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a b s t r a c t

High dimensionalmodels are gettingmuch attention fromdiverse research fields involving
very many parameters with a moderate size of data. Model selection is an important issue
in such a high dimensional data analysis. Recent literature on theoretical understanding
of high dimensional models covers a wide range of penalized methods including LASSO
and SCAD. This paper presents a systematic overview of the recent development in high
dimensional statistical models. We provide a brief review on the recent development of
theory, methods, and guideline on applications of several penalized methods. The review
includes appropriate settings to be implemented and limitations along with potential
solution for each of the reviewed method. In particular, we provide a systematic review
of statistical theory of the high dimensional methods by considering a unified high-
dimensional modeling framework together with high level conditions. This framework
includes (generalized) linear regression and quantile regression as its special cases. We
hope our review helps researchers in this field to have a better understanding of the area
and provides useful information to future study.
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1. Introduction

Consider high dimensional linear regression

Yi = β0
1X

(1)
i + · · · + β0

p X
(p)
i + εi, i = 1, . . . , n,

where p, the number of covariates is allowed to increase with n, sometimes n � p, even though the dependence on n
is suppressed in the notation. Suppose that β0 = (β0

1 , . . . , β
0
p )
# is sparse, i.e., the number of nonzero β0

j , 1 ≤ j ≤ p is
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relatively small. When p > n, the ordinary least square estimator does not work. Instead, a type of penalized methods

(Y − Xβ)#(Y − Xβ)+ n
p∑

j=1

pλ(|βj|)

e.g., using L1 penalty pλ(|z|) = λ|z|, (Tibshirani, 1996, Least Absolute Shrinkage and Selection Operator, LASSO), nonconvex
penalties such as the smoothly clipped absolute deviation (SCAD) by Fan and Li (2001) and the minimum concave penalty
(MCP) functions by Zhang (2010) has been developed. Here, the SCAD is a nonconvex penalty function pλ with pλ(0) = 0
defined by

p′λ(|z|) = λI(|z| ≤ λ)+ (aλ− |z|)+
a− 1

I(|z| > λ), |z| > 0, (1.1)

for some constant a > 2 and MCP is pλ(|z|) = λ
∫ |z|
0 (1 − x/(aλ))+dx. They have been popularly used for variable selection

and estimation. A huge body of mathematical theory was developed for the understanding of the each penalized methods
in high dimension. See Bühlmann and van de Geer (2011), Fan and Lv (2010) and references therein. In a nutshell, the LASSO
estimator results in so-called oracle inequality (e.g. Bickel, Ritov, & Tsybakov, 2009; van de Geer, 2007, 2008), which implies
its statistical accuracy in prediction and estimation errors are almost as good as an infeasible case when one knew which
coefficients βj are nonzero. However, in terms of model selection, it is generally inconsistent and it requires quite restrictive
conditions on a designmatrix such as irrepresentable condition in order to achieve the selection consistency, (see Zhao & Yu,
2006, for example). Nonconvex penalized estimators such as the SCAD and the MCP enjoy the model selection consistency
under less restrictive conditions (see Fan & Peng, 2004; Kim, Choi, & Oh, 2012; Kwon & Kim, 2012; Wang, Wu, & Li, 2012;
Zhang, Li, & Tsai, 2010, for example). But, the theory guarantees only the existence of a local minimumwhich has the oracle
property including the selection consistency. It is generally difficult to check if the computed estimator, depending on a
choice of optimization algorithm and a specific initial value, is same as the oracle estimator because there exist potentially
multiple localminima. See Kim and Kwon (2012),Wang, Kim, and Li (2013) and Zhang et al. (2010) for example. Additionally,
the computation is generally difficult because the problem is nonconvex.

As one way of circumventing such difficulties, a one-step SCAD penalty was proposed and studied in fixed dimensional
linear regression, p < n, by Zou and Li (2008). Since the ordinary least square estimator β (0)

j = β̂ols
j is available as a good

initial value (close to the true regression coefficients), the paper suggested a local linear approximation of the SCAD penalty

pλ(|βj|) ≈ p′λ(|β (0)
j |)+ p′λ(|β (0)

j |)(|βj| − |β (0)
j |)

near βj ≈ β
(0)
j . Then the resulting estimator is given as

1
2
(Y − Xβ)#(Y − Xβ)+ n

p∑
j=1

p′λ(|β̂ols
j |)|βj|. (1.2)

Compared to the (original) SCAD estimator, it has some advantages. First, the computation is rather easy and the estimator
is defined as the unique minimum of the penalized loss since the problem (1.2) is convex. Second, it has the oracle property
in fixed dimensional models. Additionally, it can be regarded as a weighted LASSO estimator (with different pre-specified
penalty parameterswj = p′λ(|β̂ols

j |) instead of single parameter λ for all the coefficients). A different type of weights was also
proposed for model selection, see Zou (2006).

Even though it is not straightforward from the literature, this idea of one-step SCAD is still applicable to high-dimensional
cases with p > n if a uniformly consistent initial estimator is available, e.g., LASSO estimator for high dimension. We will
provide more detailed and systematic analysis of this situation. First, we take one unified framework including quantile
and logistic regressions as well as linear regression in order to consider general settings and loss functions simultaneously.
Then, we discuss about theoretical results of the LASSO estimator under this unified framework from the literature. This will
be used to show its uniform consistency, that is, the LASSO estimator can be used for an initial estimator of the one-step
SCAD estimator in high dimensional settings. Further, we suggest the one-step SCAD estimator and provide model selection
consistency of the estimator in theory under high-level conditions in this general framework.

2. Settings, methods and theory

For this study,we take the general set-up of vandeGeer (2008). vandeGeer (2008) illustrated this set-upwith examples of
quadratic loss, negative log-likelihood, hinge loss and developed oracle inequalities for the LASSO. Here, we newly illustrate
that the set-up include quantile regression as a special case, which is one setting of our interests. In this section, we first
introduce the set-up that generalize high dimensional regression and theoretical results of the LASSO in the literature (e.g.,
Bühlmann & van de Geer, 2011; van de Geer, 2008). Then, we will consider a one-step SCAD penalized estimation and
establish theory about model selection consistency of the estimator by providing high level conditions under this unified
framework.
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For a data {Xi, Yi}ni=1 ⊂ χ × R, define the empirical and the theoretical means of a function g : χ × R→ R as

Pn(g) := 1
n

n∑
i=1

g(Xi, Yi)

P(g) := 1
n

n∑
i=1

E[g(Xi, Yi)|Xi],

respectively. Let (F, ‖·‖) be a normed space of functions on χ . Consider a loss function of f at xwith y

ρ(f )(x, y) ≡ ρ∗(f (x), y) where ρ∗ : R2 → R.

We assume ρ∗(·, y) is convex for each y. Note that ρ(·)(x, y) can be regarded as a function from F to R.
Consider regression settings, where Zi := (Xi, Yi) with response Yi ⊂ R and predictor Xi ∈ χ and f is a regression function.

The consideration includes the following examples:

1. Least Squares Regression: it uses quadratic loss

ρ(f )(·, y) = (y− f (·))2 where ρ∗(a, y) = (y− a)2.

2. Quantile Regression: it uses check loss

ρ(f )(·, y) = uτ (y− f (·)) where ρ∗(a, y) = uτ (y− a)

and uτ (z) = z(τ − I(z < 0)).
3. Logistic Regression: it uses logistic loss

ρ(f )(·, y) = −yf (·)+ log(1+ exp[f (·)]) where ρ∗(a, y) = −ya+ log(1+ exp(a)).

Let {ψj}pj=1 be a collection of (dictionary) functions on χ . For example, ψj(xi) = x(j)i in (conventional) linear regression.
Consider a linear subspace

F0 :=
⎧⎨⎩fβ (·) =

p∑
j=1

βjψj(·);β ∈ Rp

⎫⎬⎭
and assume

f 0 = argmin
f∈F

P(ρ(f )), f 0 = fβ0

with sparse β0. Note that for a given f , ρ(f ) is a real valued function on χ × R. We also define the excess risk as

ε(f ) := P(ρ(f )− ρ(f 0))

for f ∈ F . Note that ε(f ) ≥ 0 for all f ∈ F . Given a vector b = (b1, . . . , bp)# ∈ Rp and any S ⊂ {1, 2, . . . , p}, we write
bS = (bjI(j ∈ S) : j = 1, 2, . . . , p)# and define |S| as the cardinality of S. Denote the active set as S0 = {j : β0

j �= 0}.
We make following assumptions.

A1. ‘‘Parametric (generalized) linear models’’: F0, a linear subspace of F , contains the true minimizer f0 (among f ∈ F).
A2. ‘‘Sparsity’’: the f0 has a sparse representation β0 using the dictionaryψj, 1 ≤ j ≤ p, that is, the number |S0| of nonzero

coefficients is relatively small compared to p.
A3. ‘‘compatibility condition’’: there exists a constantΦ2

comp ≡ Φ(L, S0) > 0 such that

Φ2
comp‖βS0‖21 ≤ ‖fβ‖2|S0|

for all β ∈ Rp with ‖βSc0
‖1 ≤ L‖βS0‖1.

For simplicity, we assume A1. i.e., the true f 0 lies in F0. However, the analysis and results could be extended to mis-
specified cases where f 0 �∈ F0, as long as an approximation error of the minimizer f0 by a sparse representation in terms of
ψj is relatively small. Regarding A2, more detailed technical conditions on |S0|will be given below.

The compatibility condition in A3 is known as a quite weak assumption on design matrix compared to those for LASSO
such as the restricted isometry condition (Candès & Tao, 2005, 2007) and the restricted eigenvalue conditions (Bickel et
al., 2009). See Fig. 1 of van de Geer and Bühlmann (2009) and Section 6.13 of Bühlmann and van de Geer (2011). Without
loss of generality, define Φ2(L, S) = min{‖fβ‖2|S|/‖βS‖21 : ‖βSc‖1 ≤ L‖βS‖1}. As the true active set S0 is involved in the
definition of the compatibility constant Φ2

comp, it is infeasible to validate the assumption A3 in practice. However, the strict
positiveness of Φ2

comp is an irrestrictive and natural assumption to be imposed in the problem. This is required for the true
regression coefficient in order to be identifiable. Moreover, consider linear regression problem with ψj = x(j)i and further
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assume Σ̂SS = I and Σ̂Sc Sc = I for simplicity. Here, we let Σ̂ = X#X/nwith n× p design matrix X = [xij]. Given any subset
S ⊂ {1, . . . , p}, denote the n × |S| design matrix [xij : 1 ≤ i ≤ n, j ∈ S] using only covariates Xj, j ∈ S as XS . And define
Σ̂SS = X#S XS/n, Σ̂Sc Sc = X#ScXSc /n and Σ̂SSc = X#S XSc /n. Then,

Φ2(L, S) = min{β#Σ̂β · |S| : ‖βS‖1 = 1 ‖βSc‖1 ≤ L}.
Observe that

β#Σ̂β · |S| = |S|(β#S Σ̂SSβS + β#Sc Σ̂Sc ScβSc + 2β#S Σ̂SScβSc )

≥ |S|(‖βS‖22 + ‖βSc‖22 − 2ρ‖βS‖2‖βSc‖2)
≥ (1− ρ2),

where ‖ · ‖2 is the Euclidean norm of a vector and ρ = max{β#S X#S XScβSc : ‖XSβS‖2 = 1, ‖XScβSc‖2 = 1} is the
multiple correlation between XS and XSc . The last inequality follows from the facts that ‖βS‖22+‖βSc‖22− 2ρ‖βS‖2‖βSc‖2 ≥
(1 − ρ2)‖βS‖22 and ‖βS‖21 ≤ |S|‖βS‖22 by Cauchy–Schwarz inequality. Therefore, the compatibility assumption A3 holds
provided that the multiple correlation ρ with S = S0 is bounded away from one, that is, intuitively, a linear combination of
the active (relevant) variables XS0 cannot be recovered from the non-active (irrelevant) variables XSc0

.
Under these settings, the LASSO estimator is defined as

β̂ = argmin
β
{Pnρ(fβ)+ λ‖β‖1}, (2.1)

employing L1 penalty ‖β‖1 =
∑p

j=1|βj|. And write f̂ = f̂β. We introduce some concepts and review results of van de Geer
(2008) for the LASSO defined in (2.1), which will be also used later. Consider a ‘‘local neighborhood’’ Flocal ⊂ F of f 0. It
is said that the margin condition holds (with G) if there exists a strictly convex function G such that for all f ∈ Flocal,
ε(f ) ≥ G(

∥∥f − f 0
∥∥). Given a strictly convex function G on [0,∞) with G(0) = 0, define the convex conjugate H of G by

H(v) = supt{tv − G(t)} for v ≥ 0. Define ZM = max
β:
∥∥∥β−β0

∥∥∥
1
≤M
|(Pn − P)(ρ(fβ )− ρ(f 0))| and T (λ0,n) = {ZM0 ≤ λ0,nM0}with

M0 = H
(

4λ
√
s0

Φcomp

)
/λ0,n and s0 = |S0|. Then, for λ ≥ Bλ0,n with some constant B depending only on L, the LASSO estimator f̂

satisfies

ε(f̂ )+ λ

∥∥∥β̂ − β∗
∥∥∥
1
≤ 4H

(
4λ
√
s0

Φcomp

)
(2.2)

on the set T (λ0,n) provided that the assumptions A1–A3 hold. (see Bühlmann & van de Geer, 2011, for example). This is
non-asymptotic results for a certain range of (fixed) λ.

In this paper, we focus ‘‘quadratic margin conditions’’, with a quadratic function G. This corresponds to the case of
least square regression. Further, we will illustrate that it is satisfied in the considered examples of the paper under regular
conditions. For examples of general margin conditions, refer to Tsybakov and van de Geer (2005) and van de Geer (2008).

Remark 1 (Quadratic Margin Condition).

• For a quadraticmargin function,G, sayG(t) = t2/2 such as in least square regression, the convex conjugateH(v) = v2/2
is quadratic.

• We suppose that for some strictly positive function Γ on χ .

P(ρ(f )− ρ(f 0))(·) ≥ Γ (·)|f (·)− f 0(·)|2, ∀∥∥f − f 0
∥∥∞ ≤ η (2.3)

Assume that Γ (·) ≥ 1/K for some constant K . Then, it follows that for all
∥∥f − f 0

∥∥∞ ≤ η,

ε(f ) ≥ c
∥∥f − f 0

∥∥2
,

with c = 1/K . i.e. G(t) = ct2, so that H(v) = v2/(4c).

Remark 2 (Quadratic Approximation). We illustrate two important examples of which excessive risks allow quadratic
approximations. This approximation will be used later in a discussion about quadratic margin condition.

1. In quantile regression, consider

f = fβ(x) = x#β, f 0 = fβ0 (x) = x#β0.
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Let gY |X=x be the conditional density of Y conditioned on X = x with the corresponding (conditional) distribution
function GY |X=x. Observe that

E(uτ (Y − α)|X = x) = τ

∫ ∞

α

y gY |X=x(y)dy− (1− τ )
∫ α

−∞
y gY |X=x(y)dy

− τα(1− GY |X=x(α))+ (1− τ )αGY |X=x(α)

= τ

∫ ∞

−∞
y gY |X=x(y)dy−

∫ α

−∞
y gY |X=x(y)dy+ α(GY |X=x(α)− τ ).

This gives
∂

∂α
E(uτ (Y − α)|X = x) = GY |X=x(α)− τ

∂2

∂α2 E(uτ (Y − α)|X = x) = gY |X=x(α).

Therefore, the excessive risk can be computed as

ε(f ) = P(ρ(f )− ρ(f 0)) = E[(ρ(f )− ρ(f 0))(X, Y )|X = ·] ≈ gY |X (f 0)(f − f 0)2

for a function f near f0.
2. In logistic regression, recall that

ρ(f ) := −yf + log(1+ exp(f ))

f 0 = log
(

π0

1− π0

)
, π0(x) = P(Y = 1|X = x).

Then, for any function f near f0, the excessive risk is given as

ε(f ) = E
(
(ρ(f )− ρ(f 0))(X, Y )|X = ·) = −π (f − f 0)+ log(1+ ef )− log(1+ ef

0
)

≈ 1
2
(f − f 0)2π0(1− π0).

Under the quadratic margin condition when G is a quadratic function e.g., ct2 for some c > 0, the nonasymptotic result
(2.2) for the LASSO reduces to

ε(f̂ )+ λ

∥∥∥β̂ − β∗
∥∥∥
1
≤ 16λ2|S0|

cΦ2
comp

(2.4)

In other words, provided that

I. there exists a random sequence λ0,n such that ZM ≤ λ0,nM for anyM > 0 and λ0,n = Op(rn) with rn → 0;
II. the quadratic margin condition holds,

one has (2.4) in the sparse parametric (generalized) linear models with A1–A3. Later, this result will be used to prove∥∥∥β̂ − β∗
∥∥∥
1
= Op(rn|S0|/Φ2

comp) with λ % λ0,n, also see Remark 3. This further implies consistency of the LASSO if

rn|S0|/Φ2
comp → 0 as n → ∞. Typical stochastic order rn in I is n−1/2 up to a log-factor of p so that the l1 norm ‖β̂ − β∗‖1

of the LASSO estimator has the convergence rate of Op(n−1/2|S0|) (up to the log-factor) provided thatΦ2
comp is bounded away

from zero. The rate order n−1/2|S0| could be obtained if the true active set S0 were known.

Example 1. Wewill illustrate that the above two conditions I and II are satisfied under some regular conditions in the each
example considered.

1. (Quantile regression) For simpler illustration, consider p = O(nα) for some 0 ≤ α < 1/2. Then, one has Lemma A.1
and the fact (A.10) in Lee, Noh, and Park (2014b) under some regular conditions. This gives

ZM = max
β:‖β−β0‖1≤M

|(Pn − P)(ρ(fβ )− ρ(f 0))|

≤ max
1≤j≤p

∣∣∣∣∣∣∣
2
n

n∑
i=1

ψj(xi) I(τ − I(Yi − f 0(xi) < 0))︸ ︷︷ ︸
:=εi

∣∣∣∣∣∣∣×M,

for any β : ‖β−β0‖ ≤ M , and take λ0,n = 2max1≤j≤p
∣∣ 1
n

∑n
i=1ψj(xi)εi

∣∣. Notice that E(εi) = 0. The stochastic order rn of
λ0,n can be obtained under regular conditions, e.g., rn = √log p/n, applying standard concentration inequalities. And
as �̈(a, x) = gY |X=x(f 0(x)) where gY |X=x is the conditional density of Y given x, the quadratic margin condition, that is,
II holds provided that gY |X=x(f 0(x)) > 0.
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2. (Logistic regression) Let

ρ(f )(·, y) = −yf (·)+ log(1+ exp[f (·)]).
Define π (·) := P(Y = 1|X = ·). Then,

�(a, x) = E[−ya+ log(1+ exp(a))|X = ·] = −aπ (x)+ log(1+ exp(a)).

Hence,

argmin
a

�(a, x) = log
(

π0(x)
1− π0(x)

)
:= f 0(x).

The first condition I with choice λ0,n = max1≤j≤p|∑n
i=1ψj(xi)εi|/n holds because of

ZM = max
β:‖β−β0‖1≤M

|(Pn − P)(ρ(fβ )− ρ(f 0))| ≤ max
1≤j≤p

|
n∑

i=1

(yi − π0(xi))︸ ︷︷ ︸
:=εi

ψj(xi)|/n×M.

By a similar calculation as the above quantile case, one can get the order rn of λ0,n. Moreover, we have �̈(a, x) =(
ea

1+ea

)
×
(
1− ea

1+ea

)
.We find for some constant c ′ > 0,

Γ (·) ≥ (1− π0(x)) ∧ π0(x)
c ′

.

Assume π0(x) is uniformly bounded away from zero and 1, so that Γ (x) ≥ c for all x and some c > 0. Therefore, the
quadratic margin with G(t) = ct2 holds.

Remark 3 (Uniform Consistency of the LASSO). From (2.4), observe that∥∥∥β̂ − β0
∥∥∥
1
=

p∑
j=1

|β̂j − β0
j | ≤

16λ|S0|
cΦ2

comp
.

If rn|S0|/cΦ2
comp → 0 with choosing λ % λ0,n = Op(rn), then thus, the LASSO estimator is consistent uniformly for 1 ≤ j ≤ p

and maxj=1,...,p|β̂j − β0
j | = Op(rn|S0|/Φ2

comp).

As long as a consistent estimator β̃j uniformly for 1 ≤ j ≤ p is given for a pilot estimator e.g. the LASSO estimator for high
dimensional cases, then we propose the following one-step SCAD estimator for consistent model selection:

β̂ = argmin Pnρ(fβ)+
p∑

j=1

wn,j|βj| (2.5)

where wn,j = Pλ(|β̃j|) and Pλ is the derivative of the SCAD penalty function at (1.1) with penalty parameter λ.

Remark 4. When the loss is the quadratic loss in least square regression, the estimator (2.5) is equal to the SCAD penalized
estimator computed from the calibrated CCCP algorithm proposed by Wang et al. (2013). In this sense, our proposal is an
extension ofWang et al. (2013) to these general set-ups and our study will give some high-level conditions for the estimator
to be working in the set-ups.

For simplicity, assume S0 = {1, 2, . . . , s0}. Define the oracle estimator β̂
∗ = (β̂

ora
, 0) by taking the unpenalized estimator

β̂
ora

using only the relevant Xj, j = 1, 2, . . . , s0 for its first s0 components and setting zeros for the remaining ones. That is,

β̂
ora = arg min

b∈Rs0
Pnρ(fS0,b), (2.6)

where we define fS0,b =
∑s0

j=1ψjbj for any b = (b1, . . . , bs0 )
#. And let f̂ ∗ = f

β̂
∗ and δ = infj∈S0 |β0

j |. Define Cn(β) = Pnρ(β).
Note that the functionC is convex by convexity of the loss functionρ∗. Let ∂Cn(β) = {t : Cn(b) ≥ Cn(β)+(b−β)#t, for any b}.
Then, any vector s(β) ∈ ∂Cn(β) is a sub-gradient of Cn(·) at a point β. In order to enable model selection consistency for our
proposal (2.5), we make one additional assumption:

III. max1≤j≤p|sj(β̂∗)| = Op(bn) for any s(β̂
∗
) = (s1(β̂

∗
), s2(β̂

∗
), . . . , sp(β̂

∗
))# ∈ ∂Cn(β̂

∗
),

where bn → 0 is some decreasing sequence as n tends to infinity.

Remark 5. If the (convex) loss ρ is differentiable as in least squares and logistic regression, then a sub-gradient
s(β̂

∗
) ∈ ∂Cn(β̂

∗
) is the gradient of Cn(·) at β̂

∗
. Then, sj(β̂

∗
) = −2

∑n
i=1(Yi − f̂ ∗)ψj(xi)/n in least square regression and
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i=1ψj(xi)(yi−π̂∗(xi))/nwith π̂∗ = exp(f̂ ∗)/(1+exp(f̂ ∗)).Notice thatmax1≤j≤p|sj(β0)| is equal to λ0,n defined in Example 1,

which is of Op(rn), rn → 0 as n → ∞ under the condition I. Thus, the condition III is satisfied provided that the oracle
estimator is close to the true i.e., f̂ ∗ ≈ f 0 (in a certain sense).

Consider the case of quantile regression,where the check lossρ is non-differentiable. Any sub-differential s(β̂
∗
) ∈ ∂Cn(β̂

∗
)

of this loss Cn has of the form

sj(β̂
∗
) =− τ

n

n∑
i=1

ψj(xi)I(Yi − f̂ ∗ > 0)+ 1− τ

n

n∑
i=1

ψj(xi)I(Yi − f̂ ∗ < 0)

− 1
n

n∑
i=1

ψj(xi)νiI(Yi − f̂ ∗ = 0), 1 ≤ j ≤ p

for νi ∈ [τ − 1, τ ]. Then, there exists a decreasing sequence bn → 0 such that max1≤j≤p|sj(β̂∗)| = Op(bn) (under some
technical conditions), e.g., by using similar techniques as in the proof of Lemma 2.3 in Wang et al. (2012).

Theorem 1. Assume the condition III holds and that the pilot estimator β̃ used for the estimator at (2.5) is consistent uniformly
for 1 ≤ j ≤ p withmax1≤j≤p|β̃j−β0

j | = Op(an) for some decreasing sequence an → 0. And if max{an, bn}/λ→ 0 and λ/δ→ 0,
then the following properties hold:

i. β̂j = 0 for j �∈ S0;
ii. its nonzero part β̂S0 is same as β̂

ora
,

with probability tending to one as n tends to infinity.

Proof. From the assumptions that max1≤j≤p|β̃j − β0
j | = Op(an), an/λ → 0 and λ/δ → 0, one has maxj�∈S0 |β̃j| � λ and

minj∈S0 |β̃j| > δ/2 with a probability tending to 1. Therefore, without loss of generality, we assume that

wn,j = λ for j �∈ S0 and wn,j = 0 for j ∈ S0. (2.7)

From (2.6), there exists a vector s∗ = (s∗1, . . . , s
∗
p) ∈ ∂C(β̂

∗
) such that s∗j = 0 for 1 ≤ j ≤ s0 by convex optimization theory.

This further implies

Cn(β̂)− Cn(β̂
∗
) ≥

p∑
j=s0+1

s∗j (β̂j − β̂∗j ) (2.8)

From the facts (2.7)–(2.8), one gets

0 ≥ Pnρ(fβ̂)− Pnρ(fβ∗ )+ λ
∑
j�∈S0
|β̂j|

≥ (−max
j
|s∗j | + λ)

∑
j�∈S0
|β̂j|.

This together with the condition III and bn � λ implies that with a probability approaching to one,

β̂j = 0, j �∈ S0,

consequently, the second property in ii holds because of (2.7). �

Remark 6. Theorem 1 requires a slight stronger property than (uniform) consistency for an initial estimator β̃. As long
as β̃ has some (decreasing) order of the rate of convergence, our proposed method works in theory. In cases with slowly
increasing p where the unpenalized estimator is consistent and its order of the convergence rate is given, the unpenalized
estimator is one choice for initial estimator. And in high dimensional cases where the unpenalized estimator is not working,
the LASSO estimator (2.1) discussed previously can be used.

Tuning parameter selection is also important for performance of penalized estimators such as (2.5). Bayesian information
Criterion (BIC) has been used as a criterion for a traditional problem of subset selection in regression. Recently, some studies
suggested that the BIC is applicable to a problem of selecting penalty parameter for penalized methods, which guarantees
theoretical consistency in model selection in fixed dimensional regression (Wang & Leng, 2007; Wang, Li, & Tsai, 2007;
Zhang et al., 2010). However, it was observed that this ordinary BIC tends to overfit in high dimensional cases, thus, there
have been several remedieswith somehigh dimensional adjustments proposed for such cases (e.g., Chen&Chen, 2008, 2012;
Lee, Noh, & Park, 2014a; Wang, Li, & Leng, 2009). We call them high-dimensional BIC. They can be also seen as a generalized
information criterion for model selection (see Kim, Kwon, & Choi, 2012, for example). The current theory of BICs discusses
about a model selection consistency for the selection of the penalty parameter λ̂ by the BIC. This means that the selected set
Ŝ(λ̂) = {j : β̂j(λ̂) �= 0} by β̂(λ̂) is equal to S0 with a probability tending to one as n→∞ under some regularity conditions.
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3. Numerical evidences

In order to investigate the finite sample performance of the one-step SCAD estimator defined at (2.5), we conducted some
simulations. For this, we consider the following simulated scenarios:

• Scenario 1 (LS regression model)
Yi = X#i β + εi, i = 1, . . . , nwith εi ∼ N(0, 1);

• Scenario 2 (Logistic regression model)
Yi|Xi ∼ Bernoulli(π (Xi)), i = 1, . . . , nwith log

(
π (Xi)

1−π (Xi)

)
= X#i β i.e., π (Xi) = exp(X#i β)/(1+ exp(X#i β));

• Scenario 3 (Quantile regression model)
Yi = X#i β + εi, i = 1, . . . , nwith εi ∼ t(2).

Here, we set the coefficient β, the number of covariates p and the numberM of Monte Carlo replications as follows:

• Coefficients:

C1 β1 = 3, β2 = 1.5, β5 = 2 and βj = 0 for j �∈ {1, 2, 5};
C2 βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5. Here first two βj are same as in ‘‘C1’’.

• We set p to 100,200, and 400.
• Xi = (X1

i , . . . , X
p
i )
# are generated from aMVNwith mean 0 and covariance matrixΣ = (σj1,j2 ) with σj1,j2 = 0.5|j1−j2|.

• M = 200.

The true active set S0 is {1, 2, 5} and {1, 2, 3, 4, 5} in our simulation models with the coefficient ‘‘C1’’ and ‘‘C2’’, respectively.
When assessing model selection performance, the selected set Ŝ is called as correct fit if it is equal to the true active set,
i.e., Ŝ = S0. It is said to overfit (underfit) if Ŝ � S0 (Ŝ �⊃ S0).

We first computed the LASSO estimator (2.1) then obtained the final one-step SCAD estimator (2.5) using the LASSO for
an initial estimator. In (2.1) and (2.5), the loss ρ is taken as the quadratic loss, negative logistic likelihood, check loss function
with the quantile level τ = 0.5 for Scenarios 1–3, respectively. The numerical implementation for computing the estimators
(2.1) and (2.5) was done via the R function ‘glmnet’ in the first two cases with the sum of squares and logistic likelihood and
via the R linear programming solver ’Rglpk_ solve_ LP ’ in the last case with check loss. In the simulations, we used the cross
validated estimates of prediction errors for tuning parameter selection of (2.1) and we chose the penalty parameter λ for
(2.5) by minimizing high dimensional BICs.

In this simulation study, we consider two types of high dimensional BICs. First one is the high-dimensional BIC proposed
by Chen and Chen (2008). Precisely, it is

H-BIC1(λ) = log

(
n∑

i=1

(yi − f̂λ(xi))2
)
+ log n

n
|Ŝ(λ)| + 2γ

n
log

(
p

|Ŝ(λ)|
)
;

= n−1(−yi × f̂λ(xi)+ log(1+ exp(f̂λ(xi))))+ log n
2n

|Ŝ(λ)| + γ

n
log

(
p

|Ŝ(λ)|
)
;

= log

(
n∑

i=1

u0.5(yi − f̂λ(xi))

)
+ log n

2n
|Ŝ(λ)| + γ

n
log

(
p

|Ŝ(λ)|,
)

in Scenarios 1–3, respectively. Here, Ŝ(λ) = {j : β̂j(λ) �= 0} is the selected set by the penalized estimator β̂j(λ), j = 1, . . . , p
using the penalty parameter valueλ, which is defined at (2.5).When γ = 0, it becomes the ordinary BIC, named ‘‘O-BIC’’ here.
The additional term, which appears last of H-BIC2, is derived from the prior on the collection of submodels using s(= |Ŝ(λ)|)
variables. For high dimensional BIC, we tried the same choices γ = 0.5, 1 as in the simulation study of Chen and Chen (2008)
but we reported the results with γ = 1 for shorten the length. As the value of γ in H-BIC1 increases, the penalty term on
model complexity in this high dimensional BIC gets larger so that it tends to select a model of smaller size. So, the H-BIC1
with the choice of γ = 0.5 gives selection results between the reported results of O-BIC andH-BIC1with γ = 1. Additionally,
we consider the type considered in Lee et al. (2014a) and Wang et al. (2009). This is defined as

H-BIC2(λ) = log

(
n∑

i=1

(yi − f̂λ(xi))2
)
+ Cn

log n
n
|Ŝ(λ)|;

= n−1(−yi × f̂λ(xi)+ log(1+ exp(f̂λ(xi))))+ Cn
log n
2n

|Ŝ(λ)|

= log

(
n∑

i=1

u0.5(yi − f̂λ(xi))

)
+ Cn

log n
2n

|Ŝ(λ)|
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Table 1
Scenario 1: n = 200 and β1 = 3, β2 = 1.5, β5 = 2 and βj = 0 for j �∈ {1, 2, 5}.
p BIC type C O U NC NIC

p = 100
O-BIC 43.5 56.5 0.0 3.00 1.09
H-BIC1 72.0 28.0 0.0 3.00 0.33
H-BIC2 88.0 12.0 0.0 3.00 0.13

p = 200
O-BIC 37.5 62.5 0.0 3.00 1.33
H-BIC1 74.0 26.0 0.0 3.00 0.34
H-BIC2 88.0 12.0 0.0 3.00 0.13

p = 400
O-BIC 43.0 57.0 0.0 3.00 1.08
H-BIC1 83.5 16.5 0.0 3.00 0.18
H-BIC2 93.5 6.5 0.0 3.00 0.07

Table 2
Scenario 2: n = 200 and β1 = 3, β2 = 1.5, β5 = 2 and βj = 0 for j �∈ {1, 2, 5}.
p BIC type C O U NC NIC

p = 100
O-BIC 35.5 64.0 0.5 3.00 1.27
H-BIC1 65.5 33.5 1.0 3.00 0.43
H-BIC2 81.0 10.0 9.0 2.87 0.12

p = 200
O-BIC 31.5 68.5 0.0 3.00 1.40
H-BIC1 73.5 26.0 0.0 3.00 0.33
H-BIC2 86.5 1.5 12.0 2.81 0.02

p = 400
O-BIC 43.5 56.5 0.0 3.00 0.97
H-BIC1 81.0 17.5 1.5 3.00 0.20
H-BIC2 80.0 3.0 17.0 2.72 0.03

Table 3
Scenario 3: n = 200 and β1 = 3, β2 = 1.5, β5 = 2 and βj = 0 for j �∈ {1, 2, 5}.
p BIC type C O U NC NIC

p = 100
O-BIC 89.0 11.0 0.0 3.00 0.19
H-BIC1 96.0 4.0 0.0 3.00 0.05
H-BIC2 99.0 1.0 0.0 3.00 0.01

p = 200
O-BIC 87.0 13.0 0.0 3.00 0.15
H-BIC1 96.5 3.5 0.0 3.00 0.04
H-BIC2 99.0 1.0 0.0 3.00 0.01

p = 400
O-BIC 67.5 32.5 0.0 3.00 42.07
H-BIC1 92.5 7.5 0.0 3.00 9.81
H-BIC2 99.0 1.0 0.0 3.00 0.01

Table 4
Scenario 1: n = 200 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 13.5 86.5 0.0 5.00 4.64 1.00 1.00 1.00 1.00 1.00
H-BIC1 23.0 77.0 0.0 5.00 2.74 1.00 1.00 1.00 1.00 1.00
H-BIC2 49.5 50.5 0.0 5.00 0.95 1.00 1.00 1.00 1.00 1.00

p = 200
O-BIC 18.0 82.0 0.0 5.00 5.65 1.00 1.00 1.00 1.00 1.00
H-BIC1 35.0 65.0 0.0 5.00 2.14 1.00 1.00 1.00 1.00 1.00
H-BIC2 57.0 43.0 0.0 5.00 0.75 1.00 1.00 1.00 1.00 1.00

p = 400
O-BIC 17.5 82.5 0.0 5.00 6.19 1.00 1.00 1.00 1.00 1.00
H-BIC1 37.0 63.0 0.0 5.00 2.23 1.00 1.00 1.00 1.00 1.00
H-BIC2 61.5 38.5 0.0 5.00 0.68 1.00 1.00 1.00 1.00 1.00

for Scenarios 1–3. The (positive) constant Cn →∞ is an adjustment constant for high dimension, i.e., it is increasing with n.
Notice that H-BIC2 with Cn = 1 corresponds to O-BIC. In the simulations, we took Cn = log p as the practical choice of Lee et
al. (2014a).

First, consider the setting with the coefficient ‘‘C1’’. This choice of coefficients is same as in Examples 1–2 of Zou and
Li (2008). We set the sample size n = 200 and p = 100, 200, 400. Tables 1–3 summarize model selection results for
the penalized estimator (2.5) in all the considered scenarios. They report the percentage (over M = 200 Monte Carlo
replications) whether the final set Ŝ(λ̂) with the selected parameter λ̂ (by the BIC) is correct fit (C), overfits (O), and underfits
(U), respectively. And they show the averaged numbers of correctly and incorrectly selected covariates, i.e.,

∑p
j=1I(β̂j �=

0, βj �= 0) and
∑p

j=1I(β̂j �= 0, βj = 0), over 200 iterations, named NC and NIC, respectively. From the tables, it is easily
seen that the use of O-BIC for our penalized estimator (2.5) results in overfitting in all the high dimensional scenarios, as also
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Table 5
Scenario 2: n = 200 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 17.5 33.5 49.0 4.47 1.08 1.00 1.00 1.00 0.91 0.57
H-BIC1 25.5 8.0 66.5 4.19 0.22 1.00 1.00 0.96 0.86 0.37
H-BIC2 8.0 0.0 92.0 3.30 0.01 1.00 0.94 0.76 0.49 0.12

p = 200
O-BIC 15.5 26.5 58.0 4.38 0.90 1.00 1.00 0.97 0.91 0.51
H-BIC1 18.0 13.0 69.0 4.15 0.36 1.00 1.00 0.94 0.83 0.39
H-BIC2 2.0 0.0 98.0 2.86 0.00 0.97 0.88 0.60 0.36 0.06

p = 400
O-BIC 11.5 21.5 67.0 4.23 0.94 1.00 1.00 0.97 0.83 0.44
H-BIC1 9.5 2.0 88.5 3.67 0.07 1.00 1.00 0.85 0.63 0.19
H-BIC2 0.0 0.0 100.0 2.35 0.00 0.90 0.76 0.47 0.19 0.02

Table 6
Scenario 3: n = 200 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 52.0 41.0 7.0 4.93 0.73 1.00 1.00 1.00 0.99 0.94
H-BIC1 64.0 11.5 24.5 4.75 0.16 1.00 1.00 1.00 0.98 0.77
H-BIC2 48.5 2.0 49.5 4.42 0.03 1.00 1.00 0.95 0.92 0.55

p = 200
O-BIC 44.0 41.5 14.5 4.85 0.72 1.00 1.00 1.00 1.00 0.86
H-BIC1 62.0 9.0 29.0 4.69 0.11 1.00 1.00 0.98 0.99 0.72
H-BIC2 43.0 1.0 56.0 4.30 0.01 1.00 1.00 1.00 1.00 0.86

p = 400
O-BIC 34.5 50.5 15.0 4.85 43.11 1.00 1.00 1.00 0.98 0.88
H-BIC1 57.0 9.0 34.0 4.64 5.89 1.00 1.00 0.99 0.96 0.70
H-BIC2 39.0 0.5 60.5 4.21 0.01 1.00 1.00 1.00 0.83 0.45

Table 7
Scenario 1: n = 400 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 20.5 79.5 0.0 5.00 2.21 1.00 1.00 1.00 1.00 1.00
H-BIC1 24.5 75.5 0.0 5.00 1.70 1.00 1.00 1.00 1.00 1.00
H-BIC2 42.5 57.5 0.0 5.00 0.93 1.00 1.00 1.00 1.00 1.00

p = 200
O-BIC 14.5 85.5 0.0 5.00 3.59 1.00 1.00 1.00 1.00 1.00
H-BIC1 30.5 69.5 0.0 5.00 2.10 1.00 1.00 1.00 1.00 1.00
H-BIC2 53.5 46.5 0.0 5.00 0.84 1.00 1.00 1.00 1.00 1.00

p = 400
O-BIC 16.5 83.5 0.0 5.00 5.12 1.00 1.00 1.00 1.00 1.00
H-BIC1 36.5 63.5 0.0 5.00 2.08 1.00 1.00 1.00 1.00 1.00
H-BIC2 61.5 38.5 0.0 5.00 0.56 1.00 1.00 1.00 1.00 1.00

Table 8
Scenario 2: n = 400 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 27.0 62.5 10.5 4.90 1.55 1.00 1.00 1.00 0.99 0.91
H-BIC1 55.0 30.0 15.0 4.85 0.46 1.00 1.00 1.00 0.98 0.87
H-BIC2 63.5 0.02 34.5 4.62 0.02 1.00 1.00 1.00 0.94 0.69

p = 200
O-BIC 22.5 65.0 12.5 4.88 1.54 1.00 1.00 1.00 0.98 0.90
H-BIC1 50.0 18.0 32.0 4.68 0.24 1.00 1.00 1.00 0.97 0.71
H-BIC2 42.5 1.5 56.0 4.33 0.02 1.00 1.00 0.98 0.87 0.48

p = 400
O-BIC 23.0 58.0 19.0 4.81 1.36 1.00 1.00 1.00 0.99 0.83
H-BIC1 54.0 11.5 34.5 4.64 0.18 1.00 1.00 1.00 0.95 0.70
H-BIC2 34.5 0.0 65.5 4.13 0.00 1.00 1.00 0.96 0.78 0.39

reported in the literature (e.g., Chen & Chen, 2008; Lee et al., 2014a). In contrast, the penalized estimator (2.5) with penalty
parameter selection by the high dimensional BICs seem to work quite well in terms of model selection.

For a further investigation we take settings with the coefficients ‘‘C2’’, where βj for 1 ≤ j ≤ 5 decay at a rate j−1. Note
that β5 = 0.6, which means that the distinction problem of nonzero coefficient from zeros gets more difficult than in the
casewith ‘‘C1’’. We tried several values of n. Tables 4–11 describe how the penalized estimator (2.5) works. In addition to the
previously reported numbers, we present the proportions (over M = 200 replications) of the cases in which Xj is selected,
i.e., β̂j �= 0 (1 ≤ j ≤ 5). With small sample sizes, the performance of the estimator seems not good as in ‘‘C1’’. Additionally,
it was observed that how it behaves depend on the type of loss ρ, i.e., which scenario, quite much. When the sample size
is relatively small, the estimator (2.5) tends to overfit (even with the high dimensional BICs) in Scenario 1 (LS regression),
whereas the proportion of underfit gets inflated in the other Scenarios 2–3 (Logistic and Quantile regression). However, a
high dimensional BIC behaves pretty well over all the scenarios as the sample size increases, for example, see Tables 10 and
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Table 9
Scenario 3: n = 400 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 68.5 31.5 0.0 5.00 0.47 1.00 1.00 1.00 1.00 1.00
H-BIC1 88.0 11.0 1.0 4.99 0.14 1.00 1.00 1.00 0.99 0.87
H-BIC2 90.0 0.00 10.0 4.90 0.00 1.00 1.00 1.00 1.00 0.91

p = 200
O-BIC 66.5 33.5 0.0 5.00 0.55 1.00 1.00 1.00 1.00 1.00
H-BIC1 91.5 6.5 2.0 4.98 0.07 1.00 1.00 1.00 1.00 0.99
H-BIC2 82.5 0.0 17.5 4.83 0.00 1.00 1.00 1.00 0.99 0.84

p = 400
O-BIC 66.0 34.0 1.0 5.00 0.48 1.00 1.00 1.00 1.00 1.00
H-BIC1 84.0 14.0 3.0 4.98 0.16 1.00 1.00 1.00 1.00 0.98
H-BIC2 80.0 0.0 20.0 4.80 0.00 1.00 1.00 1.00 1.00 0.79

Table 10
Scenario 1: n = 1000 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 65.0 35.0 0.0 5.00 0.58 1.00 1.00 1.00 1.00 1.00
H-BIC1 85.5 14.5 0.0 5.00 0.16 1.00 1.00 1.00 1.00 1.00
H-BIC2 97.5 2.5 0.0 5.00 0.03 1.00 1.00 1.00 1.00 1.00

p = 200
O-BIC 61.5 38.5 0.0 5.00 0.59 1.00 1.00 1.00 1.00 1.00
H-BIC1 86.5 13.5 0.0 5.00 0.03 1.00 1.00 1.00 1.00 1.00
H-BIC2 97.0 3.0 0.0 5.00 0.03 1.00 1.00 1.00 1.00 1.00

p = 400
O-BIC 65.0 35.0 0.0 5.00 0.55 1.00 1.00 1.00 1.00 1.00
H-BIC1 85.0 15.0 0.0 5.00 0.16 1.00 1.00 1.00 1.00 1.00
H-BIC2 93.0 7.0 0.0 5.00 0.08 1.00 1.00 1.00 1.00 1.00

Table 11
Scenario 2: n = 1000 and βj = 3/j for j = 1, 2, . . . , 5 and βj = 0 for j > 5.

p H-BIC C O U NC NI X1 X2 X3 X4 X5

p = 100
O-BIC 20.5 79.0 0.5 5.00 1.87 1.00 1.00 1.00 1.00 0.99
H-BIC1 38.5 61.0 0.5 5.00 0.91 1.00 1.00 1.00 1.00 0.99
H-BIC2 86.5 12.0 1.5 4.99 0.13 1.00 1.00 1.00 1.00 0.99

p = 200
O-BIC 15.5 84.0 0.5 5.00 1.80 1.00 1.00 1.00 1.00 1.00
H-BIC1 37.0 62.5 0.5 5.00 0.82 1.00 1.00 1.00 1.00 1.00
H-BIC2 92.5 2.5 5.0 5.00 0.82 1.00 1.00 1.00 1.00 1.00

p = 400
O-BIC 21.5 78.0 0.5 5.00 1.94 1.00 1.00 1.00 1.00 1.00
H-BIC1 47.5 50.5 2.0 4.98 0.67 1.00 1.00 1.00 1.00 0.90
H-BIC2 93.0 1.5 5.5 4.95 0.02 1.00 1.00 1.00 1.00 0.95

11 when n = 1000 (for Scenarios 1–2) and Table 9 when n = 400 (for Scenarios 3). In Scenario 3, we do not report results
with n = 1000 in the paper because it works well enough when n = 400. But, this good performance might depend on a
choice of BIC. Note that even if considering a type, e.g., H-BIC2, one should choose a value of Cn in practice though a wide
range of Cn is known to work in theory. A good choice seems to be dependent on the setting, as also seen in Lee et al. (2014a).
This is an important issue for good finite sample results of the estimator (2.5) and it deserves to a future investigation.
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