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a b s t r a c t

In this paper, a newestimationprocedure based on composite quantile regression and func-
tional principal component analysis (PCA) method is proposed for the partially functional
linear regression models (PFLRMs). The proposed estimation method can simultaneously
estimate both the parametric regression coefficients and functional coefficient components
without specification of the error distributions. The proposed estimation method is shown
to be more efficient empirically for non-normal random error, especially for Cauchy error,
and almost as efficient for normal random errors. Furthermore, based on the proposed
estimation procedure,we use the penalized composite quantile regressionmethod to study
variable selection for parametric part in the PFLRMs. Under certain regularity conditions,
consistency, asymptotic normality, and Oracle property of the resulting estimators are
derived. Simulation studies and a real data analysis are conducted to assess the finite
sample performance of the proposed methods.

© 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of technology in computation and measurement, scientists usually possess data containing
information about curves, surfaces, or something else varying with continuous variables. Data with such type of structure,
termed as functional data, have attracted great interests in various fields, such as biomedical studies, finance, environmental
science, and engineering. Therefore,many useful statisticalmodels have been proposed by taking into account the functional
feature of such data. For example, Yao, Müller, and Wang (2005) proposed a functional linear model (FLM) to analyze the
primary biliary cirrhosis data. Müller and Stadtmüller (2005) presented a generalized functional regression linearmodel and
applied it to discriminate between short-lived and long-lived medflies. Sentürk and Müller (2010) proposed a functional
varying coefficient model which included a smooth history index function to capture the effects of the recent past of the
predictor on current response. An extensive review of functional data analysis can be found in Greven and Scheipl (2017),
Horváth and Kokoszka (2012), Morris (2015) and Ramsay and Silverman (2002, 2005). In recent years, partially functional
linear models, as a special model for functional data, have been extensively investigated. Based on mean regression,
Shin (2009) developed estimation methods for the finite parameter and functional slope parameter, and established the
asymptotic properties of the resulting estimators. Further, Lu, Du, and Sun (2014) extended the result of Shin (2009) to
quantile regression. Kong, Xue, Yao, and Zhang (2016) studied variable selection for partially function models. For more
recent developments, the interested readers can refer to Reiss, Goldsmith, Shang, and Ogden (2017) and Wang, Chiou, and
Müller (2016).
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In addition, since first proposed by Koenker and Bassett (1978), quantile regression has emerged as an important
statistical methodology. By estimating various conditional quantile functions, quantile regression differs from classical least
squares regression in that, it shifts the focus away from analyzing the effects of covariates on the conditional mean to study
their effects on location, scale, and shape of the distribution of the response variable. It has been used in wide range of
applications including economics, biology and finance. A comprehensive review of the theory andmost recent developments
of quantile regression can be found in Koenker (2005). Intuitively, the composite quantile regression (CQR) should provide
estimation efficiency gain over a single quantile regression, see Zou and Yuan (2008). A composite quantile regressionmodel
assumes that there exist common covariate effects in a range of quantiles such that the quantile levels only differ in terms
of the intercept. From a more general regression perspective, composite quantile regression seeks to model a set of parallel
regression curves, and thus it can be viewed as a compromise between a set of quantile regression curves with different
intercepts and slopes and a single summary regression curve. Kai, Li, and Zou (2010) proposed the local polynomial CQR
estimators for estimating the nonparametric regression function and its derivative. It is shown that the local CQR method
can significantly improve the estimation efficiency of the local least squares estimator for commonly-used non-normal
error distributions. Furthermore, Kai, Li, and Zou (2011) studied semiparametric CQR estimates for semiparametric varying-
coefficient partially linearmodel. They compared CQRwith least squares andquantile regression, and the results showed that
CQR outperformed both least squares and quantile regression. Although there is a growing literature on CQR, it is relatively
sparse for partially functional linear models. It is therefore our impetus for applying CQR method to partially functional
linear regression models. Under mild conditions, we establish asymptotic normality for the estimators of the parametric
components, and obtain the rate of convergence for the estimator of the slope function.

It is well known that variable selection is a crucial issue in regression analysis. In practice, a number of variables are
available in an initial analysis, but many of them may not be significant and should be excluded from the final model to
increase the accuracy of the prediction. Traditional variable selection methods such as stepwise regression and best subset
selection are computationally infeasible when the number of predictors is large. Therefore, various shrinkagemethods, such
as the LASSO (Tibshirani, 1996), the adaptive LASSO (Zou, 2006) and the SCAD (Fan & Li, 2001), have gained much attention
in recent years. Just as in ordinary data analysis, variable selection is also an important aspect in functional data analysis.
The functional data suffers from high dimensionality and multicollinearity among functional predictors. This could lead
us to wrong model selection and hence wrong scientific conclusions. Collinearity also gives rise to issues of over-fitting
and model misidentification. So it is very important to perform variable selection for regression model with a functional
covariate. With sparsity, variable selection effectively identifies the subset of significant predictors, which improves the
estimation accuracy and enhances themodel interpretability. However, in the presence of outlierswhich are curves deviating
from the remaining functional data, identifying significant scalar covariates effectively and correctly becomes even more
challenging. Most recently, there has been increasing research work in variable selection for functional predictors in
functional regression models. For example, Matsui and Konishi (2011) considered applying group SCAD regularization to
the functional regression model with functional predictors and a scalar response, accomplishing parameter estimation
and model selection simultaneously. Lian (2013) proposed a regularization method for shrinkage estimation of multiple
functional linear regression models, and showed that it is consistent in estimation and variable selection. Gertheiss, Maity,
and Staicu (2014) considered a penalized likelihood approach that combines selection of the functional predictors with
estimation of the smooth effects for the chosen subset of predictors. Huang, Zhao, Wang, and Wang (2016) developed
robust variable selection for functional multiple linear model based on penalized the least absolute deviation loss function.
Using group-Lasso, Pannu and Billor (2017) proposed variable selection for functional multiple linear model via group Lasso
penality.

Aneiros, Ferraty, and Vieu (2015) considered the variable selection for partially functional linear models with diverging
number of covariates, and obtained the oracle property of the resulting variable selection method as well as the rate of
convergence of estimator for the nonparametric slope function. Furthermore, Kong et al. (2016) developed the variable
selection for partially functional linearmodelswith ultra-high dimensional scalar predictors, and established the consistency
andoracle properties of the resultingmethodunder proper choices of the penalty functions and the regularizationparameter.
In addition, Yao, Sue-Chee, and Wang (2017) proposed variable selection for partially functional quantile regression, and
established the large sample properties of the proposed method. However, the effectiveness of these methods may be
lessened in the presence of outliers. Since the above mentioned variable selection techniques except Yao et al. (2017) are
all based on minimizing the penalized residual sum of squares, they are known to be non-robust in nature. Thus, there is a
need for a robust and highly effective variable selection method for the partially functional linear regression model.

In this paper, we intend to develop an estimation and variable selection method for partially functional linear regression
models based on the composite quantile. Under some regularity conditions, we obtain the optimal convergence rate of the
functional coefficient and establish the asymptotic normality of parametric component. Deriving the asymptotic properties
of the penalized estimator is very challenging as we need to simultaneously deal with the non-smooth loss function and
the functional predictor. To tackle these challenges, we combine the quadratic approximation with the functional principal
component analysis.

The remainder of this paper is organized as follows. In Section 2, we first introduce the partially functional linear
regression model, and propose the estimation and variable selection procedures for PFLRMs. Then, the large sample
properties of the proposed estimators are given. Section 3 contains the simulation studies. Section 4 presents a real data
analysis. Final remarks are given in Section 5. All the conditions and technical proofs are deferred to the Appendix.
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2. Estimation and variable selection

2.1. Partially functional linear regression model

Consider the following partially functional linear regression model:

Y =
∫
T
β(t)X(t)dt + ZT θ + ε, (1)

where Y is a real-valued random variable defined on a probability space (Ω,B, P), Z = (Z1, . . . , Zp)T is a p-dimensional
random vector, {X(t) : t ∈ T } is a zero mean, second-order (i.e., E

(
X(t)

) = 0 and E|X(t)|2 < ∞ for all t ∈ T ) stochastic
process defined on (Ω,B, P) with sample paths in L2(T ), the Hilbert space containing square integrable functions defined
on T with inner product 〈x, y〉 = ∫T x(t)y(t)dt, ∀x, y ∈ L2(T ) and norm ‖x‖ = 〈x, x〉1/2, β(t) is a square integrable function
on T , and ε is a random error independent of Z and X . Without loss of generality, we suppose throughout that T = [0, 1].

2.2. Estimation method based on the composite quantile

Let {(Xi, Zi, Yi), i = 1, . . . , n} be an independent and identically distributed sample which is generated from model (1).
Define the covariance function and the empirical covariance function for functional predictor X(t), respectively, as

K (s, t) = Cov(X(t), X(s))

and

K̂ (s, t) = 1
n

n∑
i=1

Xi(s)Xi(t).

It is well known that the covariance function K defines a linear operator which maps a function f to Kf given by (Kf )(u) =∫
K (u, v)f (v)dv. We shall assume that the linear operator with kernel K is positive definite. Let λ1 > λ2 > · · · > 0 and

λ̂1 ≥ λ̂2 ≥ · · · λ̂n ≥ λ̂n+1 = λ̂n+2 = · · · = 0 be the ordered eigenvalue sequences of the linear operators with kernels K and
K̂ , {φj} and {φ̂j} be the corresponding orthonormal eigenfunction sequences, respectively. It is clear that the sequences {φj}
and {φ̂j} each forms an orthonormal basis in L2([0, 1]). Then, the spectral decompositions of the covariance functions K and
K̂ can be written as

K (s, t) =
∞∑
j=1

λjφj(s)φj(t)

and

K̂ (s, t) =
∞∑
j=1

λ̂jφ̂j(s)φ̂j(t),

respectively.
According to the Karhunen–Loève representation, we have

X(t) =
∞∑
i=1

ξiφi(t)

and

β(t) =
∞∑
i=1

γiφi(t), (2)

where the ξi are uncorrelated random variables with mean 0 and variance E[ξ 2i ] = λi, and γi = 〈β, φi〉, for more details see
Ramsay and Silverman (2005). Substituting (2) into model (1), we can get

Y =
∞∑
j=1

γj〈φj, X〉 + ZT θ + ε. (3)

Therefore, the regression model in (3) can be well approximated by

Y ≈
m∑
j=1

γj〈φj, X〉 + ZT θ + ε, (4)
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where m ≤ n is the truncation level that trades off approximation error against variability and typically diverges with n.
Replace φj by φ̂j for j = 1, . . . ,m, model (4) can be rewritten as

Y ≈ ZT θ + UTγ + ε,
where U = {〈X, φ̂j〉}j=1,...,m, γ = (γ1, . . . , γm)T .

Then, following Zou and Yuan (2008), we denote the 100τk% quantile of ε in model (1) by bτk , and assume that τ1 < τ2 <
· · · < τM < 1. In particular, we use the equally spaced quantiles, i.e., τk = k/(M + 1) for k = 1, 2, . . . ,M. For brevity,
assume that the density function of ε is non-vanishing anywhere. Hence, bτk is uniquely defined for any 0 < τk < 1. Let
ρτ (t) = t(τ − I(t < 0)) be the check function at τ ∈ (0, 1). Based on data (Xi, Zi, Yi), i = 1, . . . , n generated from model
(1), we have (Ui, Zi, Yi), i = 1, . . . , n by functional principal component analysis. Using Eq. (4), we can estimate θ and γ by
minimizing the following CQR loss function:

M∑
k=1

n∑
i=1

ρτk (Yi − bτk − ZT
i θ − UT

i γ ). (5)

Denoted the solutions by θ̂CQR and γ̂ . Then, it can be obtained that

β̂(·) =
m∑
j=1

γ̂jφ̂j(·). (6)

To establish asymptotic properties of the estimator for θ and β , the following assumptions are needed. Throughout this
paper, the constant C may change in different situations for convenience.

C1: E‖X‖4 < C <∞.
C2: For each j, E[U4

j ] ≤ Cλj. For the eigenvalues λj and Fourier coefficients γj, it is required that λj − λj+1 ≥ C−1j−a−1 and
|γj| ≤ Cj−b for j > 1, a > 1 and b > a/2+ 1.

C3: The random vector Z is bounded in probability. One complicated issue for PFLRMs comes from the dependence
between Z and X . Similar to Lu et al. (2014) and Shin (2009), let Z = η + 〈g, X〉, where η = (η1, . . . , ηp)T is zero-mean
random vector, g = (g1, . . . , gp)T with gj ∈ L2([0, 1]), j = 1, . . . , p.

C4: E[η] = 0 and E[ηηT ] = Σ . Furthermore,Σ is a positive definite matrix.
C5: ε has cumulative distribution function F (·) and density function f (·). For each p-vector u,

lim
n→∞

1
n

n∑
i=1

∫ u0+ηTi u

0
[F (a+ t/

√
n)− F (a)]dt = 1

2
f (a)(u0, uT )

[
1 0
0 Σ

]
(u0, uT )T ,

where ηi = Zi − E(Zi|Xi). Let ck = F−1(τk) and C∗ be an M × M diagonal matrix with C∗
jj = f (cj). Write c = C∗1,� =∑M

k,l=1 min(τk, τl)(1−max(τk, τl))/(1T C∗1)2.

Remark 1. Conditions C1 and C2 are very common in functional linear regression model (see Cai and Hall (2006), Hall and
Horowitz (2007)). Condition C2 ensures that β is sufficiently smooth and can be approximated by functions, which is often
assumed in asymptotic analysis of partially functional linear regression problems (see Lu et al. (2014) and Shin (2009)) and is
required to achieve the optimal convergence rate of β . The boundness assumption in Condition C3 is made for convenience.
It suffices to assume that Z has bounded fourth moment which will complicate the technical proof. Condition C4 controls
the asymptotic properties of the estimator θ̂ ; for example, He, Zhu, and Fung (2002) and Lu et al. (2014). Condition C5 is very
common in composite quantile regression, see Zou and Yuan (2008).

For convenience, we denote the true functional regression coefficient as β0 and the true parametric regression coefficient
as θ0. The following theorem describes the asymptotic properties of the proposed estimators.

Theorem 1. Suppose tuning parameter m satisfies m ∼ n1/(a+2b). Under Assumptions C1–C5, it has the following:
(i) ‖β̂ − β0‖2 = Op

(
n−(2b−1)/(a+2b)

)
;

(ii)
√
n(θ̂CQR − θ0) → N

(
0,�Σ−1

)
.

Remark 2. For the estimator of slope function β(t), the convergence rate is similar to Shin (2009). This result shows that
the existence of random vector Z in the model does not change the rate of convergence of the estimator of slope function.
For the parametric vector θ , the asymptotic normality of the estimator θ̂CQR is similar to the result of Theorem 1 in Zou and
Yuan (2008). It indicates that the functional variable in the model does not influence the asymptotic behavior of θ̂CQR.

2.3. Variable selection based on the composite quantile

In this subsection, we propose a variable selection procedure for composite quantile regression in PFLRMs based on
the adaptive LASSO penalized method by Zou (2006), and then present the Oracle property. The adaptive LASSO penalized



440 J. Du et al. / Journal of the Korean Statistical Society 47 (2018) 436–449

composite quantile regression estimator in PFLRMs, denoted by θ̂ALCQR, is the minimizer of the following function:
M∑

k=1

n∑
i=1

ρτk (Yi − bτk − ZT
i θ − UT

i γ )+ �
p∑

j=1

|θj|
|θ̂CQRj |2

. (7)

Then, obtain the estimator of β(·) as β̂(·) =∑m
j=1γ̂jφ̂j(·),where γ̂j is obtained by minimizing function (7).

In this paper, we focus on adaptive Lasso penalty function. However, the proposed procedure can be easily modified to
accommodate other penalty functions, such as SCAD proposed by Fan and Li (2001) and MCP proposed by Zhang (2010). In
addition, we show that our proposed variable selection procedure can identify the true model and estimate the functional
coefficient and constant regression coefficients simultaneously. The following theorem gives the rate of convergence of the
estimator β̂ and the Oracle property of estimator θ̂ . Denote by θ0 = (θ T0I , θ

T
0II )

T the true value of the regression coefficients.
Without loss of generality, assume that θ0II = 0 and elements in θ0I are nonzero. According to the partition of θ0, we write
η = (ηTI , η

T
II )

T . Let E[ηIIηTII ] = ΣII .

Theorem 2. Suppose tuning parameter m satisfies m ∼ n1/(a+2b), �/
√
n → 0, and �

ma+1 → ∞. Denote I = {j : θ0j 
= 0}. Under
conditions C1–C5, it has the following:

(i) Convergence rate: ‖β̂ − β0‖2 = Op
(
n−(2b−1)/(a+2b)

) ;
(ii) Sparsity: P({j : θ̂ALCQRj 
= 0} = I) → 1;
(iii) Asymptotic normality:

√
n(θ̂ALCQRI − θ0I ) → N

(
0,�Σ−1

II

)
.

3. Simulation studies

3.1. Performance of the proposed estimator

In this subsection, we investigate the finite sample properties of the proposed estimation procedure via Monte Carlo
simulation. The data sets are generated from the following model:

Y = ZT θ +
∫ 1

0
X(t)β(t)dt + ε, (8)

where Z follows multivariate normal distribution N(0,ΣZ ) with (ΣZ )i,j = 0.5|i−j| for i, j = 1, 2, θ = (1, 2)T . For the
functional linear component, we take the same form as Shin (2009), that is, β(t) = √

2 sin(π t/2) + 3
√
2 sin(3π t/2) and

X(t) = ∑100
j=1ξjφj(t), where ξjs are distributed as independent normal with mean 0 and variance λj = ((j − 0.5)π )−2 and

φj(t) =
√
2 sin((j− 0.5)π t). As for the random error, the following six cases are considered:

Case 1. ε follows a standard normal distribution.
Case 2. ε follows a t(3) distribution. This yields a model with heavy-tail.
Case 3. ε follows a standard Cauchy distribution. This yields a model in which the expectation of the response does not exist.
Case 4. ε follows a contaminated normal distribution with 1% outliers from the standard Cauchy distribution.
Case 5. ε follows a log-normal distribution.
Case 6. ε follows a contaminated normal distribution with 20% outliers from t(3) distribution.

For comparison, we also present the performance of the least squares estimator (LS). Similar to Zou and Yuan (2008), we
use the quantiles τk = k

20 for k = 1, 2, . . . , 19, in the composite quantile regression. Replicate the simulation for 500 times,
each consisting of n = 200 and 400 random samples. In addition, we use the following SIC and BIC for choice of tuning
parametersm for composite quantile regression and the least squares regression:

SIC(m) = log

{
M∑

k=1

n∑
i=1

ρτk

(
Yi − b̂τk(m) − ZT

i θ̂(m) − UT
i γ̂(m)

)}
+ log(n)

2n
(m+ p+M),

where p = 2, b̂τk(m), θ̂(m) and γ̂(m) are the estimators obtained from minimizing (5) withm eigenfunctions; or

BIC(m) = log

{
1
n

n∑
i=1

(
Yi − ZT

i θ̂(m) − UT
i γ̂(m)

)2}+ log(n)
2n

(m+ p),

here θ̂(m) and γ̂(m) are the least squares estimatorwithm eigenfunctions; see He et al. (2002), Lu et al. (2014), Shin (2009), and
Wang, Kai, and Li (2009) for a similar criterion to choose the tuning parameters. The accuracy of nonparametric estimators
is examined by the mean squared errors (MSE) which is defined as follows:

MSE = 1
500

500∑
i=1

{
1
N

N∑
s=1

[
β̂i(ts)− β(ts)

]2}
,
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Table 1
Finite sample performance of the proposed estimators.

Case Method n = 200 n = 400

θ1 θ2 β θ1 θ2 β

Bias SSD Bias SSD MSE Bias SSD Bias SSD MSE

1 LS −0.3 8.0 −0.5 8.1 0.9 −0.2 5.8 −0.3 6.0 0.4
CQR −0.3 8.4 −0.3 8.4 0.9 −0.2 6.0 −0.2 6.2 0.5

2 LS −0.3 14.2 0.6 14.6 1.9 0.4 10.0 0.1 9.9 0.8
CQR 0.3 10.4 0.3 10.6 1.1 0.4 7.2 0.0 7.5 0.5

3 LS 0.1 2.5 0.0 0.3 236.7 0.0 0.6 0.0 0.3 0.4
CQR −0.1 16.1 0.6 16.6 3.2 −0.1 10.9 0.3 11.0 1.6

4 LS 1.8 70.8 −0.5 109.4 2.4 −0.2 41.9 −2.4 57.4 70.0
CQR −0.1 9.0 −0.5 8.9 0.9 −0.1 6.1 0.1 6.0 0.5

5 LS −1.1 17.7 1.2 18.5 2.9 −0.1 12.9 0.3 12.9 1.2
CQR −0.3 7.4 0.2 7.4 0.9 0.0 5.0 −0.2 5.1 0.4

6 LS −0.6 12.2 0.0 12.0 1.4 0.1 8.4 0.0 8.7 0.6
CQR −0.6 9.4 0.3 9.3 0.9 0.0 6.1 0.1 6.5 0.4

The entries are multiplied by 100, except the values in case 3 with LS, which are multiplied by 10−2.

where ts, s = 1, . . . ,N, are the grid points at which the function β̂i(t) is evaluated, and subscript i implies the ith replication.
In this simulation, N = 200. For the parametric component, the estimated error is computed by sample standard deviation
(SSD).

Table 1 presents the finite sample properties of the proposed estimators. Following observations can be concluded:

(1) The performance of our proposed procedure becomes better with increase of sample size for all cases considered. In
general, the bias is reasonably small, and the SSD and MSE decrease as the sample size increases.

(2) For standard Cauchy random error, as expected, the bias, SSD and MSE are extremely large, this is because the finite
constant variance assumption, needed in least squares regression, is not satisfied for classical Cauchy distribution. In
fact, the standard Cauchy random variable has an infinite second moment.

(3) For contaminated normal distribution, i.e. Case 4 and Case 6, the proposedmethod performs better than LS, especially
in Case 4. This shows that LS method is sensitive to the outliers, and the proposed method is relatively robust. In
addition, Bias, SSD, and MSE of the LS in Case 4 are larger than those in Case 6. The reason lies in that the second
moment of the random error in Case 4 does not exist.

(4) With the exception of Case 1, the proposed estimator performs better than LS estimator in terms of SSD and MSE as
expected, which is consistent with the theoretical results in Section 2.

3.2. Performance of the proposed variable selection method

In this subsection, we explore the numerical performance of the proposed variable selection method. In the mean
regression, the tuning parameters are chosen by the methods proposed by Kong et al. (2016). The data sets are generated
from the following model:

Y = ZT θ +
∫ 1

0
X(t)β(t)dt + ε, (9)

where Z follows a multivariate normal distribution N(0,ΣZ ) with (ΣZ )i,j = 0.25|i−j| for 1 ≤ i, j ≤ 8, θ = (3, 1.5, 0, 0,
2, 0, 0, 0)T , and the other settings are the same as Section 3.1. In this subsection, the mean estimated error is used to assess
the accuracy of the parametric component estimators, which is defined as follows:

ME = E
[
(θ̂ − θ )TΣZ (θ̂ − θ )

]
.

It is well known that tuning parameter selection plays an important role in regularizationmethods. We use the following
Schwarz-type information to select the regularization parameters m and �.

SIC(m, �) = log

{
M∑

k=1

n∑
i=1

ρτk

(
Yi − b̂τk − ZT

i θ̂ − UT
i γ̂

)}
+ log(n)

2n
(m+ p1 +M),

where p1 is the number of the nonzero elements in θ̂ , b̂τk , θ̂ and γ̂ are the estimators obtained by minimizing (7) with the
regularization parametersm and �.

Simulation results are presented in Table 2; the columns labeled by ‘‘C’’ list the average number of zero regression
coefficients that are correctly estimated as zero, the columns labeled by ‘‘IC’’ depict the average number of non-zero
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Table 2
Simulation results of variable selection (×100).

Case Method n = 200 n = 400

C IC ME C IC ME

1

CQR-ALasso 488.4 0.0 2.42 494.8 0 1.12
CQR-Oracle 500.0 0.0 1.79 500.0 0 0.81
LS-ALasso 437.2 0.0 2.92 456.2 0 1.21
LS-Oracle 500.0 0.0 1.67 500.0 0 0.75

2

CQR-ALasso 495.0 0.0 2.94 498.0 0 1.37
CQR-Oracle 500.0 0.0 2.49 500.0 0 1.17
LS-ALasso 416.4 0.0 8.92 443.0 0 4.08
LS-Oracle 500.0 0.0 4.21 500.0 0 2.35

3

CQR-ALasso 498.6 0.0 5.38 499.8 0 2.28
CQR-Oracle 500.0 0.0 5.07 500.0 0 2.55
LS-ALasso 65.8 9.8 0.22 60.0 6 0.26
LS-Oracle 500.0 0.0 0.11 500.0 0 0.10

4

CQR-ALasso 490.4 0.0 2.14 496.6 0 1.15
CQR-Oracle 500.0 0.0 1.59 500.0 0 0.85
LS-ALasso 431.0 0.0 25.54 433.2 0 159.43
LS-Oracle 500.0 0.0 6.27 500.0 0 30.15

5

CQR-ALasso 496.8 0.0 1.77 499.0 0 0.88
CQR-Oracle 500.0 0.0 1.23 500.0 0 0.60
LS-ALasso 370.6 0.0 17.03 380.4 0 9.04
LS-Oracle 500.0 0.0 7.47 500.0 0 4.27

6

CQR-ALasso 491.8 0.0 2.36 497.0 0 1.09
CQR-Oracle 500.0 0.0 1.88 500.0 0 0.93
LS-ALasso 432.4 0.0 5.83 450.8 0 2.72
LS-Oracle 500.0 0.0 3.02 500.0 0 1.64

The entries are multiplied by 100, except the MEs in case 3 with LS methods, which are multiplied by 10−4.

regression coefficients that are erroneously set to zero. Rows refer to methods, where ‘‘LS-Oracle’’ and ‘‘CQR-Oracle’’ stand
for the oracle estimates based on the mean regression and the composite quantile regression, respectively. ‘‘LS-ALasso’’ and
‘‘CQR-ALasso’’ stand for variable selection via penalized the least square loss function and the composite quantile regression
with adaptive Lasso, respectively. From Table 2, it can be concluded as follows:

(i) As expected, the performance of CQR-Oracle procedure performs well in all cases in terms of model errors. Further-
more, the performance of the proposed variable selection CQR-ALasso becomes more and more closer to those of
CQR-Oracle procedure as the sample size increases. This confirms the theory in Section 2.

(ii) The results of variable selection are mildly sensitive to error distributions.
(iii) For the normal random error, the performances based onmean regression perform better than the composite quantile

regression.
(iv) For the heavy-tailed random error, the proposed variable selection methods are superior to the existing methods,

especially for standard Cauchy random error.
(v) It is well known that LS method is consistent with maximum likelihood method for normal error. Not surprisingly,

CQR-ALasso outperforms LS-ALasso in Case one, this is partly because the sample size is relatively small. Another
reason may be that CQR is almost as efficient as the least squares in this random error, see Zou and Yuan (2008).

3.3. High dimensional case

In this subsection, we consider assessing the performance of the proposed variable selection method in the high
dimensional case. The data sets are generated from the following model:

Y = ZT θn +
∫ 1

0
X(t)β(t)dt + ε, (10)

where Z follows multivariate normal distribution N(0,ΣZ ) with (ΣZ )i,j = κ |i−j| for 1 ≤ i, j ≤ pn, θn1 is a dn-dimensional
vector, θn2 is a (pn − dn)-dimensional vector with all elements being 0, θn = (θ Tn1, θ

T
n2)

T , and the other settings are the
same as Section 3.2. For sample size n, we consider two cases which are n = 200 and 400. When n = 200, let pn = 15
and θn1 = (3, 2, 1.5, 0.8, 1.2). When n = 400, let pn = 25 and θn1 = (3, 2, 1.5, 0.8, 1.2,−1,−0.75, 2.5). The simulation
results are reported in Tables 3–4. Generally, the proposedmethod can select the important variables, and obtain the precise
models. The Oracle method is better than the proposed method as expected. Estimates obtained from the proposed method
get closer to those obtained from the Oracle procedure as the sample size increases. In addition, this subsection focuses on
the high-dimensional setting, i.e. pn/n → 0, and how to extend the results to ultra-high dimensional setting, i.e pn � n or
‘‘Big p Small n’’, warrants a future investigation.



J. Du et al. / Journal of the Korean Statistical Society 47 (2018) 436–449 443

Table 3
Simulation results (×100) for high dimensional case with sample size n =
200.

Case Method κ = 0.25 κ = 0.75

C IC ME C IC ME

1 ALasso 902 0 0.05 894 0 0.05
Oracle 1000 0 0.03 1000 0 0.03

2 ALasso 912 0 0.08 888 0 0.06
Oracle 1000 0 0.05 1000 0 0.04

3 ALasso 900 0 0.12 892 0.06 0.14
Oracle 1000 0 0.10 1000 0 0.10

4 ALasso 910 0 0.04 906 0 0.04
Oracle 1000 0 0.03 1000 0 0.03

5 ALasso 926 0 0.04 910 0 0.04
Oracle 1000 0 0.03 1000 0 0.02

6 ALasso 906 0 0.04 922 0 0.05
Oracle 1000 0 0.03 1000 0 0.03

Table 4
Simulation results (×100) for high dimensional case with sample size n =
400.

Case Method κ = 0.25 κ = 0.75

C IC ME C IC ME

1 ALasso 1653 0.00 0.07 1629 0.01 0.08
Oracle 1700 0.00 0.05 1700 0.00 0.05

2 ALasso 1669 0.00 0.10 1635 0.07 0.13
Oracle 1700 0.00 0.07 1700 0.00 0.07

3 ALasso 1676 0.02 0.23 1673 0.70 0.43
Oracle 1700 0.00 0.16 1700 0.00 0.16

4 ALasso 1656 0.00 0.07 1632 0.01 0.08
Oracle 1700 0.00 0.05 1700 0.00 0.05

5 ALasso 1680 0.00 0.05 1671 0.01 0.07
Oracle 1700 0.00 0.04 1700 0.00 0.04

6 ALasso 1662 0.00 0.13 1634 0.20 0.19
Oracle 1700 0.00 0.09 1700 0.00 0.09

4. Real data example

In this section, we illustrate the proposed method via an analysis of biscuit dough data. The data was obtained from an
experiment done to test the feasibility of near-infrared (NIR) spectroscopy to measure the composition of biscuit dough
pieces. An NIR reflectance spectrum is recorded for each dough piece. The spectral data consist of 700 points measured from
1100 to 2498 nanometers (nm) in increment of 2 nm. The study focuses on predicting the percentage of each of the four
constituents: fat, sucrose, dry flour, and water, based on the NIR reflectance spectrum. The data set is available from the R
package ‘‘ppls’’. The data set contains outliers, see Brown, Fearn, and Vannucci (2001) and Mas and Pumo (2009). Therefore,
we need robust method to fit the data set. In addition, we are interested to study the relationship between the fat and other
ingredient in biscuit dough. In our analysis, we take the response y to be the fat; z1 to the sucrose; z2 to the dry flour; z3 to the
water; X(t) to be the spectra. We first standardized the z-covariates. We are interested in whether there are any interaction
effects and quadratic effects between these covariates. Therefore, we consider the following model:

y = z1θ1 + z2θ2 + z3θ3 + z21θ4 + z22θ5 + z23θ6 + z1z2θ7 + z1z3θ8 + z2z3θ9 +
∫ 1

0
X(t)β(t)dt + ε.

We use the composite quantile regression and mean regression to fit the data set, and use the adaptive Lasso to select
significant variables. The resulting estimators are presented in Table 5. From Table 5, we can observe that z1, z2 and z3 have
negative effects on response based on the mean regression or the composite quantile regression. In addition, there are no
interaction effects or quadratic effects between these covariates. The estimated slope function is presented in Fig. 1. In Fig. 1,
the left panel (i.e. solid line) presents the estimator of slope function β(t) based ALasso, and the right panel (i.e. dotted line)
presents the estimator of slope function β(t) based on full model. As one referee pointed out that the coefficient functions
in Fig. 1 are very wiggly and thus hard to interpret. In partially functional linear models, the slope function is approximated
by functional principal component analysis. We only assume that the slope function β belongs to L2(T ), where L2(T ) is the
Hilbert space containing square integrable functions defined on T . We do not impose any smooth conditions on the slope
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Fig. 1. Estimation of slope function β(t).

Table 5
Estimated coefficients for the full model and the models selected by adaptive Lasso.

Method θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

CQR −4.66 −2.26 −2.69 0.85 −1.22 −0.01 0.54 −0.62 0.58
CQR-ALASSO −5.24 −3.39 −2.08 0.00 0.00 0.00 0.00 0.00 0.00
LS −4.87 −2.57 −2.51 0.68 −2.21 −0.06 −0.40 −0.38 1.15
LS-ALASSO −5.28 −3.37 −1.92 0.00 0.00 0.00 0.00 0.00 0.00

function, thus the estimator is very wiggly. In addition, if some smooth conditions on β are imposed, we can use B-spline to
approximate the slope function. Thus, the corresponding estimator is a smooth function. How to extend the results to such
method is worthy of investigation.

5. Conclusion

In this paper, we develop the estimation and variable selection methods for partially functional linear regression models
based on the composite quantiles. Under some regularity conditions, we obtain the optimal convergence rate of the
functional coefficient and establish the asymptotic normality of parametric component coefficients. Some simulation studies
and a real data analysis are conducted to illustrate the finite sample performance of the proposed methods.
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Appendix. Proofs of theorems

Proof of Theorem 1. Denote Hm = λ−1
m UTU, P = U(UTU)−1UT , Z∗ = (I − P)Z andΣn = Z∗T Z∗.

Let

ξ

(b
θ

γ

)
=
(
ξ1
ξ2
ξ3

)
=

⎛⎜⎜⎝
√
n(b− b0)

Σ
1
2
n (θ − θ0)

λ−1/2
m H

1
2
m (γ − γm)+ λ1/2m H

− 1
2

m UZ(θ − θ0)

⎞⎟⎟⎠ .
Let ξ̂ = ξ (θ̂, γ̂) = (ξ̂

T
1, ξ̂

T
2)

T . Now, we show that ‖ξ̂‖2 = Op(ma+1). Denote Θn = {ξ : ‖ξ‖ = Lm(a+1)/2} for some sufficiently

large constant L. Let Z̃i = Σ− 1
2

n Zi, Ũi = H−1
m Ui, Ri =∑m

j=1〈xi, φ̂j〉γj0 −
∫ 1
0 β(t)x(t)dt . Thus,

Q (ξ ) =
M∑

k=1

n∑
i=1

ρτk (yi − bτk − ZT
i θ − UT

i γ)

=
M∑

k=1

n∑
i=1

ρτk
(
εik − (bτk − bτk0)− ZT

i (θ − θ0)− UT
i (γ − γ0)− Ri

)
=

M∑
k=1

n∑
i=1

ρτk

(
εik − νTk ξ1 − Z̃ T

i ξ2 − ŨT
i ξ3 − Ri

)
,

where νk = ek/
√
n, ek = (0, 0, . . . , 1, 0, . . . , 0)T , i.e., ek is a unit vector with 1 in its kth place, and εik = εi − bτk0. By the

proof of Theorem 1 of Lu et al. (2014), one has ‖Ri‖2 = Op(n−
2b+a−1
a+2b ). Invoking Knight’s identity in Knight (1998), one has

Q (ξ )− Q (0) =
M∑

k=1

n∑
i=1

[
ρτk

(
εik − νTk ξ1 − Z̃ T

i ξ2 − ŨT
i ξ3 − Ri

)
− ρτ (εik − Ri)

]
= An1 + An2,

where

An1 =
M∑

k=1

n∑
i=1

(νTk ξ1 + Z̃ T
i ξ2 + ŨT

i ξ3)ψτ (εik − Ri),

An2 =
M∑

k=1

n∑
i=1

∫ νTk ξ1+Z̃Ti ξ2+ŨT
i ξ3

0
[I(εik − Ri ≤ s)− I(εik − Ri ≤ 0)]ds.

Denote Fn = {(Z1, X1), . . . , (Zn, Xn)}. By ‖Ri‖2 = Op(n−
2b+a−1
a+2b ) and Conditions C4 and C5, we have

|E(An1|Fn)|2 =
∣∣∣∣∣

M∑
k=1

n∑
i=1

(νTk ξ1 + Z̃ T
i ξ2 + ŨT

i ξ3)Eψτ (εik − Ri)
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]2)( n∑
i=1
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)

= Op
(
ma+2) ,

where the first inequality holds by the Cauchy–Schwarz inequality.

Var(An1|Fn) = E

∣∣∣∣∣
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∣∣∣∣∣
2

≤ M
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≤ M
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n∑
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(νTk ξ1 + Z̃ T
i ξ2 + ŨT

i ξ3)
2Var(ψτ (εik − Ri))
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(
ma+1) .

Therefore, one has An1 = Op

(
m

a+2
2

)
+ Op

(
m

a+1
2

)
= Op

(
m

a+2
2

)
.

Next, consider An2. By elementary calculation, one has

E(An2|Fn) =
M∑

k=1

n∑
i=1

∫ νTk ξ1+Z̃Ti ξ2+ŨT
i ξ3

0
E[I(εik − Ri ≤ s)− I(εik − Ri ≤ 0)]ds

=
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k=1
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i ξ3

0
(f (bk)+ O(‖Ri‖)) sds

= Op
(‖ξ‖2)

= Op
(
ma+1) .

By routine calculation, for large n, we have

Var(An2|Fn) ≤ 2 max
1≤i≤n,1≤k≤M

‖νTk ξ1 + Z̃ T
i ξ2 + ŨT

i ξ3‖E‖In2‖
≤ op (‖θ‖) E(In2).

Considering the stochastic order of An1 and An2, one can know that An1 is dominated by An2. Thus, we have

P
{

inf
‖ξ‖∈Θn

Q (ξ) > Q (0)
}
→ 1.

On the other hand, since Q (ξ) is minimized at ξ̂, we have Q (ξ̂) ≤ Q (0). Combining this with the convexity of Q (ξ), we obtain
‖ξ̂‖2 = Op

(
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)
. By the definition of ξ , one has ‖θ̂−θ0‖2 = Op

(
ma+1

n

)
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(
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n

)
. By triangle inequality,

one has
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m H
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≤ 2‖ξ̂3‖2 + 2‖λ1/2m H
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Invoking the fact that ‖φ̂j − φj‖ = Op(j2/n), we have
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= Op

(
ma+1

n

)
+ Op(m−a−4b+4)+ O(m−2b+1)

= Op

(
n−

2b−1
a+2b

)
.

Now, we consider the asymptotic normality of θ̂ . Let

ξ ∗2 = (
√
�Σ)−1

n∑
i=0

Z∗i [
M∑

k=1

[I(εi ≤ bk)− τk]].

By the central limit theorem and the law of large numbers, one has ξ∗2
L−→ N

(
0,�Σ−1

)
. If we can show ξ̂

∗
2 = ξ∗2 + op(1),

the asymptotic normality of θ̂ follows. Let

ξ̃2 = (
√
�Σ)−1
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Z∗i [
M∑

k=1

[I(εi − Ri ≤ bk)− τk]].

By similar arguments in Theorem 4.1 of Wei and He (2006), we have ‖ξ̃2 − ξ ∗2 ‖ = op(1). Therefore, we only need to show
that ‖ξ̂2 − ξ̃2‖ = op(1), which can be proved by similar arguments used in Theorem 1 of Wang et al. (2009).

Proof of Theorem 2. We first prove the part (i): Convergence rate. Similar to Theorem 1, we have
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where εik = εi − bk0. Then invoking Knight’s identity in Knight (1998), we have
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Similar to An1 and An2, one has In1 = Op
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)
. In addition, by routine calculation, for large n,

we have
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Now, we consider In3. By the condition �/
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n → 0, as n →∞, one has
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Considering the stochastic order of In1, In2, and In3, we can know that In1 and In3 are dominated by In2. Thus, we have

P
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‖ξ‖∈Θn

Q (ξ) > Q (0)
}
→ 1.

On the other hand, since Q (ξ) is minimized at ξ̂, we have Q (ξ̂) ≤ Q (0). Then combining this with the convexity of Q (ξ),
we obtain ‖ξ̂‖ = Op

(
ma+1

)
. By the definition of ξ , one has ‖θ̂ − θ0‖2 = Op
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Using similar argument in Theorem 1 to prove the rate of convergence of the functional slope parameter β̂ , we have
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)
.

Next, we consider part (ii): Sparsity. Let
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where θ̂∗ = (θ̂ TI , 0

T )T and θ0 = (θ T0I , 0
T )T . In fact, θ̂∗ is obtained from θ̂ by constraining the insignificant components to zero.

By the definition of ξ̂, we have Q (ξ̂
∗
) ≥ Q (ξ̂). The sparsity of θ̂ will be proved on the condition that if there exists

some θ̂j 
= 0 for s + 1 ≤ j ≤ p, it must have Q (ξ̂
∗
) < Q (ξ̂) for enough large n. Invoking the fact that ‖ξ̂‖ = OP (ma+1),

‖ξ̂∗‖ = Op(ma+1) and the proof of Theorem 1, one has

Q (ξ̂
∗
)− Q (ξ̂) = Q (ξ̂

∗
)− Q (0)+ Q (0)− Q (ξ̂)

= Q (ξ̂
∗
)− Q (0)− [Q (ξ̂)− Q (0)]
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If
∑p

j=s+1|θ̂j| > 0, by the condition �

ma+1 → ∞ and
∑p

j=s+1|ξ̂j|
2 = Op(ma+1), we have Q (ξ̂

∗
) < Q (ξ̂) for large n. This

completes the proof.

Lastly, we should prove the asymptotic normality of θ̂I . The strategy to prove this result is similar to Theorem 1, thus we
omit it.

References

Aneiros, G., Ferraty, F., & Vieu, P. (2015). Variable selection in partial linear regression with functional covariate. Statistics, 49(6), 1322–1347.
Brown, P. J., Fearn, T., & Vannucci, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. Journal of the

American Statistical Association, 96(454), 398–408.
Cai, T., & Hall, P. (2006). Prediction in functional linear regression. The Annals of Statistics, 34(5), 2159–2179.
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96,

1348–1360.
Gertheiss, J., Maity, A., & Staicu, A.-M. (2014). Variable selection in generalized functional linear models. Stat , 2, 86–101.
Greven, S., & Scheipl, F. (2017). A general framework for functional regression modelling. Statistical Modelling , 17, 1–35.
Hall, P., & Horowitz, J. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35, 70–91.



J. Du et al. / Journal of the Korean Statistical Society 47 (2018) 436–449 449

He, X., Zhu, Z. Y., & Fung, W. K. (2002). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 90,
579–590.

Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. New York: Springer.
Huang, L., Zhao, J., Wang, H., & Wang, S. (2016). Robust shrinkage estimation and selection for functional multiple linear model through LAD loss.

Computational Statistics & Data Analysis, 103, 384–400.
Kai, B., Li, R., & Zou, H. (2010). Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. Journal of the

Royal Statistical Society. Series B., 72, 49–69.
Kai, B., Li, R., & Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The

Annals of Statistics, 39, 305–332.
Knight, K. (1998). Limiting distributions for l1 regression estimators under general conditions. The Annals of Statistics, 26(2), 755–770.
Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.
Koenker, R., & Bassett, G. S. (1978). Regression quantiles. Econometrica, 46, 33–50.
Kong, D., Xue, K., Yao, F., & Zhang, H. H. (2016). Partially functional linear regression in high dimensions. Biometrika, 103, 147–159.
Lian, H. (2013). Shrinkage estimation and selection for multiple functional regression. Statistica Sinica, 23, 51–74.
Lu, Y., Du, J., & Sun, Z. (2014). Functional partially linear quantile regression model. Metrika, 77(3), 317–332.
Mas, A., & Pumo, B. (2009). Linear processes for functional data. (pp. 47–71). Oxford Univ Press.
Matsui, H., & Konishi, S. (2011). Variable selection for functional regression models via the L1 regularization. Computational Statistics & Data Analysis, 55,

3304–3310.
Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 2, 321–359.
Müller, H., & Stadtmüller, U. (2005). Generalized functional linear models. The Annals of Statistics, 33, 774–805.
Pannu, J., & Billor, N. (2017). Robust group-Lasso for functional regression model. Communications in Statistics. Simulation and Computation, 46, 3356–3374.
Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: Methods and case studies. New York: Springer.
Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.
Reiss, P. T., Goldsmith, J., Shang, H. L., & Ogden, R. T. (2017). Methods for scalar-on-function regression. International Statistical Review, 85, 228–249.
Sentürk, D., & Müller, H. (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105, 1256–1264.
Shin, H. (2009). Partial functional linear regression. Journal of Statistical Planning and Inference, 139, 3405–3418.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B., 58, 267–288.
Wang, J. L., Chiou, J. M., & Müller, H. G. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3, 257–295.
Wang, L., Kai, B., & Li, R. (2009). Local rank inference for varying coefficient models. Journal of the American Statistical Association, 104(488), 1631–1645.
Wei, Y., & He, X. (2006). Conditional growth charts. The Annals of Statistics, 34(5), 2069–2097.
Yao, F., Müller, H., & Wang, J. (2005). Functional linear regression analysis for longitudinal data. The Annals of Statistics, 33, 2873–2903.
Yao, F., Sue-Chee, S., & Wang, F. (2017). Regularized partially functional quantile regression. Journal of Multivariate Analysis, 156, 39–56.
Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894–942.
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.
Zou, H., & Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. The Annals of Statistics, 36, 1108–1126.




