the allocation function to work for any circular distribution. We use response adaptive
route for practical implementation and denote the allocation by τ rule.

However, a competitor, which is a trade off between ethics and efficiency, is not available in literature for multiple
treatments under circular responses and hence we derive afresh. For the derivation we follow, the consideration in
Biswas, Mandal, and Bhattacharya (2011) and Biswas et al. (2015) i.e. categorize the responses as success or failure using
some clinically convenient threshold ‘‘c’’ but adopt the approach described in Baldi Antognini and Giovagnoli (2015).
Specifically, a circular response ‘‘ψ ’’ is considered as a success if d(ψ, 0) < c for some clinically meaningful ‘‘c’’. Therefore,
if we consider a hypothetical non-randomized multi-treatment set up, the expected proportion of failures is simply,
H(π1, π2, . . . , πt ) = ∑t

k=1 πkP {d(Yk, 0) > c} = ∑t
k=1 πkγk, where, πk is the proportion of allocation to treatment k

and γk = P {d(Yk, 0) > c}. Naturally, a lower value of the criterion H is desirable. However, to measure the efficiency,
we consider A optimality (Silvey, 1980) based on the large sample dispersion matrix of (d(μ̃1, 0), d(μ̃2, 0), . . . , d(μ̃t , 0)),
where μ̃k is an estimator of μk for fixed πk, k = 1, 2, . . . , t . Then the large sample dispersion matrix takes the form
Diag( σ

2
1
π1
,
σ2
2
π2
, . . . ,

σ2
t
πt

), with σ2
k
πk

as the large sample variance of d(μ̃k, 0). Then A optimality criterion dictates to use
∑t

k=1
σ2
k
πk

as an efficiency measure and we suggest to obtain the optimal proportion π∗k to treatment k by solving the constrained
optimization problem:

Minimize
t∑

k=1

σ 2
k

πk
,

Subject to
t∑

k=1

πkγk < h and
t∑

k=1

πk = 1

and for some h > 0. Before, we apply standard optimization techniques (Bazaraa, Sherali, & Shetty, 2006), some issues
related to the choice of h need explanation. First of all, we note that

∑t
k=1 πkγk ∈ [min1≤k≤t γk,max1≤k≤t γk]. Naturally,

for any h exceeding max1≤k≤t γk, the restriction
∑t

k=1 πkγk < h is trivially satisfied and hence becomes redundant. In
such a situation, we get the optimal solution π∗k = σk∑t

k=1 σk
, k = 1, 2, 3, . . . , t . Specifically, optimal solution exists for

any h exceeding min1≤k≤t γk though it was not possible to express such a solution in a tractable form. However, no
optimal solution exists for h ≤ min1≤k≤t γk, and as a compromise, we suggest equal randomization (i.e. assigning each
treatment with equal probability 1

t ) in such a situation. The resulting allocation is, therefore, far from a conventional
optimal allocation, but provides a trade off between ethics and efficiency. For further consideration, we use response
adaptive randomization and refer the resulting allocation as ρ∗ rule.

In addition, we also consider equal randomization (indicated by Equal), where each treatment is assigned with equal
probability 1

t .

4.3. Simulation studies

In order to explore the performance characteristics of the proposed and competing allocation designs, we extensively
use the von Mises distribution as the distribution of responses. In particular, we assume that the response variable Yj is
distributed as von Mises with mean direction μj and concentration parameter κj with the density function

1
2π I0(κj)

exp
{
κj cos(y− μj)

}
, 0 < y ≤ 2π,

where 0 ≤ μj ≤ 2π , κj > 0 and

Ip(κj) = 1
2π

∫ 2π

0
exp(κj cos y) cos(py)dy

is the modified Bessel function of order p ≥ 0. Then based on n observations, Yji, i = 1, 2, . . . , j = 1, 2, . . . , t , the
maximum likelihood (ML) estimator μ̂j of μj satisfies tan(μ̂j) = S̄j/C̄j, where NjnS̄j = ∑n

i=1 δji sin Yji and NjnC̄j =∑n
i=1 δji cos Yji. However, the ML estimator κ̂j of κj is obtained numerically from the following equation

A(κ̂j) = (C̄j
2 + S̄j

2
)1/2,
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Table 1
EAP(SD) to different treatments for von Mises responses with n = 60.
(μ1, μ2, μ3, κ1, κ2, κ3) EAP(SD)

ρ τ ρ∗(h = 0.6)

1 2 3 1 2 3 1 2 3

(5, 5, 5, 2.0, 2.0, 2.0) .333(0.09) .333(0.09) .333(0.09) .333(0.09) .333(0.09) .333(0.09) .333(0.12) .333(0.12) .333(0.12)
(5, 10, 15, 2.0, 2.0, 2.0) .342(0.09) .332(0.09) .324(0.10) .338(0.09) .330(0.07) .331(0.08) .354(0.12) .335(.11) .309 (.12)
(5, 15, 25, 2.0, 2.0, 2.0) .344(0.10) .351(0.09) .304(0.10) .342(0.09) .338(0.07) .319(0.08) .374 (0.12) .329(0.10) .296(0.12)
(5, 30, 45, 2.0, 2.0, 2.0) .426(0.10) .320(0.09) .253(0.10) .387(0.08) .336(0.09) .275(0.08) .432(0.12) .299 (0.10) .268(0.12)
(5, 45, 60, 2.0, 2.0, 2.0) .485(0.10) .287(0.10) .227(0.10) .415(0.08) .312(0.08) .272(0.08) .430(0.12) .286(0.11) .283(0.12)
(5, 60, 75, 2.0, 2.0, 2.0) .485(0.11) .287(0.10) .227(0.09) .415(0.08) .312(0.08) .272(0.08) .419 (0.12) .292(0.12) .287 (0.12)
(5, 75, 90, 2.0, 2.0, 2.0) .631(0.11) .214(0.10) .154(0.09) .465(0.09) .305(0.08) .229(0.08) .427(0.10) .281(0.12) .291(0.12)

(5, 5, 5, 1.0, 2.0, 2.0) .239(0.07) .380(0.07) .380(0.08) .272(0.08) .358(0.07) .369(0.08) .391(0.12) .312 (0.09) .295(0.12)
(5, 10, 15, 1.0, 2.0, 2.0) .246(0.08) .386(0.08) .367(0.08) .284(0.08) .360(0.07) .355(0.08) .374(0.11) .323 (0.12) .302(.12)
(5, 15, 25, 1.0, 2.0, 2.0) .277(0.08) .383(0.08) .338(0.08) .296(0.08) .363(0.07) .340(0.08) .366 (0.10) .347(0.12) .285 (0.11)
(5, 30, 45, 1.0, 2.0, 2.0) .320(0.09) .365(0.09) .313(0.09) .327(0,08) .350(0.08) .322(0.07) .339 (0.13) .373 (0.11) .286 (0.12)
(5, 45, 60, 1.0, 2.0, 2.0) .385(0.09) .345(0.09) .268(0.08) .367(0.08) .344(0.08) .287(0.08) .378 (0.12) .327 (0.10) .293 (0.11)
(5, 60, 75, 1.0, 2.0, 2.0) .437(0.11) .318(0.10) .244(0.08) .389(0.09) .337(0.08) .272(0.08) .394 (0.12) .305 (0.12) .300(0.12)
(5, 75, 90, 1.0, 2.0, 2.0) .507(.10) .282(0.09) .210(0.08) .419(0.09) .326(0.08) .253(0.08) .392 (0.12) .307 (0.13) .300(0.12)

(5, 5, 5, 2.0, 2.0, 1.0) .369(0.10) .363(0.10) .267(0.09) .356(0.08) .365(0.09) .278(0.09) .396(.12) 0.396(.11) 0.206(.12)
(5, 10, 15, 2.0, 2.0, 1.0) .392(0.11) .361(0.09) .246(0.09) .366(0.09) .363(0.08) .270(0.09) .401(.12) .388(0.11) .209(0.12)
(5, 15, 25, 2.0, 2.0, 1.0) .376(0.09) .373(0.09) .249(0.08) .367(0.08) .358(0.08) .274(0.08) .412 (0.12) .383(0.10) .204(0.09)
(5, 30, 45, 2.0, 2.0, 1.0) .442(0.09) .338(0.09) .219(0.08) .395(0.07) .351(0.08) .252(0.09) .428(0.11) .373(0.12) .198 (0.09)
(5, 45, 60, 2.0, 2.0, 1.0) .483(0.10) .305(0.08) .210(0.08) .412(0.08) .339(0.08) .248(0.08) .433(0.12) .366 (0.11) .200 (0.09)
(5, 60, 75, 2.0, 2.0, 1.0) .550(0.10) .258(0.08) .190(0.08) .442(0.06) .318(0.07) .239(0.07) .433(0.11) .366(0.10) .200 (0.08)
(5, 75, 90, 2.0, 2.0, 1.0) .613(0.11) .206(0.08) .179(0.07) .466(0.08) .299(0.08) .233(0.08) .432 (0.12) .366 (0.11) .200 (0.09)

Table 2
EAP(SD) for different treatments for von Mises responses with n = 240.
(μ1, μ2, μ3, κ1, κ2, κ3) EAP(SD)

ρ τ ρ∗(h = 0.6)

1 2 3 1 2 3 1 2 3

(5, 5, 5, 2.0, 2.0, 2.0) .333(0.05) .333(0.05) .333(0.04) .333(0.05) .333(0.04) .333(0.04) .333(0.04) .333(0.05) .333(0.04)
(5, 10, 15, 2.0, 2.0, 2.0) .342(0.04) .334(0.05) .323(0.03) .339(0.04) .333(0.04) .326(0.03) .366(0.06) .319(0.07) .313(0.05)
(5, 15, 25, 2.0, 2.0, 2.0) .360(0.04) .340(0.05) .298(0.04) .353(0.05) .339(0.05) .307(0.05) .373(0.06) .323(0.08) .302(0.08)
(5, 30, 45, 2.0, 2.0, 2.0) .420(0.04) .331(0.04) .248(0.05) .391(0.04) .336(0.04) .271(0.04) .387(0.07) .308(0.08) .303(0.07)

(5, 5, 5, 1.0, 2.0, 2.0) .247(0.04) .379(0.04) .379(0.05) .261(0.04) .371(0.04) .366(0.03) .507(0.07) .371 (0.08) .371(0.06)
(5, 10, 15, 1.0, 2.0, 2.0) .252(0.05) .381(0.04) .366(0.05) .265(0.04) .371(0.04) .362(0.04) .480(0.07) .395(0.05) .374(0.07)
(5, 15, 25, 1.0, 2.0, 2.0) .262(0.04) .385(0.05) .352(0.04) .272(0.05) .371(0.04) .355(0.04) .432(0.06) .442(0.07) .375(0.06)
(5, 30, 45, 1.0, 2.0, 2.0) .314(0.04) .390(0.04) .295(0.04) .311(0.04) .377(0.03) .311(0.04) .384(0.06) .518(0.07) .347(0.08)
(5, 45, 60, 1.0, 2.0, 2.0) .375(0.03) .362(0.04) .261(0.04) .353(0.03) .359(0.04) .287(0.04) .424(0.07) .415(0.08) .410(0.08)

(5, 5, 5, 2.0, 2.0, 1.0) .375(0.03) .379(0.03) .245(0.04) .367(0.04) .372(0.03) .259(0.05) .375 (0.07) .385(0.07) .488(0.07)
(5, 10, 15, 2.0, 2.0, 1.0) 382(0.04) .376(0.04) .240(0.04) .373(0.05) .371(0.03) .255(0.04) .394(0.06) .385(0.07) .470 (0.08)
(5, 15, 25, 2.0, 2.0, 1.0) .394(0.03) .371(0.03) .233(0.04) .381(0.04) .367(0.03) .250(0.04) .408 (0.07) .387(0.08) .454(0.08)
(5, 30, 45, 2.0, 2.0, 1.0) .438(0.04) .344(0.04) .217(0.04) .407(0.04) .355(0.04) .237(0.05) .562 (0.07) .330 (0.07) .357(0.08)
(5, 45, 60, 2.0, 2.0, 1.0) .499(0.04) .295(0.04) .204(0.04) .442(0.05) .327(0.04) .229(0.04) .694(0.07) .258(0.07) .296 (0.06)

where A(κj) = I1(κj)/I0(κj) (Mardia & Jupp, 2004, pp. 85, 86). Then under the von Mises assumption, we get

σ̂ 2
j =

1
κ̂jA(κ̂j)

, j = 1, 2.., t.

However, for the simulation study, we consider t = 3 treatments and 10000 repetitions, where the data is generated
according to the allocation designs, indicated earlier. For the simulation we consider n = 60 and n = 240. However,
to run response adaptive rules (i.e. ρ, τ , ρ∗), we assign n0 = 3 subjects to each treatment arm to get initial parameter
estimates and then start the adaptive allocation from the tenth subject onwards.

In selecting the parameters for the simulation study, an ordering is maintained. The first treatment is considered to be
the superior one followed by the second and the third. Initially equal concentration is assumed for the treatments. Then
two sets of unequal concentration parameters are used. In the first case, higher concentration is attached to the better
treatments, i.e. to the first and second treatments. In the second set, higher concentration is associated with the inferior
treatments, that is, to the third and second treatments. Here μ1 is fixed at 5◦ and μ2 and μ3 are varied as mentioned
above. Expected allocation proportion (EAP) along with standard deviations (SD) is obtained for proposed and competing
allocation designs considering c = 30◦ and are reported in Tables 1 and 2.
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Powers of the tests based on Tn and W ∗
n at various alternatives are reported in Tables 3 and 4 for the allocation rules ρ,

τ and ρ∗ and are compared with those obtained under equal allocation. From Tables 1 and 2, it can be readily noted that
for ρ and τ rules under equal concentration, allocation is uniformly skewed towards treatment 1. If higher concentration
is assigned to treatments 1 and 2, larger number of subjects are allocated to them in comparison to equal concentration
case. On the other hand, if lower concentration is attached with treatment 1, the EAP drops even if it has mean direction
nearer to the preferred direction 0◦. This is natural as lower concentration produces more responses far from the mean
direction even if the mean direction is close to the preferred direction and hence the concerned EAP decreases. The optimal
rule mimics the same behaviour except for the fact that under equal concentration, it only skews a moderate number of
subjects to the better treatment arm in comparison to the other rules.

From the figures of Tables 3 and 4, we observe that the power (both contrast and multiple comparison based) increases
rapidly for all the allocation rules. The powers obtained under skewed allocations are quite competitive with those
obtained under equal allocation. A close look towards the results reveals that ρ rule gives slight edge to the τ rule as
far as EAP values are concerned. On the other hand, the ρ∗ rule is slightly more variable and produces similar EAP and
power, in general. However, the performance of the ρ∗ rule depends heavily on the choice of h. Theoretically, any sensible
choice of h must lie in (0, 1). However, too small h causes the equal allocation to dominate whereas a significantly higher
h makes the allocation close to Neyman optimal allocation. The more the degree of superiority (or inferiority) of the better
(or worst) treatment, the higher (or lower) is the corresponding γ value. Since, we do not consider significantly different
treatment arms in a clinical trial, in general, a choice of h around 0.5 is reasonable.

We also compute the type I error rates empirically. Since, under the null hypothesis Tn is asymptotically distributed as
χ2 with 2 degrees of freedom, we compute the probability PH0{Tn > χ2

2;0.05}, where χ2
2;0.05 denotes upper 5 percent point

of chi square distribution with 2 degrees of freedom. We further investigate such requirement in the multiple comparison
set up using the cut off based on the asymptotic null distribution of max(W2,W3). In particular, we empirically compute
PH0{W ∗

n > w}, where w is obtained from the asymptotic null distribution of W ∗
n . Now, under the null hypothesis and von

Mises assumption, the joint asymptotic distribution of (W2,W3) is standard bivariate normal with correlation coefficient

σ 2
1√

σ 2
1 + σ 2

2

√
σ 2
1 + σ 2

3

with σ 2
j = 1

κjA(κj)
.

Considering different choices of (κ1, κ2, κ3), we calculate the cut off w and estimate the concerned type I error rate
taking n = 60 and 240 for ρ, τ and ρ∗ allocation rules. Computed type I error rates show that the proposed allocation
rule ρ controls the type I error better than its competitors (see Table 5).

We have explored so far the properties of the considered allocation designs for von Mises responses. But these
allocation designs are developed without considering any specific distributions from the circular family and hence it is
of interest to further investigate the properties for some other relevant response distribution. In particular, we consider
wrapped Cauchy responses and provide a three dimensional plot of the limiting allocation proportion (LAP) to treatment
1 under the ρ rule. Specifically, assuming the response variable for treatment j as wrapped Cauchy with mean direction μj
and concentration parameter ξj ∈ (0, 1), we fix μ1 at 5◦ and varying (μ2, μ3) we provide the plot for various combinations
of (ξ1, ξ2, ξ3) in Fig. 1. As expected the ethical norms are also maintained for the wrapped Cauchy responses as long as
LAP is concerned.

4.4. Redesigning a real clinical trial: SICS trial

In order to judge the efficacy of the proposed allocation design in real situation, we consider a real clinical trial involving
circular responses. A small incision cataract surgery (SICS) trial was conducted at the Disha Eye Hospital and Research
Center, Barrackpore, West Bengal, India, over a period of two years (2008–10) (Bakshi, 2010). We take into account three
competing treatments from the study, namely SICS with Snare technique (see Basti, Vasavada, Thomas, & Padhmanabhan,
1993), SICS with Irrigating Vectis technique (see Masket, 2004) and Torsional Phucoemalsification (see Mackool & Brint,
2004) with 19, 18 and 16 observations respectively. The response variable was 4 times the induced angle of astigmatism
in modulo 2π system. Clearly the response is circular in nature and hence is appropriate to judge the performance of the
proposed allocation. The responses to Snare, Irrigating Vectis and Torsional Phucoemalsification techniques are assumed
to follow von Mises with parameters (μs, κs), (μv, κv) and (μt , κt ), respectively (see Table 6).

For the Snare technique, parameters are estimated as μ̂s = 20.67◦, κ̂s = 1.59; for Irrigating vectis, these estimates are
μ̂v = 52.71◦, κ̂v = 1.27; and for Torsional Phucoemalsification, the estimates of the parameters are μ̂t = 2.29◦, κ̂t = 4.99,
respectively. Treating these estimated as the true parameter, we perform Watsons’s goodness of fit test (Mardia & Jupp,
2004), findings of which satisfy the von Mises assumption. Then the Torsional Phucoemalsification appears to be much
better than its competitors as the mean direction is closer to the preferred direction as well as has more concentration
towards the preferred direction. The Snare’s technique emerges as the second best treatment as far as the distance from
the preferred direction with a competitively higher concentration is concerned.
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Fig. 1. Limiting allocation proportions under Wrapped Cauchy responses.

Treating these parameter values as the true values we run a simulation with 10,000 iterations using ρ, τ and ρ∗ rules
with these 3 treatments taking c = 30◦. We report the EAP values for different treatments together with the respective
standard deviations (SD) in Table 5.

The results clearly indicate that the allocation rules ρ, τ and ρ∗ successfully allocate larger number of study subjects
to the better performing treatment arms as compared to the actual allocation, which assigned fewer number of subjects
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Table 3
Comparison of power under general alternative.
(μ1, μ2, μ3, κ1, κ2, κ3) Power

n = 60 n = 240

ρ τ ρ∗(h = 0.6) Equal ρ τ ρ∗(h = 0.6) Equal

(5, 5, 5, 2, 2, 2) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
(5, 10, 15, 2, 2, 2) 0.118 0.112 0.122 0.118 0.323 0.321 0.359 0.355
(5, 15, 25, 2, 2, 2) 0.319 0.312 0.328 0.324 0.814 0.811 0.842 0.855
(5, 30, 45, 2, 2, 2) 0.861 0.844 0.838 0.810 1.000 1.000 1.000 1.000
(5, 45, 60, 2, 2, 2) 0.990 0.992 0.962 0.976 1.000 1.000 1.000 1.000
(5, 75, 90, 2, 2, 2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(5, 5, 5, 1, 2, 2) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
(5, 10, 15, 1, 2, 2) 0.070 0.080 0.070 0.070 0.090 0.070 0.150 0.060
(5, 30, 45, 1, 2, 2) 0.244 0.222 0.321 0.248 0.926 0.927 0.997 0.944
(5, 45, 60, 2, 2, 2) 0.663 0.650 0.688 0.664 1.000 1.000 1.000 1.000
(5, 75, 90, 2, 2, 2) 0.989 0.982 0.993 0.969 1.000 1.000 1.000 1.000

(5, 5, 5, 2, 2, 1) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
(5, 15, 25, 2, 2, 1) 0.108 0.110 0.188 0.112 0.487 0.481 0.556 0.510
(5, 30, 45, 2, 2, 1) 0.379 0.349 0.446 0.269 0.970 0.971 0.991 0.982
(5, 45, 60, 2, 2, 1) 0.750 0.721 0.772 0.634 1.000 1.000 1.000 1.000
(5, 75, 90, 2, 2, 2) 0.992 0.994 0.988 0.991 1.000 1.000 1.000 1.000

Table 4
Comparison of power under directional alternative.
(μ1, μ2, μ3, κ1, κ2, κ3) Power

n = 60 n = 240

ρ τ ρ∗(h = 0.6) Equal ρ τ ρ∗(h = 0.6) Equal

(5,5,5,1,1,1) 0.050 0.050 0.053 0.050 0.050 0.050 0.050 0.050
(5,10,15,1,1,1) 0.100 0.080 0.062 0.070 0.321 0.319 0.339 0.355
(5,15,25,1,1,1) 0.160 0.150 0.069 0.170 0.810 0.811 0.819 0.862
(5,30,45,1,1,1) 0.210 0.200 0.180 0.240 0.919 0.910 0.900 0.920
(5,45,60,1,1,1) 0.490 0.455 0.420 0.460 1.000 1.000 1.000 1.000
(5,60,75,1,1,1) 0.760 0.780 0.721 0.770 1.000 1.000 1.000 1.000
(5,75,90,1,1,1) 0.850 0.840 0.788 0.865 1.000 1.000 1.000 1.000
(5,100,120,1,1,1) 0.922 0.915 0.889 0.940 1.000 1.000 1.000 1.000

(5,5,5,1,2,2) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
(5,10,15,1,2,2) 0.060 0.070 0.089 0.090 0.090 0.070 0.090 0.080
(5,15,25,1,2,2) 0.315 0.305 0.331 0.340 0.620 0.600 0.622 0.640
(5,30,45,1,2,2) 0.695 0.695 0.668 0.670 0.926 0.927 0.889 0.944
(5,45,60,1,2,2) 0.855 0.865 0.834 0.840 1.000 1.000 1.000 1.000
(5,60,75,1,2,2) 0.921 0.900 0.902 0.930 1.000 1.000 1.000 1.000
(5,75,90,1,2,2) 0.956 0.955 0.937 0.960 1.000 1.000 1.000 1.000
(5,100,120,1,2,2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5
Type I error rates for Tn and W ∗

n tests with n = 60.
(μ1, μ2, μ3, κ1, κ2, κ3) Type I error rates

ρ τ ρ∗(h = 0.6)

(5,5,5,2,2,2) 0.080[0.010] 0.110[0.120] 0.120[0.110]
(5,5,5,1,2,2) 0.090[ 0.120] 0.130[0.130] 0.140[0.150]
(5,5,5,2,2,1) 0.100[0.120] 0.150[0.150] 0.140[0.140]

Boldface figures within [.] indicate the Type I error rates for the W ∗
n test.

Table 6
Allocation to different treatment arms.
Treatment EAP(SD)

ρ τ ρ∗(h = .6) ρ∗(h = .7) Actual

Snare .289(0.07) .331(0.07) .370(0.12) .422(.12) .358
Irrigating Vectis .187(0.08) .238(0.08) .341(0.13) .383(.11) .339
Torsional Phucoemalsification .525(0.08) .431(0.07) .289(0.11) .194(.11) .301

to the better treatment (i.e. Torsional Phucoemalsification). However, as indicated earlier, the performance of the ρ∗ rule
is observed sensitive with the choice of h (see Table 6).
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5. A treatment selection criterion

We have developed so far allocation designs for general class of circular responses, which are found to be effective for
assigning larger number of subjects to promising treatment arms. Since in general, clinical trials involve human beings, it
would be ethically more appealing if the inferior treatment arms are dropped as early as possible rather than continuing
with all the treatments till the trial terminates. Motivated by the works of Bretz, Koenig, Brannath, Glimm, and Posch
(2009) and Maurer, Branson, and Posch (2009), we suggest to run the trials in stages, where after the end of each stage
the least performing treatment arm is dropped. Assuming that the response distribution for the j th treatment belongs
to a circular family of distributions with mean direction μj and concentration κj, j = 1, 2, ..t , we describe the stage-wise
treatment selection procedure below.

5.1. The proposed early stopping rules

Assume that the patients arrive sequentially one by one. At the first stage tn0 patients are assigned among the t
treatments using some allocation rule. At the end of the first stage, the maximum likelihood (ML) estimates of the
parameters are computed from the first stage data consisting tn0 observations and treatment k is dropped if d(μ∗k, 0) >
maxj�=k(d(μ∗j , 0)), where μ∗k is the maximum likelihood estimate of mean direction μk based on the available first stage
data. As a treatment arm is dropped, from (tn0+1)st sample onwards, patients are allocated among the remaining (t−1)
treatment arms. Since the second stage incorporates less number of treatment arms, the number of patients in this stage
can be kept fewer than that of the first stage. In fact, for all the upcoming stages, number of assignments can be set in a
decreasing manner. For a typical stage s, we suggest to take assignments to be n0(t − s+ 1).

Now to treat n0(t − 1)second stage patients, the ML estimates of the parameters obtained from the first stage data
are plugged into the allocation function and patients are assigned to treatments accordingly. However, unlike usual data
dependent allocation designs, here the allocation probabilities are calculated for each stage and kept fixed throughout that
stage. At the end of the second stage, the least performing treatment is dropped using the same criterion stated earlier.

To estimate the plug-in parameter for the third stage, instead of combining the first stage and second stage data, first
stage and second stage estimates are combined suitably. For estimating the concentration parameters, simple average
of stage-wise estimates is taken as the combined estimate. However, for the mean direction parameter, sample mean
direction of the stage-wise estimates is taken as the combined estimate. Once the estimated values of the parameters
are available, they are plugged into the same allocation function and n0(t − 2) patients are assigned in the third stage
accordingly. Again at the end of the third stage, the worst performing treatment is dropped. The treatment dropping is
continued in this fashion until a single treatment remains as the winner.

However, similar to the notions of sequential treatment selection design, we suggest that if there is enough evidence
that all the treatment arms are equally effective, the trial should be terminated readily, without continuing up to the
end. Similarly if there is enough evidence that one of the treatment arms is unanimously better over others, then also
the trial should be terminated early. Consequently, we suggest two practical modifications of the proposed treatment
selection design. The first alternative is based on the early stopping for efficacy. Here an interim analysis is performed
in which treatments are allocated to each of the treatment arms according to some response adaptive allocation rule.
Once the interim data is obtained, a test is performed using the multiple comparison test statistic max(W2,W3). If the
null hypothesis of homogeneity is rejected, treatment 1 is considered the winner (i.e. efficient) and the trial is terminated
immediately. If the homogeneity hypothesis is not rejected, the trial continues as per the suggested treatment selection
design. This selection procedure is termed early stopping rule for efficacy (ESFE).

The next alternative is based on the early stopping for futility. Here, based on the data of interim analysis if the
null hypothesis of homogeneity is not rejected according to the multiple comparison test statistic max(W2,W3), then
no treatment is considered as winner and hence futility is achieved regarding the selection of best treatment arm. Thus
it is suggested to terminate the trial without any further treatment allocation. If the homogeneity hypothesis is rejected
after the interim analysis, then the trial is continued by virtue of treatment selection scheme described as before and no
early stopping is recommended. This selection procedure is termed as early stopping rule for futility (ESFF).

5.2. Performance analysis of early stopping rules

Now we assess the performance of the proposed early stopping designs assuming von Mises responses. Here the total
sample size is fixed at n = 60, that is, if there is no early stopping, at most 60 patients will be allocated to the treatment
arms 1, 2 and 3. For the interim analysis, the sample size is set at n∗ i.e. n∗ patients are allocated to the treatment arms
based on response adaptive schemes. In general, it is recommended to set the sample size of interim analysis atleast
50% of the total sample size, since smaller sample size for interim analysis, may lead to fallacious conclusion. On the
other hand, if a larger sample size is set for the interim analysis, then early stopping rule almost coincides with the
previously described fixed sample selection rule. So a compromise between the two scenarios is selected in this case.
We have considered several values of n∗ between 30 to 40 and the results obtained indicate similar conclusions. For the
sake of illustration, we report the result, for n∗ = 40 with the proposed ρ rule as the baseline allocation design. For the
computation, the mean direction parameter of treatment 1 (i.e. μ1) is kept at 5◦ which is nearest to the preferred direction
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Table 7
Performance of the early stopping rules for von Mises responses with n∗ = 40.
(μ1, μ2, μ3, κ1, κ2, κ3) Expected sample size EP

ESFF ESFE ESFF ESFE

1 2 3 1 2 3

(5, 5, 5, 2.0, 2.0, 2.0) 14.222 13.614 13.804 20.311 19.887 19.782 0.0352 0.6354
(5, 15, 25, 2.0, 2.0, 2.0) 17.055 15.757 13.168 22.556 20.634 16.230 0.0591 0.3455
(5, 45, 60, 2.0, 2.0, 2.0) 28.155 18.497 12.288 20.300 15.153 10.927 0.0055 0.0062
(5, 60, 75, 2.0, 2.0, 2.0) 31.638 17.051 10.991 18.777 12.924 9.719 0.0014 0.0008
(5, 75, 90, 2.0, 2.0, 2.0) 34.307 15.413 10.260 19.295 11.529 9.376 0.0002 0.0002

(5, 5, 5, 1.0, 2.0, 2.0) 11.773 14.885 14.982 14.409 22.815 22.736 0.0412 0.8621
(5, 15, 25, 1.0, 2.0, 2.0) 13.772 16.735 14.533 16.641 23.527 18.912 0.0782 0.5822
(5, 45, 60, 1.0, 2.0, 2.0) 22.819 20.344 13.717 17.098 18.590 13.112 0.0184 0.1152
(5, 60, 75, 1.0, 2.0, 2.0) 25.929 19.857 12.654 17.017 15.385 11.558 0.0422 0.0422
(5, 75, 90, 1.0, 2.0, 2.0) 29.246 18.378 11.836 17.438 13.503 10.479 0.0106 0.0164

(5, 5, 5, 2.0, 1.0, 1.0) 17.130 12.595 12.635 25.656 17.168 17.116 0.0312 0.4564
(5, 15, 25, 2.0, 1.0, 1.0) 17.829 12.858 12.193 26.949 17.196 15.755 0.0322 0.3223
(5, 45, 60, 2.0, 1.0, 1.0) 22.354 13.750 11.456 29.606 16.332 12.942 0.0051 0.0422
(5, 60, 75, 2.0, 1.0, 1.0) 26.184 13.686 11.350 29.718 15.493 11.889 0.0042 0.0102
(5, 75, 90, 2.0, 1.0, 1.0) 30.678 13.649 11.173 28.781 13.828 10.831 0.0032 0.0044

0◦ and mean directions for treatments 2 and 3 (i.e. μ2 and μ3) are varied keeping μ1 least. So whenever the concentration
parameter of treatment 1 (i.e. κ1) is equal or greater than concentration parameters of treatments 2 and 3 (i.e. κ2 and κ3),
treatment 1 can be considered as better over its competitors due to least value of mean direction. But if concentration of
treatment 2 or treatment 3 is greater than that of treatment 1, then even for a lower value of mean direction, treatment
1 cannot be regarded as the best treatment. In Table 7, we have reported the expected allocated sample size to each
of the treatment arms, along with the error probability (EP) of not selecting treatment 1 as the winner. We note that,
when the mean directions are nearer to each other the ESFF rule successfully terminates the trial early with the total
expected allocation to treatments about 40, which is the sample size pre specified for the interim analysis. An advantage
of ESFF rule is that for treatments having no significant difference in mean directions, error probability varies around a
low value, that is, the scheme successfully controls the possibility of selecting an inferior treatment as the best treatment.
This happens due the fact that, for treatments having little or no difference, ESFF scheme ensures after the interim stage
that no treatment would emerge as the winner. On the other hand, ESFE rule ensures sample size reduction for large
treatment differences. Although both the selection rules give optimistic results, ESFF is ethically slightly better as far as
controlling the selection of an inferior treatment is concerned. It can be added further that each of these rules, ethical
imperative of skewing the subjects towards the better treatment arm is maintained.

5.3. Application to SICS trial

Once again the SICS trial is considered to analyse the effectiveness of the selection rule in the light of a real life data. The
trial is redesigned through a simulation study with 10,000 repetitions of the proposed selection rule, where the parameter
values are set as in Section 4.4. We consider n0 = 10 for this exercise, that is, 30 samples are taken for the first stage, and
the remaining 23 samples are kept for the second stage (total sample size is taken to be 53, which is the total sample size
of the original data, combining three treatments; see Section 4.4). For SICS trial, the experiment does not terminate at first
stage and the selection criterion results in 55.19% allocation towards Torsional Phucoemalsification. The estimated error
probability is obtained as 0.00080, which indicates that the suggested selection criterion successfully detects Torsional
Phucoemalsification as the best treatment for the SICS trial.

6. Concluding remarks

The current work develops a sensible response adaptive allocation design for multi-treatment clinical trials, where the
patient responses are circular in nature. However, the most appealing aspect of the work is the development of a treatment
selection procedure within the framework of a response-adaptive randomization. The objective behind any treatment
selection procedure is to drop treatments with worse performance. Early identification of an ineffective treatment not
only increases the acceptability of the trial but also increases the ethical impact. Encouraging findings make the proposed
procedure attractive from a practitioner’s viewpoint. However, in general, covariates are associated with the patients and
the subsequent development incorporating covariate information is a topic for further research.
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Fig. 2. Feasible region for {(Y1, Y2, Y3) : d(Y1, 0) < d(Y2, 0) < d(Y3, 0)}.

Appendix

Proof of the Lemma. Assume t = 3, then ρ1 is the sum of probabilities of disjoint events d(Y1, 0) < d(Y2, 0) < d(Y3, 0)
and d(Y1, 0) < d(Y3, 0) < d(Y2, 0). The feasible region for the former event with different choices of (Y1, Y2, Y3) is sketched
in Fig. 2. Interchanging Y2 and Y3, the other events can be visualized.

Now for general t, we note that the event d(Yk, 0) < min1≤j(�=k)≤t d(Yj, 0) is equivalent to d(Yk, 0) < d(Yj, 0) for all
j �= k. Then from Fig. 2, we find that d(Yk, 0) < d(Yj, 0) holds if and only if either (0 < Yk < π, Yk < Yj < 2π − Yk) or
(π < Yk < 2π, 2π − Yk < Yj < Yk) hold and hence the lemma follows. �
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