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inefficient inferences if handled inappropriately. As a natural and powerful way for dealing

with missing data, Bayesian approach has received much attention in the literature. This

paper reviews the recent developments and applications of Bayesian methods for dealing

with ignorable and non-ignorable missing data. We firstly introduce missing data mecha-

nisms and Bayesian framework for dealing with missing data, and then introduce missing

data models under ignorable and non-ignorable missing data circumstances based on the

literature. After that, important issues of Bayesian inference, including prior construction,

posterior computation, model comparison and sensitivity analysis, are discussed. Finally,

several future issues that deserve further research are summarized and concluded.
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1. Introduction

Missing data, a challenging problem that complicates the process of data analysis, is common and generally unavoidable
in many studies, including longitudinal studies, clinical trials and sociological surveys. If missing data in these studies are
ignored or handled inappropriately, inferences would be biased and inefficient (Mason, Best, Plewis, & Richardson, 2010).
Various approaches have been proposed for dealing with missing data, including ad hoc methods like complete-case (CC)
analysis and available-case analysis, aswell as ‘‘statistical principled’’methods includingmaximum likelihood (ML),multiple
imputation (MI), and fully Bayesian (FB) approach. Although ad-hoc approaches have the advantage of simplicity, they are
generally inappropriate as they lead to bias and loss of precision. By contrast, ‘‘statistical principled’’ methods are better
alternatives since they take account of information from the observed data and the uncertainty introduced by the missing
data through setting assumptions on missing data mechanisms (Mason et al., 2010).

As two commonly used ‘‘statistically principled’’ methods, FB and MI are similar in spirit and have tight connection. For
MI, comprehensive reviews can be seen in Harel and Zhou (2007), Lee and Simpson (2014), Rubin (2008), and Zhang (2003).
MI adopts a two-step procedure: (i) impute the missing values through imputation model and create a small number of
datasets; (ii) fit analysis model on the imputed datasets and obtain the pooled estimates. However, in FB, this two steps
are combined as a single step, which is the major difference compared to MI. By simultaneously fitting the imputation and
analysis model, FB can jointly and directly obtain estimates from the posterior distributions of the parameters and missing
variables. Besides, the uncertainty due to missing data is automatically taken into account (Erler, Rizopoulos, Rosmalen,
et al., 2016). In this paper, we mainly focus on FB approach. However, since Bayesian approaches can be applied in the
imputation step of MI, some frameworks and approaches we introduced, such as Markov chain Monte Carlo (MCMC) and
Metropolis–Hasting (M–H) algorithms, can also be adapted to MI.

Bayesian approach provides a naturalway to take the uncertainty frommissing data into accountwhenmaking inferences
on incomplete data (Daniels & Hogan, 2008; Ibrahim, Chen, Lipsitz, & Herring, 2005). In Bayesian context, missing data
are considered as random variables, whose posterior distributions can be obtained by specifying priors on the parameters
and missing covariate distributions. The missing variables can be sampled from the corresponding conditional distributions
through MCMC, and then inferences can be obtained from the posterior distributions (Ahmed, 2011). By estimating the
unknown parameters and the missing data simultaneously, inferences are coherent (Mason, 2010). Also, by allowing
informative priors and extra information, Bayesian approach can achieve better and more reliable results even under
small sample size (Cai, Song, & Hser, 2010). In addition, models under Bayesian framework for dealing with missing data
are constructed in a modular way. To be specific, these models consist of three units: response model, missing covariate
distribution and missingness model, so analysts can adapt different units to various situations, and explore a range of
assumptions about the missing data mechanism (Mason, 2010).

Recent advances in computation capacity and the rapid development of efficient algorithms havemade Bayesianmethods
more feasible and popular in a wide array of missing data problems (Huang, Chen, & Ibrahim, 2005). There are several
available software, such as the BUGS family of programs like WinBUGS (Lunn, Spiegelhalter, Thomas, et al., 2009), JAGS
(Martyn, 2003), (Stan Development Team, 2012), and Proc MCMC (SAS/Stat, 2014). WinBUGS is quite powerful and can
handle various types of missing data problems, but convergence would be slow with large and hierarchical structured
datasets. JAGS, similar to WinBUGS, is an open-source implementation of BUGS model specification, and can be called
without opening any IDEs, and have more flexibility to incorporate with other software like R and Python. Stan is another
open-source software with similar functionality as WinBUGS but uses a more complicated simulation algorithm, which
allows it to converge more quickly than WinBUGS, JAGS and Proc MCMC in complex model circumstances (Liu, Han, Zhao,
& Lin, 2016).

Related reviews on Bayesian methods for dealing with missing data are mainly comparative reviews, which compare
Bayesian methods with other common methods in missing data circumstances. Ibrahim et al. (2005) reviewed the per-
formance of ML, MI, FB and weighted estimating equations (WEE) in dealing with missing covariate data under generalized
linearmodels (GLMs). They explored the relationships between thesemethods aswell as the properties of eachmethodology.
Through simulated and real data examples, they pointed out that Bayesian methods are generally considered as more
powerful in dealing with various missing data problems. These four methods were also discussed by Ibrahim, Chu, and
Chen (2012) in the cox regression setting in longitudinal studies. Chen and Ibrahim (2014) examined the performance
and relationships between MI, ML and FB under Missing at Random (MAR) assumption and they found a close connection
between these three methods. With a large sample size, Bayesian methods with non-informative priors on all parameters
will lead to ML estimates, and the imputation step in MI is based on sampling from a posterior predictive distribution.
Liu et al. (2016) compared Bayesian approaches with frequentist methods through a clinical trial to show the properties,
advantages and flexibility of Bayesian methods. These review papers mainly focus on discovering the relationships between
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different methods and comparing their performances under specific settings. However, existing reviews do not summarize
how Bayesian methods are employed in various settings. In the literature of applying Bayesian approach in missing data
problems, researchersmainly focus on dealingwithmissing response ormissing covariates under ignorable or non-ignorable
missingmechanisms. In this paper, wewill summarize the commonly usedmissing datamodels and some issues in Bayesian
inference procedure based on the literature.

This article is a review of Bayesianmethods for handlingmissing data problems. Different from other review papers about
Bayesian approach in missing data, this article focus on the recent developments and applications of Bayesian methods for
dealing with missing data. In Section 2, we will give some background knowledge about missing data mechanisms and
Bayesian framework for dealing with missing data. Sections 3 and 4 introduce the commonly used missing data models
under different missingness mechanism assumptions. Several crucial steps in Bayesian inference is discussed in Section 5.
Section 6 gives a brief review of some other related topics. Conclusion and future issues are presented in Section 7.

2. Background knowledge

2.1. Missing data mechanism

Let {(Yi,Xi), i = 1, . . . ,N} denote an N-component vector of the data from a study. Here Yi is the response variable and
Xi = (xi1, . . . , xip)

′ is a vector of p covariatesmeasured on the ith subject. LetR = (Ry,Rx) be the correspondingN-component
indicator vector of observed response and covariate data, with Ryi = 1 if Yi is observed and Ryi = 0 if Yi is missing, Rxij = 1 if
xij is observed and Rxij = 0 if xij is missing (j = 1, . . . , p). Then Y(1) = (Yi : ryi = 1) and X(1) = (Xi : rxi = {1}p) correspond
to the observed response and covariate vectors, while Y(0) = (Yi : ryi = 0) and X(0) = (Xi : rxi = {0}p) denote the missing
response and covariate vectors.

For simplicity, here we assume that missing data only exist in the response variable. Missing data mechanism is the
conditional distribution of R given Y and parameter φ. Let the probability that Ry takes the value ry = (ry1, . . . , ryN ) given
that Y takes the value y be f (Ry = ry|Y = y,X = x, φ). Let r̃y and ỹ(1) denote a particular sample realization of Ry and Y(1),
respectively. When dealing with missing data, it is helpful to distinguish between ignorable and non-ignorable missingness
mechanisms. ‘‘Ignorable’’ means that inferences from amodel for the data alone are equivalent to that from a joint model for
the data andmissingness mechanism, indicating that we can ignore themissingness model when analyzing (Seaman, Galati,
Jackson, & Carlin, 2013). Conversely, ‘‘non-ignorable’’ missingness mechanism means that a joint model capturing the data
and the missingness pattern should be constructed when modeling.

Within the Bayesian framework, the missingness mechanism is termed ignorable when the parameters governing the
measurement and missingness process are distinct, and the missing data are Missing Completely at Random (MCAR) or
Missing at Random (MAR). And non-ignorable missingness refers to the situation when missing data are Missing not at
Random (MNAR) (Ibrahim & Molenberghs, 2009).

Missing data areMCAR if themissingness does not depend on any values of Y , either observed or unobserved data. Under
MCAR, the observed data is just a random sample of the whole data. In this case, ad-hoc methods like CC analysis may lose
efficiency, but the resulting estimator is unbiased (Ibrahim &Molenberghs, 2009). According toMealli and Rubin (2015), the
missing data are MCAR if

f (Ry = r̃y|Y = y, φ) = f (Ry = r̃y|φ), ∀y, φ. (1)

Missing data are MAR if the missingness does not depend on the unobserved values of Y , given the observed ones. Under
MAR, a CC analysis will be both inefficient and biased. As stated in Rubin (1976), the missing data are MAR if

f (Ry = r̃y|Y(1) = ỹ(1), Y(0) = y(0), φ) = f (Ry = r̃y|Y(1) = ỹ(1), Y(0) = y′(0), φ), ∀φ, y(0), y
′
(0). (2)

When neither MCAR nor MAR holds, the missing data are MNAR. MNAR is the most general situation and is frequently
encountered in reality, especially in longitudinal studies with repeated measures. Under MNAR, extra model for the
missingness mechanism is required. According to Mealli and Rubin (2015), MNAR holds if for some φ and some y(0) �= y′(0),

f (Ry = r̃y|Y(1) = ỹ(1), Y(0) = y(0), φ) �= f (Ry = r̃y|Y(1) = ỹ(1), Y(0) = y′(0), φ). (3)

2.2. Bayesian framework for dealing with missing data

In this section we introduce the Bayesian inference procedure for missing data, which involves four crucial parts (Fig. 1).
The first part is constructing the missing data model, including a response model, a missing covariate distribution if needed,
and a factorization framework if non-ignorable missing data exist. Suitable response models can be specified by considering
the types of the responses, the relationship between the response variables and the covariates, and other factors. In addition
to the responsemodel, whenmissing covariates exist in the data, a covariate distribution is needed as well. These two issues
will be discussed in Section 3.

When missingness is non-ignorable, then which analyzing framework to be applied should be determined. Different
frameworks can be built according to different factorization forms. Selectionmodel (SM), patternmixturemodel (PMM) and
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Fig. 1. Bayesian framework with missing data.

shared parameter model (SPM) are three common frameworks. In SM, a missingness model should be specified explicitly,

while in PMM, the samemodel structure with distinct parameters are fitted according to different missing patterns. In SPM,

a shared latent random effect should be defined. Other frameworks like identifying-restrictions-based model can also be

considered.

The second part is prior construction. In Bayesian analysis, prior distributions should be assigned for the unknown

parameters. Non-informative priors are usually used when no additional information can be imposed. However, when

external information can be utilized, informative priors are more helpful, especially for the problem of identification. In this

paper we introduce three common ways for constructing informative priors: historical data based priors, empirical Bayes

based priors and expert elicitation priors.

After constructing the priors, a posterior distribution can be obtained through Bayes Theorem, andMCMC algorithms can

be applied to make explicit inferences. After that, sensitivity analysis is necessary to test the sensitivity of the assumptions

due to the inability to know the real data model and real missingness mechanism.

3. Missing data model for ignorable missing data

Following the notations in Section 2.1, the joint distribution of (Yi,Xi) can be specified as the product of the conditional

distribution of Yi given Xi, denoted by [Yi|Xi, β], and the marginal distribution of Xi, denoted by [Xi|α]. β and α parameterize

the distribution of Yi given Xi and the distribution of Xi, respectively. Let D = (N, Y ,X ) denote the complete data. The

complete data likelihood for all subjects is given by

L(β, α|D) =
N∏
i=1

f (Yi|Xi, β)f (Xi|α). (4)
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Our main interest lies in inferences of β based on the observed data. Let Dobs = (N, Y(1),X(1)) denote the observed data.
When the missingness mechanism is ignorable, the joint posterior distribution of (β, α) is given by:

f (β, α|Dobs) ∝
{

N∏
1

[∫
Y(0)

∫
X(0)

f (Y |X, β)f (X(0)|X(1), α)dX(0)dY(0)

]}
π (β, α), (5)

where f (Y |X, β) denotes the full-data response model, and π (β, α) denotes the joint prior distribution of (β, α).
In general, the multi-dimensional integrals in (5) do not have a closed form. In addition, if there are several missing

covariates, the formula would be of high dimension, leading to difficulty in direct computation from the posterior. In this
case, MCMC methods can be used to sample from the posterior, which will be discussed in the following section.

The literature on Bayesian methods for dealing with ignorable missing data can be classified according to the missing
components. In ignorablemissing data settings, a responsemodel and covariate distributions formissing covariates if needed
should be constructed, but without a missingness model.

3.1. Missing response

In ignorable missing response settings, a suitable response model can be built according to the type of response as well
as the relationship between response variable and the covariates. Here we introduce several popular responsemodels in the
literature of Bayesian methods for dealing with missing data.

Generalized linear model (GLM), which allows response variables to have non-normal error distributions, is the most
popular responsemodel. If data are organized atmore than one levels,multilevelmodels and its extension, generalized linear
mixed model (GLMM), are more suitable. When dealing with multiple responses, especially responses that are of mixed
types, finite mixture models are much more welcomed. Growth mixture model (GMM), a combination of finite mixture
model and latent growth curve models, is a flexible approach for analyzing longitudinal data with mixture distributions
(Knott & Bartholomew, 1999). Structural equationmodeling (SEM) is often used to assess unobservable latent constructions,
which is a powerful multivariate regression technique when the variables are latent or unobserved (Das, Chen, Kim, &
Warren, 2008; Kaplan, 2000). Its extensions, including mixture SEM (Zhu & Lee, 2001), nonlinear SEM (Lee & Zhu, 2000)
are also employed in related researches. Quantile regression (QR) models have become increasingly popular due to its
robust property since no assumptions are needed on the error distributions, and it provides a more complete picture of the
covariate effects by assessing them at different quantiles of the response (Koenker, 2005). When capturing within-subject
serial correlation in longitudinal studies, transition Markov model (TMM) is usually used to allow the expected response at
a given time to depend on the previous responses (Kaciroti, Raghunathan, Schork, & Clark, 2008).

Theoretically, any statistical model is suitable as a response model, so analysts can choose the most suitable one
according to necessity. For example, in order to analyze data on the incidence of the childhood diabetes in Finland,
Moltchanova, Penttinen, and Karvonen (2005) assumed a multinomial model for the MAR missing count response with the
probability following ahazard function or a survival function. In longitudinal circumstance, in order to take serial dependence
structure into account, Su and Hogan (2008) developed a Bayesian TMM for MAR binary data and used nonparametric
smooth functions. In multiple responses situation, the correlations between responses should be considered additionally.
Hong, Chu, Zhang, and Carlin (2016) proposed a Bayesian hierarchical model for multiple responses in mixed treatment
comparison settings. They introduced novel Bayesian approaches formultiple count or continuous responses simultaneously
by incorporating missing data and correlation structure between responses through parameterizations. Deyoreo, Reiter,
and Hillygus (2016) presented a Bayesian mixture model for mixed ordinal and nominal data under ignorable missingness
assumption in an analysis of the 2012 American National Election Study.

3.2. Missing covariates

Missing covariate data occur frequently in various settings, including surveys, epidemiological studies, environmental
studies and clinical trials (Tang & Zhao, 2014). In missing covariate cases, missing covariate distributions are needed in
addition to a response model. The construction of covariate distributions is also related to the data types and the correlation
between themissing components.When there aremore than onemissing covariates in the dataset, twoways are commonly
used in the literature. The first one is modeling all of the missing covariates using multivariate distributions. For example,
using a multivariate normal distribution for several continuous missing covariates, or a multivariate probit regression for
correlated binary covariates instead. The second approach is factorizing the joint distribution as a product of a sequence
of one-dimensional conditional distributions of each missing covariate (Ibrahim, Chen, & Lipsitz, 2002). More precisely, let
Xi = (xi1, . . . , xis)

′ denote the s-dimensional missing covariates, the joint distribution can be written as a product of a series
of one-dimensional conditional distributions, given by:

f (xi1, . . . , xis|α) = f (xis|xi1, . . . , xi,s−1, αs) · · · f (xi2|xi1, α2)f (xi1|α1) (6)

where α = (α1, . . . , αs)
′ and αk denotes the indexing parameters of the kth conditional distribution.

When missing covariates are of high dimension (i.e. s is large) or of mixed data types, the second approach is preferred.
That is because many nuisance parameters from directly specifying a joint distribution will be unidentifiable. What is
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more, Gibbs sampling will become computationally intensive and inefficient. Using (6) can reduce the number of nuisance

parameters as well as the loss of efficiency of Gibbs sampler. In addition, (6) is more suitable for missing covariates of

mixed types. In some situations that continuous and discrete covariates are both missing, it will be difficult to specify a

joint distribution for these covariates directly but easier to specify conditional distributions for covariates of each type.

Ibrahim et al. (2002) had also shown that (6) had other attractive advantages over the first approach, such as easing the

prior elicitation for nuisance parameters.

It should be noted that the specification in the second approach is not invariant to the order of the conditioning, meaning

that different orderings can lead to different joint distributions (Xu, Daniels, & Winterstein, 2016). For the order of the

covariates, Chen and Ibrahim (2001) suggested to condition the categorical variables on the continuous variables. Erler

et al. (2016) took the order according to the proportion of missing values and started with the variable with the least

missing values. Based on both the data type and proportion of missingness, Xu et al. (2016) suggested a default ordering

that specifying categorical variable firstly, followed by binary variables and then continuous variables. And within the same

data type, variables with less missingness are specified before those with more missingness. With this order, the efficiency

of the MCMC algorithm can be facilitated. To alleviate the issue of the order of the variables, Xu et al. (2016) used Bayesian

additive regression trees (BART) for modeling the conditional mean function to flexibly impute continuous and binary

missing covariates. However, it has been shown that sequential specifications used in Bayesian approach are quite robust

against changes in the ordering, and as long as the models fit the data well enough, the results would be unbiased even if

the order is misspecified. (Chen & Ibrahim, 2001; Zhu & Raghunathan, 2015).

In the literature of applying Bayesian methods for dealing with ignorable missing covariates, writing the joint covariate

distribution as a product of piecewise conditional distribution is relatively more popular. Ibrahim et al. (2002) proposed

Bayesian inference for GLMs with missing covariate data. They used a GLM with a logit link to fit binary response variable

and wrote the missing covariate distribution as a product of one-dimensional conditional distribution. The same response

model was used in Carrigan, Barnett, Dobson, and Mishra (2007) to fit longitudinal data with continuous missing covariates

and took account of the longitudinal study design by introducing random effects in the model. Their paper gave a detailed

instruction of how to construct the model in WinBUGS. Similarly, Chen, Ibrahim, and Lipsitz (2002) analyzed survival data

with multiple continuous missing covariates using semiparametric survival model as the response model and the product

of normal distributions as the joint covariate distribution.

SEMs were employed in Lee and Song (2004) and Das et al. (2008) for analyzing data with both missing responses

and missing covariates. In Lee and Song (2004), missing continuous and ordinal categorical data were treated as latent

quantities and were linked through a nonlinear SEM. Motivated by a multilevel survey, Das et al. (2008) also employed a

SEMwhich involves a set of latent variables and randomeffects capturing dependence between responses and heterogeneity

respectively.

In longitudinal studies, one important case is time-varying missing covariates. Pettitt, Tran, Haynes, and Hay (2006)

employed a Bayesian hierarchical model to analyze categorical longitudinal data with time-varying missing covariates. A

GLMMwas built for binary response and a transition model taking the previous time points into account was built for time-

varying missing covariates. Yu, Chen, Huang, and Anderson (2013) developed a generalized linear mixed probit regression

model for the repeated binary responses and a joint model for time-dependent missing covariates.

Parametric models are usually used in specifying the joint distribution of the missing covariates, while nonparametric

and semiparametric approaches are also considered. For example, Si and Reiter (2013) presented a nonparametric Bayesian

joint modeling approach for multivariate categorical data based on Dirichlet process mixtures of multinomial distributions.

This method was extended by Murray and Reiter (2016) to adapt for multivariate continuous and categorical variables.

Two Dirichlet Process mixtures including a mixture of multinomial distributions for the categorical data, and a mixture of

multivariate normal distributions for the continuous variables were employed.

4. Missing data model for non-ignorable missing data

Whenmissing datamechanism is believed to be non-ignorable, amissingnessmodel is needed additionally. Following the

notations in the previous section, the missingness model can be denoted by f (R|Y ,X, φ), and the corresponding full-data

model is denoted by f (Y ,X, R|θ) with θ = (β, α, φ). In the missing data literature, both parametric and semiparametric

approaches can be used for missingness model construction.

4.1. Missingness model

4.1.1. Parametric missingness model

For the binary missing indicator Ri, it is common to assume a Bernoulli distribution with missing probability τi as

Ri ∼ Bernoulli(τi). (7)

When there is only one missing variable in the data, the relationship between the missing probability τi and the missing

component can be modeled using a link function. The most popular link functions include a logit link f (τi) = [1+ exp(τi)]−1

or a probit link with f (τi) being the distribution function of the standard normal.
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When there are more than one missing variables, the joint distribution of the missing indicators can be of the form of a
multinomialmodel, or be represented as a product of one-dimensional conditional distributions similar to (6). To be specific,
assuming that there are more than one missing covariates in the data, let Rxi = (rxi1, . . . , rxis)

′ be the corresponding vector
of missing indicators. Then the joint distribution of Rxi for subject i can be represented as a product of one-dimensional
conditional distributions given by

f (Rxi|Yi,X(0),X(1), φ) = f (ris|ri1, . . . , ri,s−1, Yi,X(0),X(1), φs)

· · · f (ri2|ri1, Yi,X(0),X(1), φ2)f (ri1|Yi,X(0),X(1), φ1) (8)

where φ = (φ1, . . . , φs)
′. For each one-dimensional conditional distribution of rik, a logit or probit regression can be built as

above.

4.1.2. Semiparametric missingness model
In parametric missingness model, the relationship between the logit or probit form of τi and the missing component is

assumed to be linear. However, this is quite a rigorous assumption since the relationship is actually unknown and might be
nonlinear. Therefore, semiparametric approaches are presented to model the missing data mechanism.

One common semiparametric missingness model is generalized additive models (GAMs). GAM provides a flexible way
to characterize the relationship between the missing components and binary missing indicators (Hastie & Tibshirani, 1987).
Kalaylioglu and Ozturk (2013) applied GAM in non-ignorable missing covariates settings. In their research, rik was modeled
in (7) with missing probability τik, and the relationship between τik and the missing components was modeled through a
smooth function m(·) given by

h(τik) = φk0 + r−ikφk1 +
s∑

k=1

m(xi(0))+ xi(1)φk2 + yiφk3, (9)

where h(·) is a suitable chosen link function such as logit or probit.φk0 andφk3 are scalars,φk2 is parameter vectors associated
with the observed covariates, and r−ik is the set of missing indicators that excludes component k. m(·) is an unspecified
smooth function. The advantage of this model is that it accommodates any possible nonlinear relationship between the
missing indicator and missing covariates. In Kalaylioglu and Ozturk (2013), a low-rank thin-plate splines was employed to
specify the smooth function. Certainly, other nonparametric approaches can also be used to specify the smooth function,
like natural cubic splines, B-splines, truncated polynomials, etc.

4.2. Frameworks for non-ignorable missing data

Little and Rubin (2002) proposed three popular frameworks for dealing with non-ignorable missing data according to
the factorization forms of the full-data model: selection model (SM), pattern-mixture model (PMM), and shared-parameter
model (SPM). Apart from these three common frameworks, we also introduce other non-ignorable assumptions such as
identifying-restrictions-based model.

4.2.1. Selection model
The SM approach is the most commonly used factorization in the literature. It factorizes the full-data model as:

f (Y ,X, R|θ) = f (Y |X, β)f (X |α)f (R|Y ,X, φ), (10)

so we should explicitly specify the response model, missing covariate distribution and missingness model.
One of the advantages of SM is that it specifies the response model f (Y |X,β) directly, which is usually the main interest

of investigators. However, this approach is not advantageous in sensitivity analysis since parameters in SM cannot be easily
partitioned as identified and non-identified parameters (Daniels &Hogan, 2008). Besides, identification problem in SM is still
not explicitly specified. Constraints on the missingness mechanism should be set in order to ensure identifiability, but how
these constraints can be translated into assumptions on the distributions of themissing components is still unclear (Ibrahim
& Molenberghs, 2009). Model identifiability is more obscure in the SM approach, so in this case, one needs to characterize
identifiability theoretically. For example, Wang, Shao, and Kim (2014) dealt with the problem of identifiability by utilizing a
missing instrument, an auxiliary variable that is useful in predicting the study variable but is conditionally independent of
the missing indicator given the study variable and other covariates.

On the basis of SM, Zhang andWang (2012) proposed a simplified SM for regression analysis, assuming that missingness
in response only related to itself and no auxiliary variables were used in the model. The advantage of simplified selection
model lies in the avoidance of selecting auxiliary variables. By simulation study they showed that simplified SM can recover
regression parameters under both correctly specified and misspecified situations.

Applications of Bayesian SM framework to deal with non-ignorable missing data problem is abundant in the literature.
For studies with non-ignorable missing response variable only, a responsemodel and amissingness model is needed. Mason
et al. (2010) performed a Bayesian SM framework with linear regression for the response model and a logit model as the
missingness model, and focused on discovering the effect of the addition of missingness model on the performance of
parameter estimation. They found that the addition ofmissingnessmodel could greatly improve the overall fit of the response
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model and lead to better prediction, but skewness in the response would have negative effect on the estimation. Lee and
Tang (2006) used nonlinear SEM as responsemodel and a product of logit conditionalmodels asmissingnessmodel. Kim and
Choi (2014) proposed a Bayesian binomialmixturemodel for collaborative predictionwith factors related to themissingness
model following Bernoulli distributions.

When non-ignorable missing covariates also exist in data, a joint missing covariate distribution is required additionally.
Cai et al. (2010) employed a mixture SEM to analyze latent variables and heterogeneous data, and logistic models were
applied as missingness model. Poleto, Paulino, Singer, and Molenberghs (2015) constructed an analysis framework with a
GLM for binary response as responsemodel, a non-parametricmodel based on a Dirichlet processmixture for the continuous
missing covariates as covariate distribution, and a logit link for the missingness mechanism. Similarly within the GLM
framework, Kalaylioglu and Ozturk (2013) considered a regression spline based semiparametric approach to model the
missingnessmechanism of themissing covariates with each piecewise conditional density having the form of a GLMdensity.
Tang and Zhao (2014) considered a nonlinear reproductive dispersionmixedmodels for longitudinal data and employed logit
link for the missingness model.

When additionally take measurement error in covariates into account, a framework consisting of a QR-based mixed-
effects model as response model, a measurement error model for missing covariates, and a logit link for missingness model
was proposed in Huang (2016).

4.2.2. Pattern mixture model
Unlike SMs, PMMs partition the full-data model as:

f (Y ,X, R|θ) = f (Y |R,X, β)f (X |R, α)f (R|φ). (11)

PMMs stratify the data by different missing patterns and allow distinct model parameters for each stratum. In PMMs,
response models are built with coefficients variant with different missing patterns. The response model here is a mixture
model:

f (Y |X, β) =
∑
R∈ 

f (Y |R,X, β)f (R|X, φ). (12)

The missingness model can be derived using Bayes’ rule:

f (R|Y ,X, β) = f (Y |R,X, β)f (R|X, φ)

f (Y |X, β, φ)
. (13)

PMM approach is well suited in missing data problems as it does not require specific modeling of the missingness model,
and it can be easily transformed into extrapolation factorizationwhichmakes sensitivity analysis more feasible (Tran, 2008).
The extrapolation factorization is:

f (Y ,X, R|θ) = f (Y(0)|Y(1), R,X, βE)f (Y(1)|R,X, βO)f (R|X, φ)f (X |α), (14)

where βE and βO correspond to parameters indexing an extrapolation distribution and a model for observables. In general,
βE cannot be identified from data alone.

Unlike SM approach, problems of identifiability can be made explicitly in PMM framework since the responses are mod-
eled separately for each missing pattern. Common ways include setting some restrictions and assigning informative prior
distributions on the unidentified parameters. In Bayesian framework, imposing informative priors is always preferred. For
example, Kaciroti, Raghunathan, Schork, Clark, and Gong (2006) and Little and Rubin (2002) constructed prior distributions
on the parameters ofmissing patterns conditioning on parameters of the observed data to solve the problem of identification
in PMM.

Application of incorporating Bayesian methods with PMM framework to deal with missing data is also rich in the
literature, especially in longitudinal studies. Motivated by Metabolic Syndrome data, Kyoung and Lee (2015) constructed
a GLMM for longitudinal binary response with random effects describing the effect of covariates on response, and a PMM
was applied for dropout missingness. The follow-up time for dropout was constructed according to the missing indicator
and was assumed to follow a multinomial model. For four missing patterns, different coefficients were produced in the
same GLMM framework. For convenience of sensitivity analysis, the parameters were reparametrized in terms of sensitivity
parameters and a componentwas defined to capture information about themissingnessmechanism. Similarly, Kaciroti et al.
(2008) analyzed longitudinal data with non-ignorable dropout using PMM framework. In their work, a TMM with random
effects following Poisson distributions was used for count responses. For each missing data patterns, TMM was applied but
allowing the parameters of the random effects to differ across patterns. Informative priors were used to solve the problem of
identification. Linero and Daniels (2015) conducted a nonparametric Bayesian inference under non-ignorable monotone
missingness using an extrapolation factorization with Dirichlet process mixtures, which enabled introducing sensitivity
parameters to vary the untestable assumptions about the missing data mechanism. Their approach was extended by Linero
(2017) to adapt for non-monotone missingness.

When additionally considering missing covariates in the analysis, covariate distributions were necessary in the frame-
work. For example, Kaciroti et al. (2006) used a TMM with random effects to investigate changes in ordinal responses over
time and PMMwas employed to analyze missing response and time-varying covariates. A joint multivariate distribution for
the missing time-varying covariates was used. Informative priors using cumulative odds were imposed to identify parame-
ters. When the covariates are MNAR, a PMMwith different parameters can be fitted similarly for these covariates as well.
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4.2.3. Shared parameter model

Another approach for specifying the full-data model is SPM, where latent random effects are used to relate the response

with missing indicators. The general form is given by:

f (Y ,X, R|θ) =
∫

f (Y ,X, R, b|θ)db, (15)

where b denotes the latent random effects, and

f (Y ,X, R, b|θ) = f (Y |X, b, β)f (R|Y ,X, b, φ)f (X |α, b)f (b|ϕ). (16)

One advantage of SPMs is that it simplifies the specification of response model and missingness model. Through random

effects, SPMs are able to handle multilevel structured data or data with measurement error. However, SPM is difficult to

understand and may not have a closed form since it requires integration over the random effects (Daniels & Hogan, 2008).

Yuan and Yin (2010) studied quantile regression for longitudinal responses with non-ignorable intermittentmissing data

and dropout. The informative missing data were assumed to be related to the longitudinal response process through the

shared latent randomeffects. They firstly extendedQR to longitudinal setting, and then introduced individual randomeffects

into the model to link the missingness with longitudinal response process. They assumed the missing data process and the

response process to share the same random effects and modeled the missing data process using transition probabilities.

Lu, Zhang, and Lubke (2011) also used SPM to deal with non-ignorable missing data. An extended GMM with latent class

membership indicator was employed to analyze longitudinal data. The missing indicator followed a Bernoulli distribution

with the missing probability following a probit link function of the latent class membership and the covariates.

In order to illustrate the differences between these three common frameworks, a simple example is presented here.

Consider a normal response Y and a covariate vector X , with Y has missing data and X is completely observed. Define the

missing indicator Ri = 1 if Yi is observed. A SM framework factors the full-data distribution as

f (Y ,X, R|θ) = f (Y |X, β)f (R|Y ,X, φ).

The response model can be specified as a normal density N(μ, σ 2), while the missingness model can be set as a Bernoulli

distribution with a simple regression like

Ri ∼ Bernoulli(τi), g(τi) = φ0 + φ1yi + φ2xi,

where g(·) is a link function and can take logit or probit.

For a PMM, the full-data model is factorized as

f (Y ,X, R|θ) = f (Y |R,X, β)f (R|φ).
For the response model, we assume the normal response given missing indicator R follows a normal distribution with

common variance as

Y |R = 1 ∼ N(μ(1), σ 2), Y |R = 0 ∼ N(μ(0), σ 2).

And the missingness model f (R|φ) is defined as

R ∼ Bernoulli(τ ).

For the SPM, a latent random effect is considered. Here we assume that W ⊆ X denotes the random effect covariates.

The full-data model is given as

f (Y ,X,R|θ) =
∫

f (Y ,X, R, b|θ)db,

where f (Y ,X, R, b|θ) = f (Y |X, b, β)f (R|b, φ)f (b|ϕ). For the response model, we assume that a normal density N(Xβ +
Wb, σ 2) is specified. And a normal distribution N(0, Ψ ) is assumed for the random effects. For the missingness model, it is

specified as

Ri|b ∼ Bernoulli(τi), g(τi) = Φbi.

Similarly, g(·) is a link function.

4.2.4. Identifying-restrictions-based model

Identifying-restrictions-based model (Thijs, Molenberghs, Michiels, et al., 2002) is a strategy for fitting PMMs. As we

mentioned above, imposing restrictions can help solve the problem of identifiability in PMMs. Thijs et al. (2002) propose

an alternative strategy to deal with this problem. In their work, attention is restricted to monotone patterns. For pattern

t = 1, . . . , T , ys = {Y |r = s}, the model is

ft (y1, . . . , yT , r = t) = ft (y1, . . . , yt )ft (yt+1, . . . , yT |y1, . . . , yt )f (r = t), (17)
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with identifying restrictions applying on the second component. For a given identified component ys, a general expression is

ft (ys|y1, . . . , ys−1) =
T∑
j=s

wsjfj(ys|y1, . . . , ys−1), s = t + 1, . . . , T , (18)

and wsj provides a valid identification scheme. Thijs et al. (2002) considered three important identification cases including
CCMV, NCMV and ACMV.

The strategy above assumes that missingness depends on past measurement and on the present, but not on future ones.
Kenward, Molenberghs, and Thijs (2003) made an extension to develop this so called non-future dependent missingness.
The model is given by

ft (y1, . . . , yT , r = t) = ft (y1, . . . , yt )ft (yt+1|y1, . . . , yt )ft (yt+2, . . . , yT |y1, . . . , yt+1)f (r = t), (19)

with the first three components represent the distributions of past, present and future measurements, respectively. In (19),
the second and third components are unidentifiable from the data. The non-future dependent missing value states that

ft (ys|y1, . . . , ys−1) = f(≥s−1)(ys|y1, . . . , ys−1), (20)

for s = t+2, . . . , T . Using a general expression similar to (19),wsj can bemodeled to accommodate different cases. Kenward
et al. (2003) considered the same cases as in Thijs et al. (2002) to illustrate the approach.

5. Bayesian inference

Whenmissing data exist in themodel framework, they should be integrated out from the likelihood function. In Bayesian
approach, it is easy to achieve this goal without additional inferential procedures. Missing data in Bayesian frameworks
are regarded as random variables that can be sampled from their corresponding conditional distributions (Tanner & Wong,
1987). In addition,more information canbe extracted from the observeddata to construct informative priors,which is helpful
since there is insufficient information about parameters related to missingness mechanism from the likelihood alone.

In order to obtain the estimates of parameters of interest, posterior distribution f (β, α|Dobs) should be firstly constructed
using prior distributions, and then samples can be drawn from the joint posterior distribution throughMCMCmethods, such
as Gibbs sampler (Geman & Geman, 1984) and M–H algorithm (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller,
& Teller, 1953).

5.1. Prior construction

Prior distributions quantify the knowledge and information about the unknown parameters. Prior selection is an
important issue since the posterior estimatesmay be sensitive to the choice of the priors of the hyperparameters. Also, some
prior distributions may lead to improper posterior distributions and poor mixing as well as slow convergence in MCMC
algorithm. Some commonly used non-informative priors and conjugate priors are introduced in Daniels and Hogan (2008).
Inmissing data problems, the problem of identification is common and not enough information from likelihood alone can be
used for inference (Ibrahim et al., 2002). In these situations, Bayesian frameworkwith informative priors can be of great help.

5.1.1. Informative priors using historical data
One way of constructing informative priors is making use of historical data (Ibrahim et al., 2002), i.e. data from previous

similar studies. Related application of historical informative priors can also be seen in Chen et al. (2002).
Let D0 = (N0, Y0,X0) denote the complete historical data, where N0, Y0 and X0 denote the sample size, response variable

and covariates of the historical data, respectively. Similarly, we allow the historical data to have missing response or
covariates. The joint prior for (β, α) is of the form:

π (β, α|D0,obs) ∝ π∗(β, α|D0,obs)π0(β, α), (21)

where π0(β, α) is the initial prior of (β, α), and

π∗(β, α|a0,D0,obs) =
n∏

i=1

∫
Y0(0)

∫
X0(0)

f (Y0i|X0i, β)a0 f (X0i1|β, α1)
a0i1

×
p−1∏
j=1

f (X0i,p−j+1|X0i,1, . . . , X0i,p−j, αp−j+1)
a0i,p−j+1dX0(0)dY0(0) (22)

where D0,obs = (N0, Y0(1),X0(1)) denotes the observed historical data. For simplicity, (22) can be written as

π∗(β, α|a0,D0,obs) =
∫
Y(0)

∫
X(0)

{f (Y0|X0, β, α)}a0dX(0) (23)
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where a0(0 ≤ a0 ≤ 1) is a scalar prior parameter that weighs the complete data likelihood of the historical data relative
to the current ones, which can be interpreted as a precision parameter that controls the heaviness of the tails of the joint
prior for (β, α). a0 = 0 means no historical data is incorporated in the priors while a0 = 1 means historical data are equally
weighed with the likelihood of the current study.

Assume a vague prior for π0(β, α), that is:

π0(β, α) = π0(β|c0)π0(α|d0), (24)

where c0 and d0 are prior parameters of π0(β, α). Consider a Beta prior for a0, then the joint prior distribution for (β, α, a0)
is given by:

π (β, α, a0|D0,obs) ∝ π∗(β, α|a0,D0,obs)π0(β|c0)π0(α|d0)aδ0−1

0 (1− a0)
λ0−1, (25)

where (δ0, λ0) are prior parameters. Ibrahim et al. (2002) introduced several choices for the prior parameters (δ0, λ0).

5.1.2. Empirical Bayes based priors
Another way of constructing informative priors is empirical Bayes based priors (Huang et al., 2005; Kalaylioglu & Ozturk,

2013). Hyperparameters in empirical Bayes based priors are obtained from the observed data as well as the possible datasets
that could be observed from the considered model. Carlin and Louis (1997) introduced the usefulness of empirical Bayes
based priors.

The parameter space consists of (β, α, φ)′. Huang et al. (2005) had shown that under GLM, improper priors on β (the
parameters in response model) and α (the location parameters in missing covariate distribution) will not lead to improper
joint posterior distribution as long as proper priors are given for φ (the parameters in the missingness model). Besides, they
also showed that empirical Bayes based priors forφwill accelerate the convergence ofMCMC algorithm. Therefore, improper
uniform priors can be taken for β and α, while an empirical Bayes based prior is constructed for φ. For simplicity, we assume
that response variables are completely observed. Let φ denote the regression coefficients in the missingness model, then its
prior distribution is set as:

φ ∼ N(φ̂, c0Φ0), (26)

where φ̂ denotes an estimate of mean vector, Φ0 is an estimate of variance–covariance matrix, and c0 is a constant used to

account for the variation introduced by estimating the prior parameters. φ̂ and Φ0 can be obtained using the imputation
technique as follows:

(1) Obtain themaximum likelihood estimates of α, denoted by α̂MLE , based on the subjects with fully observed covariates;
(2) Generate K independent samples X(0)k ∼ f (X(0)|X(1), α̂MLE) to obtain the imputed missing covariates, and denote the

imputed dataset as Dimp,k = (Y ,X(0)k,X(1)) for k = 1, . . . , K ;

(3) Plug the imputed missing covariates in the missingness model and obtain φ̂k and the information matrix Ik(φ̂k) by

maximizing the imputed likelihood function, where the information matrix can be calculated as I(φ) = −∂2 ln L(φ)

∂φ∂φ′ .

Then the hyperparameters of the empirical Bayes based prior, φ̂ and Φ0, can be calculated as:

φ̂ = 1

K

K∑
k=1

φ̂k and Φ0 = 1

K

K∑
k=1

[
Ik(φ̂k)

]−1

. (27)

5.1.3. Expert elicitation priors
Expert elicitation is usually used for specifying the priors for one or more unknown parameters of a statistical model.

The expert’s current knowledge of several aspects of the problem is translated into probabilistic form and then incorporated
into the posterior inference through the Bayes’ Theorem (Garthwaite, Kadane, & O’hagan, 2005). The elicitation process
is divided into four parts: preparing for the elicitation, eliciting specific summaries of the experts’ distributions for the
unknownparameters, fitting a (joint) probability distribution to the summaries, and assessing the adequacy of the elicitation.
Detailed discussions of these four issues can be seen in Garthwaite et al. (2005).

Mason (2010) gave a brief review of the application of expert elicitation in missing data problems and introduced several
software packages for the elicitation process. Besides, he also gave a detailed example of expert elicitation usingMSC income
data. In the elicitation process, it is always difficult to construct a specific distribution from a finite number of statements of
the expert. Oakley and O’hagan (2007) proposed a nonparametric approach to allow the expert’s distribution to take any
continuous form in order to overcome the deficiencies of the commonly used parametric approaches.

5.2. Posterior computation

A revolutionary approach in Bayesian computation to obtain exact inferences for complex model settings is MCMC. The
crucial idea is to obtain a sample from the posterior distribution without explicitly evaluating normalizing constant of the
posterior distribution by constructing a Markov chain, which has the posterior distribution of interest as its stationary
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distribution. Then by doing Monte Carlo integration using the samples from the Markov chain, the marginal posteriors
and the posteriors of functions of the parameters can be easily obtained (Daniels & Hogan, 2008). Gibbs sampler and M–
H algorithm are two popular MCMC algorithms used in Bayesian inference. Here we give a brief introduction to these two
algorithms.

(1) The Gibbs sampler.

The Gibbs sampler (Geman & Geman, 1984) is the most popular MCMC algorithm. It involves sampling a Markov chain
which takes the product of the sequentially updated full conditional distributions of the parameters as the kernel and the

posterior as the stationary distribution. Let β = (β1, . . . , βq)
′ denote a q-dimensional parameter vector and let β

(k)
j denote

the sample of the jth component of β at iteration k, and then sample from the following distributions sequentially,

1. β
(k)
1 ∼ f (β

(k)
1 |β (k−1)

2 , β
(k−1)

3 , . . . , β
(k−1)
q , y);

2. β
(k)
2 ∼ f (β

(k)
2 |β(k)

1 , β
(k−1)

3 , . . . , β
(k−1)
q , y);

q. β
(k)
q ∼ f (β

(k)
q |β(k)

1 , β
(k)
2 , . . . , β

(k)
q−1, y).

(2) The Metropolis–Hastings algorithm.

M–H algorithm (Hastings, 1970) is a popular approach for sampling from non-standard full conditional distributions. The
full conditional distribution of interest is given by

f (β
(k)
j |{β(k)

l : l < j}, {β (k−1)

l : l > j}, y).
For simplicity, we write the above conditional distribution as f (β

(k)
j ). At the kth iteration, sampling β

(k)
j from some

candidate distributions p(β
(k)
j ), and the sampled values are accepted with probability α∗ given by:

α∗ = min

{
1,

f (β
(k)
j )p(β

(k−1)

j |β(k)
j )

f (β
(k−1)

j )p(β
(k)
j |β (k−1)

j )

}
.

The common choices of candidate distribution include normal distribution and an approximation to the full conditional
distribution. More details can be seen in Daniels and Hogan (2008).

Combination of Gibbs sampler and M–H algorithm is also researched in Tang and Zhao (2014), they considered a hybrid
sampling procedure combining the Gibbs sampler and M–H algorithm for Bayesian estimation.

Data augmentation (DA) (Tanner&Wong, 1987) is an alternative toM–Halgorithmwhen the full conditional distributions
are difficult to sample. DA introduces latent data Z which enables sampling f (β|z, y) and f (z|β, y) easily. This approach firstly
samples f (z|β, y), and then samples f (β|z, y) using Gibbs sampler. DA is also a natural way for dealing with missing data.
In incomplete data cases, latent data Z will denote the missing data, and sampling f (β|z, y) and f (z|β, y) corresponds to
sampling from the complete data posterior and posterior predictive distribution of the missing data, respectively.

The above MCMC methods may give misleading answers before they converge to the stationary distribution. Therefore,
assessing convergence is a key step in implementing the MCMC methods. Comprehensive introduction of the convergence
diagnostics can be seen in Little and Rubin (2002) andMengersen, Robert, and Guihenneuc (1999). Here we briefly introduce
themost popular convergence statistics called potential scale reduction (PSR) statistic proposed byGelman andRubin (1992).
For calculating the PSR statistic, we should firstly generate L parallel chainswith starting points dispersed over the parameter
space, and then calculate the variance between the sequence means B and the average of the within-sequence variances W

for each quantity of interest. After that, by a weighted average of B and W, we can estimate the posterior variance V̂ , and
finally, the PSR statistic can be calculated as√

R̂ =
√
V̂/W ,

where V̂ = B/K +W (K − 1)/K is the posterior variance and W is the within-sequence variance. When the value of PSR is
near 1.0 for all quantities of interest, we can say that the chains have already converged to the stationary distribution.

5.3. Model comparison

One issue in sensitivity analysis is how to select among several alternativemodels. Herewepresent some common criteria
for model comparison, including deviance information criterion (DIC), L-measure, Bayes factor, the conditional predictive
ordinate (CPO), and LPML.

TheDIC proposed by Spiegelhalter, Best, Carlin, and VanDer Linde (2002) is themost popular criterion to compare various
competing models in the Bayesian framework since it is easily obtained from the observations simulated by the MCMC
algorithm (Cai et al., 2010; Das et al., 2008; Kyoung & Lee, 2015; Lu et al., 2011; Pettitt et al., 2006; Yu et al., 2013). It is a
model-based criterion composed of a goodness of fit term and a penalty term. Let θ denote the parameter related to data y,
then the overall fit of the model is defined as the deviance, a linear function of the log likelihood, given by

Dev(θ ) = −2 log L(θ |y).
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The penalty term is given by

pD = E{Dev(θ )|y} − Dev{E(θ |y)}.
Then the DIC is defined as

DIC = Dev{E(θ |y)} + 2pD. (28)

In the presence of non-ignorable missing data, DIC should be reconstructed due to taking account of the missingness
mechanism. Daniels andHogan (2008) discussed two different constructions for selectionmodels that based on the observed
data likelihood and the full-data likelihood respectively.

Ibrahim, Chen, and Sinha (2001) introduced L-measure criterion for measuring the adequacy of a given model. Let
z = (z1, . . . , zn)

′ denote a future response vector with the same sampling density as f (y|β). L-measure is defined as:

L(y) =
n∑

i=1

Var(zi|yi)+ v

n∑
i=1

(μi − yi)
2, (29)

where μi = E(zi|yi) and 0 < v < 1. v can be interpreted as a weight term in the formula, and it has an impact on the
ordering of the models as well as characterizing the properties of L-measure. Ibrahim et al. (2002) proposed a calibration
form of L-measure. Chen, Dey, and Ibrahim (2004) proposed the weighted L-measure and Huang et al. (2005) extended it to
accommodate GLMs with missing covariates.

Following Berge (1985), Bayes factor for comparing two competing modelsM0 andM1 is given by:

B10 = f (Y(1),X(1),R|M1)

f (Y(1),X(1),R|M0)
, (30)

where f (Y ,X,R|Mi) is the margin probability distribution of model Mi based on the observed data for i = 0, 1. The path
sampling idea can be used to evaluate f (Y ,X,R|Mi) as it is difficult to derive this density function directly. Details can be
seen in Tang and Zhao (2014). Application of Bayes factor as model comparison criterion can also be seen in Lee and Song
(2004) and Lee and Tang (2006).

The CPO statistic is a useful tool for model comparison (Chen et al., 2002; Ibrahim et al., 2001; Tang and Zhao, 2014).

Let D
(−i)

obs be the observed dataset Dobs = (N, Y(1),X(1)) with the ith observation deleted. For the ith observation, define the

CPO statistic as CPOi = f (Y(1)i|X(1)i,D
(−i)

obs ). A larger value of CPO statistic indicates a better fit of the model. Chen et al. (2004)
proposed a new definition of the CPO statistic in the presence of missing covariates.

A summary statistic for measuring the plausibility of a model is LPML, also named as pseudo-Bayes factor, which is
given by:

LPML =
N∑
i=1

log(CPOi). (31)

Similarly, a larger value of LPML means a better fit of the model.
Although all of these criteria can be used for model comparison, there is no final conclusion about which criterion is

the best and the most reliable in practice. Efforts have been paid in discovering the relationship between these criteria.
For example, Chen, Huang, Ibrahim, et al. (2008) explored the theoretical and computational connections between these
criteria for model selection in GLM settings. They found that under conjugate priors, these criteria are quite similar in terms
of model selection, especially under small values of the prior parameters. These criteria were also compared in Chen and
Kim (2008) for selecting constrained ANOVA models. They discovered that the Bayes factor is extremely more sensitive to
the specification of the prior distributions of model parameters than the other criteria since it suffers from the Bartlett’s or
Lindley’s paradox, which means that the other criteria are more robust to the specification of prior distributions. As a result,
other criteria do not require proper priors while Bayes factor does. DIC and LPML usually perform similarly and agree with
each other, while Bayes factor may give different answers. In addition, L-measure indicates how well a model fits the data
through the posterior predictive variance and bias, while the dimensional penalty term in DIC is regarded as a measure of
model complexity. In computational point of view, L-measure, DIC, CPO and LPML are much easier to be computed than
Bayes factor.

5.4. Sensitivity analysis

How a model fits to the observed data can be assessed, while its fit to the unobserved data given the observed data
cannot be assessed (Mason, 2010). As a result, sensitivity analysis becomes a crucial part in Bayesian framework because
of the inability to distinguish the real missing data mechanism (Molenberghs & Kenward, 2007). Draper (1995) pointed out
that in the case of incomplete data, there are parametric and structural uncertainty in the models, so it is important to take
the uncertainty into account.

Mason et al. (2010) concluded two types of sensitivity analysis, an assumption sensitivity and a parameter sensitivity. For
the assumption sensitivity, several alternative models should be explored by changing the key assumptions. For example,
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specifying different prior distributions, response models, error distributions, covariate distributions, or missingness models
to fit the incomplete data and proceed model comparison (Das et al., 2008; Lee & Song, 2004; Yuan & Yin, 2010). For the
parameter sensitivity, running the missingness model with parameters controlling the extent of departure from MAR fixed
to values in a plausible range. The parameters controlling the extent of departure from MAR are usually called sensitivity
parameters. The construction of sensitivity parameters can be seen in Daniels and Hogan (2008). Specifically for the PMM
framework, Daniels and Hogan (2008) examined several global and local sensitivity methods in Bayesian analysis especially
for the extrapolation factorization approach. Kaciroti and Raghunathan (2009) proposed a Bayesian parameterization using a
PMMapproach, whichmeasured the difference between the distributions of themissing data from that of the observed data,
for sensitivity analysis. This parameterization also allows for the translation between PMMs and SMs. More recently, Zhu,
Ibrahim, andTang (2011) developed a general framework of Bayesian analysis for assessing different perturbation schemes to
the data, and Zhu, Ibrahim, and Tang (2014) developed a Bayesian perturbation manifold and performed sensitivity analysis
using intrinsic influence measures.

The assumptions of response model and missingness model are the crucial parts to be checked in sensitivity analysis.
However, nonparametric response model and missingness model that weaken model assumptions have become more
popular in the literature. A comprehensive review of Bayesian nonparametric approaches for longitudinal data under
non-ignorable missingness can be seen in Daniels and Linero (2015). In nonparametric modeling, we can find sensitivity
parameters in the missingness mechanism and specify informative priors on them to make sure fitting models to the
observed data will not be affected (Daniels & Hogan, 2008). For example, Scharfstein, Daniels, and Robins (2003) presented a
fully Bayesian method by incorporating prior beliefs about non-identifiable selection bias parameters under a univariate
continuous missing response circumstance. For longitudinal binary missing responses, Wang, Danies, Scharfstein, et al.
(2010) proposed a Bayesian shrinkage approach to incorporate expert opinion about non-identifiable parameters. In
addition, the Bayesian nonparametric framework presented in Linero and Daniels (2015) and Linero (2017) allowed the
introduction of sensitivity parameters to vary the untestable assumptions about the missingness mechanism.

6. Other related topics

The above review of Bayesian methods for dealing with missing data is mainly about the application of different
frameworks and models in various settings. Some other related topics include dealing with missing categorical data in
contingence tables, incorporating information from similar studies, and improving the robustness of the estimators.

Contingence table is used for displaying the frequency distribution of the variables in a matrix form, usually used in
survey researches. In contingence tables, unit nonresponse and item nonresponse may result in partial classification. ML
estimates calculated from the data table may suffer from the problem of instability due to boundary solutions, so Bayesian
approach is a good alternative for dealing with these problems. Green and Park (2003) developed a Bayesian hierarchical
model with a log-linear model in the prior specification. Nandram, Han, and Choi (2002) proposed two hierarchical models,
under ignorable and non-ignorable missingness respectively, to analyze count data from several areas in one-way tables,
based on which Nandram, Cox, and Choi (2005) considered several two-way categorical tables and developed a method to
study the association between the categorical variables. Nandram, Liu, Choi, and Cox (2005) extended to a general r × c
categorical table with partial classification and proposed a Bayesian approach that allowed the missingness to be ignorable
or non-ignorable, and a Bayes factor was used for model comparison. Other types of data, including binomial, ordinal and
repeated measured data, can also be considered in the contingence table with missingness settings.

In Bayesian framework, data combination is natural and easy to implement through prior distributions. Information from
other related sources can help improve the performance of the estimators, so it has become a popular area in the literature.
For example, Jackson, Best, and Richardson (2006) combined aggregate-level and individual-level data from related sources
by carrying out simultaneous regressions with common coefficients on data from two levels to improve inferences. Bayesian
graphical model was employed by Molitor, Best, Jackson, and Richardson (2009) to analyze multiple data sources in which
sub-models were linked by shared parameters, while Raghunathan et al. (2007) used a hierarchical Bayesian approach to
consider multiple data sources and showed that the combined estimation procedure can help improve the performance of
the estimates.

The robustness of the estimates is a common problem in missing data problems. Nonparametric modeling is a popular
way to improve the robustness of the estimators as parametric assumptions are relaxed in nonparametric settings. In SM
framework, Chen et al. (2002) employed splines in both the response model and the missingness model, while Daniels and
Hogan (2008) and Su and Hogan (2008) used splines in response models within PMM framework. Rizopoulos and Ghosh
(2011) used nonparametric randomeffects in SPM framework. Auxiliary information can also be used to improve robustness.
For example, Daniels,Wang, andMarcus (2014)made inference of themarginal distributions of the auxiliary covariates using
the saturated multinomial approach for ignorable missing data in Bayesian framework. However, although nonparametric
approaches are more robust to model specification and estimation than a parametric model, sensitivity analysis and model
assessment still should be thought highly of.

7. Conclusions and future issues

This paper is a review of recent developments and applications of Bayesian methods for dealing with missing data.
We firstly give a brief introduction of ignorable and non-ignorable missing data mechanisms, as well as the Bayesian
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framework for dealing with missing data. Then according to the inference procedure, missing data models under different

missing data settings are reviewed. Following is some key issues of Bayesian inference, including prior construction,

posterior computation, model comparison, and sensitivity analysis. We introduce how researchers use these structures and

frameworks to analyze data of various types and under different missing data settings. We also briefly introduce several

related topics. Summarizing from the existing researches, several future issues are concluded as follows.

The robustness of results and sensitivity analysis. The robustness of results when different parts of the missing data

model are incorrectly specified is a common problem in missing data analysis, which also happens in Bayesian framework.

In particular, when the error distribution of response model or the form of missingness model is misspecified, the

performance of Bayesianmethodswill negatively affected (Mason, 2010). In addition, when themodel is weakly identifiable,

the inferences will be sensitive to the choices of the hyperparameters. As a result, sensitivity analysis about these key

assumptions should be performed and informative priors elicited from external information or expert knowledge can be

used to help solve this problem (Molenberghs, Fitzmaurice, Kenward, Tsiatis, & Verbeke, 2014). Nonparametricmodeling and

auxiliary information can also be developed to improve the robustness of the estimates. Incorporating Bayesian approach

with MI or other methods can also be an alternative.

More complex data structures. When response variables or covariates are multiple and of mixed types, the complexity

of the analysis increase rapidly due to the correlations between the variables. Different methods should be applied to deal

with these complex data. For example, when dealing with mixed correlated ordinal and count data, factorization or latent

variables can be used. When dealing with multiple responses in longitudinal studies, marginal modeling, random-effects

models and Markov transition models can be employed (Samani & Ganjali, 2014). In addition, when measurement error,

heterogeneity, skewness, censored or other features exist in missing variables, attention should be paid to fit more suitable

parts of the models. For example, as in Huang (2016), a measurement error model was built as covariate distribution when

the missing covariates suffer frommeasurement error. More efforts should be done to take different situations into account

to achieve more reliable results. Also, special attention should be paid to deal with longitudinal data, spatial data, survival

data and multilevel data, especially in the case of high-dimension.

Quantile regression with MNAR missingness in Bayesian framework. Most Bayesian approaches for missing data in the

literature mainly focus on mean regression and few builds a model in the form of QR. With QR, the impact of covariates

on quantiles can also be investigated and the results will be more robust since QR does not require the assumptions about

the error distributions. The existing researches that employing QR for dealing with missing data in Bayesian framework

do not allow for sensitivity parameters, which needs further developments (Molenberghs et al., 2014). Composite quantile

regression (CQR) is a new extension of QR which can improve the efficiency and robustness of the estimates even for non-

normal errors. Bayesian methods incorporating with CQR to analyze incomplete data also need further research (Samani &

Ganjali, 2014).

Specialized MCMC sampling algorithms. Complex statistical models for large datasets do not run quickly or the MCMC

may not converge easily in the existing available software like WinBUGS. The current capability of existing software limits

the scope for easily implementing complex models that incorporate multiple correlated missing covariates of mixed types

(Mason, 2010). As a result, specified MCMC sampling algorithms need further investigation to adapt for complex and large

datasets.
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