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a b s t r a c t

This paper analyzes the identification and estimation procedures for periodic autoregres-
sive models with one exogenous variable (PARX). The identification of the optimal PARX
model is based on the use of a genetic algorithm combined with the Bayes information
criterion. The estimation of the parameters relies on the least squares method and their
asymptotic properties are studied. Two simulation experiments are performed and indicate
the success of the suggested method. A PARX model is used to study the relationship
between the catch-per-unit-effort and the sea surface temperature as exogenous variable
for the shrimp French Guiana fishery from January 1989 to December 2012.
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1. Introduction

The use of periodic models appears to be well-suited to deal with many real life phenomena characterized by a seasonal
behavior (Dudek, Hurd, & Wojtowicz, 2014; Lund, Shao, & Basawa, 2006; Tesfaye, Meerschaert, & Anderson, 2006). These
models are increasingly used in the climatology or hydrology literature (Hipel & McLeod, 1994; Jones & Brelsford, 1967; Li
& Lund, 2012; Lu, Lund, & Lee, 2010; Lund et al., 2007; Ursu & Pereau, 2016; Vecchia, 1985) but also in other disciplines like
macroeconomics (Franses & Paap, 2004), engineering (Schlick, Duckwitz, & Schneider, 2013) and marine fisheries (Stoffer,
1986). In many applications of time series analysis, the variable of interest may be affected by other variables, called
exogenous or unmodeled variables, which are determined outside the system of interest. In the case study of the paper,
climate change and global warming in particular through its effect on the sea surface temperature appears as an exogenous
major driver on inter-annual fluctuations in fish abundance (Brander, 2007; Cheung et al., 2009).

Autoregressive models with exogenous variables (ARX) have been extensively used in the econometric literature. The
dependent variable is assumed to depend on its past values and the present and lagged values of exogenous variables. These
models are also called conditional or partial models (Lütkepohl, 2005), distributed lag models (Reinsel, 1997) or transfer
function models (Wei, 2006). The introduction of ARX in a var model (VARX) with systematically varying coefficients in a
state-space model form has been studied by Lütkepohl (2005). Paroli and Spezia (2008) introduced a periodic component in
anARXmodel. ExtendingARXmodels to periodic autoregressive (PAR)modelswith exogenous variables (PARX) in a Bayesian
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framework has been proposed by Andel (1987, 1989). Maçaira, Oliveira, Ferreira, de Almeida, and Souza (2017) proposed a
PAR with exogenous variables to generate scenarios for hydrological inflows for some Brazilian reservoirs and showed that
the inclusion of exogenous variables decreases the error measure by 3%. This notation PARX should not be confused with
other acronyms like Poisson AutoRegression with eXogenous covariates (Agosto, Cavaliere, Kristensen, & Rahbek, 2016;
Angelini & Angelis, 2016) or Polynomial Autoregressive Regression with eXogenous variables (Wojciechowski, 2001).

The main challenge with PARX models relies on the large number of parameters to estimate. Sometimes there exist
several sets of model parameters that give reasonable results. A way to reduce the parameter space in PAR models consists
in introducing restrictions on the parameters (Ursu & Duchesne, 2009; Ursu & Turkman, 2012). A similar problem occurs in
time series analysis with a large number of models which needs to be compared and estimated. Genetic Algorithms (GA)
appear to be an useful tool to investigate the space of solutions and to select the combination of parameters that corresponds
to the best model (Baragona & Battaglia, 2009). Baragona, Battaglia, and Cucina (2004), Wu and Chang (2002) developed a
method which exploits GA with Akaike’s Information Criterion (AIC). GA coupled with Minimum Description Length (MDL)
have recently been used in Song and Bondon (2013) and Yau, Tang, and Lee (2015). GA in Bayesian context was also used
by Jeong and Kim (2013) to locate change points for an autoregressive model. To deal with PARX models, this paper uses an
automatic procedure based on GA combined with Bayesian Information Criterion (BIC).

Our contributions to the PARX literature are twofold. A first contribution is to provide theoretical results on the least
squares estimators and derives their asymptotic properties in PARXmodels. Contrary toMaçaira et al. (2017), the estimation
and identification of the model are analyzed taking into account constraints on the parameters. Our paper also considers a
global optimization strategy relying on genetic algorithms and not a sequential procedure which consists in estimating first
a PARmodel and then adding exogenous variables. A second contribution refers to the applied fisheries literature concerning
the stock assessment of fish species populationswhich is often performed on the basis of thewell-known ‘‘Virtual Population
Analysis’’ method (Lassen & Medley, 2001; Sparre & Venema, 1998). This age-structured method aims at providing to the
fisherymanager information on the recruit abundance, the spawning stock biomass aswell as the fishingmortality. However
thismethod appears to be stringent in termsof data collection (Haddon, 2011). PARXmodels canbemore easier to implement
and provide short-term forecasts to managers concerning the catch-per-unit-effort for fish species population.

The rest of the article is organized as follows. In Section 2, the PARX model is introduced and a brief review of the
estimation techniques is presented. Section 3develops a genetic algorithm to conduct the identification process and Section 4
reports some Monte Carlo simulation results. In Section 5, an application to the shrimp French Guiana fishery is presented.
Section 6 concludes.

2. Periodic models with one exogenous variable

The dependent variable is denoted by Yt , the exogenous variable by Xt and the error process by εt . Yt and Xt are assumed
to be periodic stationary processes according the following definition.

A stochastic processWt is periodic stationary if

E(Wn+s) = E(Wn) and cov(Wn+s,Wm+s) = cov(Wn,Wm),

for all integers n andm, where s stands for the period. Periodic series are also called periodically correlated (Gladyshev, 1961)
or cyclostationary (Lund & Basawa, 2000).

Based on Andel (1989), we consider the following periodic autoregressive model with one exogenous variable:

Yns+ν =
p(ν)∑
k=1

φk(ν)Yns+ν−k +
m(ν)∑
j=0

θj(ν)Xns+ν−j + εns+ν, (1)

for n = 0, 1, . . . ,N−1 and ν = 1, 2, . . . , s. The autoregressivemodel order at season ν for Yt is given by p(ν), while the terms
φk(ν), k = 1, . . . , p(ν), represent the autoregressive model coefficients during season ν. Concerning the exogenous variable
Xt , the autoregressive order at season ν is given bym(ν) while the terms θj(ν), j = 0, . . . ,m(ν) are the autoregressive model
coefficients during season ν. The mean of Yt is equal to zero in each of the s seasons, that is E(Yns+ν) = 0, ν = 1, 2, . . . , s.
Without loss of generality, the mean of process Xt is assumed to be zero. The error process ε = {εt , t ∈ Z} corresponds to
a periodic white noise, with E(εt ) = 0 and var(εns+ν) = σ 2(ν) > 0, ν = 1, . . . , s. In the following we assumed that Xt and
εt are independent processes, although most results can be obtained under less restrictive conditions. Note that if s = 1,
then Eq. (1) reduces to a classical autoregressive model with exogenous variables (ARX). As in Andel (1989), the model can
be extended to several exogenous variables.

2.1. Unconstrained least squares estimators

To estimate the parameters of the model, we consider the time series data Yns+ν , n = 0, 1, . . . ,N − 1, ν = 1, . . . , s with
sample size Ns. Let z(ν) = (

Yν, Ys+ν, . . . , Y(N−1)s+ν

)& and e(ν) = (
εν, εs+ν, . . . , ε(N−1)s+ν

)& be (N × 1) vectors with & the
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transpose operator and Z(ν) = [Y(ν) X(ν)] the N × (p(ν) + 1 + m(ν)) a randommatrix defined as

Y(ν) =

⎡⎢⎢⎣
Yν−1 Yν−2 . . . Yν−p(ν)
Ys+ν−1 Ys+ν−2 . . . Ys+ν−p(ν)

...
...

. . .
...

Y(N−1)s+ν−1 Y(N−1)s+ν−2 . . . Y(N−1)s+ν−p(ν)

⎤⎥⎥⎦ , and

X(ν) =

⎡⎢⎢⎣
Xν Xν−1 . . . Xν−m(ν)
Xs+ν Xs+ν−1 . . . Xs+ν−m(ν)
...

...
. . .

...

X(N−1)s+ν X(N−1)s+ν−1 . . . X(N−1)s+ν−m(ν)

⎤⎥⎥⎦ .

Let

β(ν) = (φ(ν), θ(ν))&,

be the parameter vector, where

φ(ν) = (φ1(ν), . . . , φp(ν)(ν)
)& and θ(ν) = (θ0(ν), θ1(ν), . . . , θm(ν)(ν)

)&
.

Since Eq. (1) is a linear model, it may be written in a regression model form:

z(ν) = Z(ν)β(ν) + e(ν), ν = 1, . . . , s. (2)

The covariancematrix of the randomvector e(ν) isσ 2(ν)IN with IN the identitymatrix of sizeN . The least squares estimate
of β(ν) is obtained by minimizing

S(β) =
s∑

ν=1

e&(ν)e(ν) =
N−1∑
n=0

s∑
ν=1

⎛⎝Yns+ν −
p(ν)∑
k=1

φk(ν)Yns+ν−k −
m(ν)∑
j=0

θj(ν)Xns+ν−j

⎞⎠2

. (3)

Hence, the least-squares estimators for β̂(ν) =
(
φ̂(ν), θ̂(ν)

)&
for any fixed ν are solution of the following (p(ν)+m(ν)+1)

equations obtained by taking derivatives of Eq. (3):

∂S(β)
∂φk(ν)

= 2
N−1∑
n=0

εns+ν

∂εns+ν

∂φk(ν)
= −2

N−1∑
n=0

Yns+ν−kεns+ν,

∂S(β)
∂θj(ν)

= 2
N−1∑
n=0

εns+ν

∂εns+ν

∂θj(ν)
= −2

N−1∑
n=0

Xns+ν−jεns+ν .

Setting the derivatives equal to zero, we obtain the following system for a given season ν:

Z&(ν)e(ν) = 0.

Since e(ν) = z(ν) − Z(ν)β(ν) we have

Z&(ν)z(ν) = Z&(ν)Z(ν)β(ν),

which gives

β̂(ν) = {Z&(ν)Z(ν)}−1Z&(ν)z(ν). (4)

The asymptotic properties of the least squares estimators in the unrestricted case are stated in the following theorem. The
symbols ‘

d→’ and ‘
p→’ stand for convergence in distribution and probability, respectively, and Nd denotes a d-dimensional

normal distribution.

Theorem 1. Consider that a process generated by Eq. (1) is causal. Assume that {εt} is mean zero independent periodic white
noise with var(εns+ν) = σ 2(ν) and E[ε4ns+ν] < ∞ for all seasons ν. Then

√
N
(
β̂(ν) − β(ν)

)
d→ Np(ν)+m(ν)+1

(
0, σ 2(ν)Ω−1(ν)

)
, as N → ∞. (5)

Ω(ν) represents the covariance matrix of the {p(ν) + m(ν) + 1} × 1 random vector Zn(ν), where Zn(ν) stands for the nth line of
the matrix Z(ν). Moreover,

√
N
(
β̂(ν) − β(ν)

)
are asymptotically independent across different seasons ν.
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Proof. Technical details are similar to those used in Basawa and Lund (2001). It is easy to check thatZ&
n (ν)εns+ν is amartingale

difference sequence given the independence assumption of the error term εns+ν . In addition, the unconditional covariance
matrix of ε(ns + ν)Z&

n (ν) is given by σ 2(ν)Ω(ν).
Using the law of large numbers and a central limit theorem for martingale difference sequences, it follows that:

N−1
N−1∑
n=0

ε2ns+νZ
&
n (ν)Zn(ν)

p→ σ 2(ν)Ω(ν)

√
N

N−1∑
n=0

εns+νZ&
n (ν)

d→ Np(ν)+m(ν)+1
(
0, σ 2(ν)Ω(ν)

)
.

Note that we have actually proved that

{N−1Z&(ν)Z(ν)}−1 p→ Ω−1(ν) and N−1/2Z&(ν)e(ν) d→ N
(
0, σ 2(ν)Ω(ν)

)
.

Using Eq. (4), we obtain:

β̂(ν) = [{Z&(ν)Z(ν)}−1Z&(ν)
]
Z(ν)β(ν) + e(ν) = β(ν) + {Z&(ν)Z(ν)}−1Z&(ν)e(ν)

from where√
N{β̂(ν) − β(ν)} = {N−1Z&(ν)Z(ν)}−1N−1/2Z&(ν)e(ν).

Slutsky’s theorem yields Eq. (5). The joint asymptotic normality of N1/2{β̂(1)−β(1), . . . , β̂(s)−β(s)} follows using the same
kind of manipulations as those for a single season ν. From this, the asymptotic independence between N1/2{β̂(ν) − β(ν)}
and N1/2{β̂(ν ′) − β(ν ′)}, ν �= ν ′ is easily deduced. �

2.2. Least squares estimation with linear constraints on the parameters

Assume that linear constraints for the (p(ν) + 1 + m(ν))× 1 vector β(ν) are given by

β(ν) = R(ν)ξ(ν) + b(ν), (6)

whereR(ν) stands for a known (p(ν) + 1 + m(ν))×K (ν) matrix of order K (ν), ξ(ν) a unrestricted K (ν)×1 vector of unknown
parameters and b(ν) a (p(ν) + 1 + m(ν))× 1 vector of known constants.

The unconstrained case described in Section 2.1 is obtained by assuming that R(ν) = Ip(ν)+1+m(ν), where Ip(ν)+1+m(ν)
stands for the (p(ν) + 1 + m(ν)) × (p(ν) + 1 + m(ν)) identity matrix and b(ν) = 0, ν = 1, 2, . . . , s. In general, matrices
R(ν) and vectors b(ν) allow for linear constraints on the parameters of the same season ν. When constrained parameters are
introduced, it follows that

e(ν) = z(ν) − Z(ν)
(
R(ν)ξ(ν) + b(ν)

)
.

The least square calculation of ξ(ν) yields

ξ̂(ν) = [R&(ν)Z&(ν)Z(ν)R(ν)
]−1R&(ν)Z&(ν) [z(ν) − Z(ν)b(ν)] .

Furthermore, ξ̂(ν) follows asymptotically a multivariate normal distribution.
Duchesne and Lafaye de Micheaux (2013) consider a more general PAR framework with structured parametrization and

propose an estimation method based on maximum likelihood. However applying their procedure would not changed our
results because the identification procedure we develop requires to impose nullity restrictions on the value of coefficients.

3. Applying genetic algorithm to the identification problem

A crucial issue in the estimation of a PARXmodel relies on the identification of the model. Basically, fitting a PARXmodel
can be seen as fitting an ARXmodel for each season separately. The PARXmodel depends on a set of parameters which needs
to be properly selected in order to maximize some selection criteria. For PARmodels, McLeod (1994) suggests to use the BIC
selection criteria separately for each of the seasonal components:

BIC(ν) = log σ̂ 2(ν) + log(N)
N

(p(ν) + m(ν)), (7)

where σ̂ (ν) stands for the least squares estimators ofσ (ν) and p(ν)+m(ν) is the total number of autoregressive parameters of
the dependent and exogenous variables in the season ν. The same criteriamay be used in the identificationmethod for PARX
models. Another point to consider is that the method based on periodic autocorrelation function used by Noakes, McLeod,
and Hipel (1985) to identify a PARmodel cannot be applied to a PARXmodel. These models may have different patterns and



E. Ursu, J. Pereau / Journal of the Korean Statistical Society 46 (2017) 629–640 633

the choice between several models can be difficult. Let us remark that the identification of a periodic model is not as simple
as it is sometimes the case for non-periodic models.

The order of AR operators also varies across the seasons. Since the number of parameters in periodic time series can
be large, situations with potentially linear constraints on the parameters of a given season and zero-valued parameters
are considered. When s, p(ν) and m(ν) (ν = 1, 2, . . . , s) increase and when some parameters are constrained to zero, the
number of models to be investigated becomes huge. The most common values taken by the period s are 4 for quarterly
data, 12 for monthly data or 48 for quarter-monthly data. Computational time is critical for the model selection since there
are s × 2p(ν)+m(ν)+1 potential sub-models. This is a notable weakness of the periodic models to deal with. For that reason,
genetic algorithms appear as an efficient tool to examine the space of solutions, to select the combination of parameters
that corresponds to the best model and to reduce computational time for finding the optimum. The chromosome can be
expressed in binary digits to represent different orders and zero-valued parameters. The identification is made for each of
the separate periods. One gene for each possible lag is reserved, filling it with 1 if the parameter is free and with 0 if the
parameter is constrained to zero.

Amaximumsearch order has to be selected for the autoregressive part of the dependent variable (P) and for the exogenous
variable (M). The maximal length of the chromosome is equal to P + 1 + M with 0 ≤ p(ν) ≤ P and 0 ≤ m(ν) ≤ M . For
instance, if s = 12, ν = 1 and P = M = 7 the chromosome

101000011010000

corresponds to the following ARX model

Y12n+1 − φ1(1)Y12n − φ3(1)Y12n−2 = θ0X12n+1 + θ1X12n + θ3X12n−2 + ε12n+1.

An alternative coding and its advantages are described in Minerva and Poli (2001).
The algorithm follows the standard steps of GA, starting with an initial population of chromosomes generated at random.

A large number of individuals (population size Np) affects the computational time of GA but ensures that the GA investigates
the space of solutions more efficiently.

The aim of the fitness function is to numerically represent the performance of each chromosome. Essentially, the fitness
function is linked to the BIC criteria given in Eq. (7) which is one of the most popular identification criteria in time series. A
frequent problemwith this choice is that the BIC criteria has to be minimized and therefore cannot be implemented directly
since the fitness function needs to be maximized. It turns out that due to the negativity of the BIC, the fitness function is
defined as follows in Baragona et al. (2004)

fj(ν) = exp(−BICj(ν)), (8)

where BICj(ν) stands for the BIC(ν) value for the jth chromosome in the current population.
The selection process determineswhich chromosomeswill survive or not in the next generation, according to their fitness

values. Several selection methods are used in the literature (Goldberg, 1989). Our paper uses the tournament selection
methodwhich is based on running several tournaments among a group of chromosomes chosen at random from the current
population. The winner of each tournament (the one with the best fitness) is selected to be part of a new population, that
replaces the previous one. Crossover enables the pairs of parents (assuming thatNp is an even integer) to exchange individual
characteristics between chromosomes. Several crossover techniques (one-point, two-points, etc.) are described in Mitchell
(1996). Each chromosome is mutated with a very low probability and this reduces the chances to be trapped on a local
optimum of the space of solutions. We adopt an elitist generation, meaning that the best chromosomes (ranked by their
fitness values) remain unchanged for the next generation. The procedure is stopped after a fixed number Ng of generations.

To emphasize the interest of GA methods over a complete enumeration of all the 2P+1+M × s possible models, our
framework requires to evaluate the fitness of Np×Ng × smodels. Moreover the number of possible models increases rapidly
for PARXmodels with more than one exogenous variable or in the case of multivariate PARXmodels but even in these cases,
the same method defined in Sections 2 and 3 can be implemented.

4. Simulation experiments

Monte-Carlo simulations have been performed to analyze the estimation and identification methods described in
Sections 2 and 3. Their aims are to evaluate the capacity of our procedure to identify and estimate the parameters of a
PARX model generated by Eq. (1).

We begin by generating data from a PARX process for s = 4 periods. Parameters are displayed in Table 1. The stochastic
process ε = {εt , t ∈ Z} corresponds to a zero mean periodic white noise with the error variance given in the last column of
the table. We use a random gaussian noise for the exogenous variable Xt .

Firstly, we assume that the GA structure (i.e. the values of P and M) for each period is known and we aim at evaluating
the performances of the estimated parameters. For each period, the values of the autoregressive part for the dependent and
exogenous variables are known. These values are different according the season aswell as the periodic variances. Concerning
the PARX process given in Table 1, 1000 time series of length N = 50 (by period) have been generated. The empirical mean
and the standard deviation of each parameter estimator are presented in Table 2. The coefficients appear to bewell estimated
even with a small sample size like N = 50.
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Table 1
The parameters of the PARX model with 4 periods; the periodic variances are given in the last column.

Season Parameters

φ1 φ2 φ3 θ0 θ1 θ2 σ 2

ν = 1 0.50 0.20 0.60 1.00
ν = 2 0.42 −0.70 0.50 1.60
ν = 3 −0.80 0.20 0.35 1.00 2.00
ν = 4 −0.30 1.40 0.30 2.50

Table 2
Mean values of the estimated parameters after 1000 replications of the PARX model given in Table 1 (standard deviation are in parentheses).

Season Parameters estimates

φ1 φ2 φ3 θ0 θ1 θ2 σ 2

ν = 1 0.506 0.205 0.589 0.927
(0.073) (0.138) (0.157) (0.191)

ν = 2 0.419 −0.689 0.503 1.482
(0.109) (0.178) (0.187) (0.314)

ν = 3 −0.793 0.196 0.351 0.973 1.806
(0.145) (0.144) (0.095) (0.199) (0.382)

ν = 4 −0.301 1.387 0.331 2.309
(0.114) (0.219) (0.240) (0.478)

Table 3
Identification of PARX model with 4 periods.

Season Number of observations

N = 100 N = 200 N = 400 N = 600

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3
ν = 1 0.28 0.46 0.26 0.52 0.33 0.15 0.77 0.16 0.07 0.82 0.14 0.04
ν = 2 0.56 0.29 0.15 0.77 0.19 0.04 0.83 0.15 0.02 0.90 0.09 0.01
ν = 3 0.32 0.35 0.33 0.55 0.25 0.20 0.78 0.12 0.10 0.83 0.12 0.05
ν = 4 0.21 0.43 0.36 0.41 0.43 0.16 0.70 0.24 0.06 0.82 0.15 0.03

Table 4
The parameters of the PARX model with 12 periods; the periodic variances are given in the last column.

Season Parameters

φ1 φ2 φ3 θ0 θ1 θ2 θ3 σ 2

ν = 1 0.30 0.50 0.40 1.00 1.20 1.00
ν = 2 0.42 1.20 1.60
ν = 3 0.65 0.80 2.30 2.00
ν = 4 −0.30 2.00 2.00 −0.90 0.50 2.50
ν = 5 0.70 −0.35 0.80 3.00
ν = 6 0.40 −0.50 0.70 1.20 0.90
ν = 7 0.70 −0.70 −0.75 1.70
ν = 8 −0.60 0.90 0.60 2.40
ν = 9 0.80 0.80 −1.40 1.00 1.50
ν = 10 0.90 1.60 0.92 0.55 3.20
ν = 11 0.9 2.80
ν = 12 0.72 −2.00 0.35 0.70

Secondly,we consider that theGA structure is unknown. In our simulations,we set themaximumorder for autoregressive
processes at P = 7 and for the exogenous variable at M = 7, yielding 215 = 32 768 potential models by period. 500
replications series with N observations by period have been generated. The empirical frequencies when the true model is
detected are given in Table 3. Three statistics are used to summarize the results as in Gaetan (2000): q1 is the proportion of
simulations inwhich the truemodel is detected, q2 is the proportion of simulations inwhich the detected chromosomediffers
from the true string in one point (it means that at most a non-existent lag was included or an existent lag was excluded) and
q3 is the proportion of the remaining cases, namely the proportion of simulations in which the detected chromosome differs
from the true string in at least two points.

In a second simulation experiment, we consider a PARX model with s = 12 periods. Here, the objective is to evaluate
the ability of our procedure to identify the ‘‘right’’ model. The parameters of the model and the variances of the periodic
white noise are displayed in Table 4. The selection algorithm is applied to 500 independent simulations (N observations by
season). The chromosome length was set to 15 (M = P = 7). The empirical frequencies are given in Table 5.
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Table 5
Identification of PARX model with 12 periods.

Season Number of observations

N = 100 N = 200 N = 400 N = 600

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3
ν = 1 0.40 0.41 0.19 0.72 0.24 0.04 0.88 0.10 0.02 0.89 0.10 0.01
ν = 2 0.64 0.25 0.09 0.77 0.20 0.03 0.84 0.14 0.02 0.87 0.12 0.01
ν = 3 0.68 0.25 0.07 0.78 0.18 0.04 0.85 0.14 0.01 0.87 0.12 0.01
ν = 4 0.59 0.26 0.15 0.75 0.19 0.06 0.89 0.10 0.01 0.88 0.10 0.02
ν = 5 0.63 0.24 0.13 0.77 0.18 0.05 0.84 0.15 0.01 0.87 0.12 0.01
ν = 6 0.71 0.21 0.08 0.81 0.16 0.03 0.88 0.11 0.01 0.89 0.10 0.01
ν = 7 0.64 0.26 0.10 0.80 0.16 0.04 0.85 0.13 0.02 0.89 0.09 0.02
ν = 8 0.61 0.25 0.14 0.74 0.21 0.05 0.86 0.13 0.01 0.90 0.09 0.01
ν = 9 0.68 0.25 0.07 0.78 0.19 0.03 0.86 0.13 0.01 0.88 0.11 0.01
ν = 10 0.57 0.27 0.16 0.75 0.20 0.05 0.86 0.13 0.01 0.90 0.10 0.00
ν = 11 0.61 0.29 0.10 0.76 0.20 0.04 0.84 0.15 0.01 0.87 0.12 0.01
ν = 12 0.66 0.27 0.07 0.78 0.19 0.03 0.89 0.10 0.01 0.87 0.12 0.01

Concerning the parameters used for the GA optimization, we assume that the size of GA population is set to Np = 50; the
uniform crossover with probability of crossover is equal to 0.8; the mutation probability is equal to 0.01 and the algorithm
stops after Ng = 30 generations.

The performance of the genetic algorithm for a given period is satisfactory with a high rate of correct identification. It
should be noted that frequencies of identification of wrong lags (at most a non-existent lag was included or an existent lag
was excluded) are small. In empirical applications we suggest to run the GA algorithm several times by period and choose
the model with the minimum BIC and/or the minimum number of parameters. This procedure may eventually prevent the
algorithm to choose a ‘‘wrong’’ model.

5. Numerical illustration

To highlight the interest of PARX model, we illustrate the main findings of the paper with the shrimp French Guiana
fishery. This case-study has been analyzed in Sanz, Diop, Blanchard, and Lampert (2016). Two shrimp species are mainly
exploited in this fishery, the brown and the pink shrimps (respectively, Farfantepenaeus subtilis and Farfantepenaeus
brasiliensis). The F. subtilis represents more than 85% of shrimp landings. We denoted by C the total catch of this shrimp in
tons for thewhole French Guiana fleet. This catch C is the product of the catchability coefficient q, the fishing effortmeasured
by the number of days at sea E and the abundance of the fish population B. Based on the Schaeffer relation C = qEB, the
catch-per-unit-effort (CPUE) is equal to ratio C/E. CPUE is the catch extracted from one unit of fishing effort. Changes in
CPUE are assumed to correspond to a proxy of proportional changes in the abundance of the fish population modulo the
catchability coefficient (Clark, 2000; Dunn, Harley, Doonan, & Bull, 2000). We use the data collected by IFREMER (French
institute of research for the exploitation of the sea) on C and E between January 1989 to December 2012 to get the CPUE.
The monthly sea surface temperature (SST) refers to an indicator of environmental conditions for the shrimp fisheries. It
is provided by the National Climatic Data Center (NCDC) database. This monthly one-degree global SST climatology was
constructed using the analysis carried out by the Climate Prediction Center (CPC/NOAA). The area coverage of the data is
2◦9◦N and 47◦59◦W. As mentioned in the introduction, SST appears to be a major driver in fish abundance changes through
its impact on the intrinsic growth rate and the carrying capacity of the species. Sanz et al. (2016) estimate a Schaeffer relation
and show that SST appears to be significant among a set of other environmental variables.

CPUE and SST refer respectively to the dependent Yt and exogenous Xt variables. Time series Yt and Xt have 288 monthly
observations. In the SST series, two missing values have been replaced by the mean of all other values. The plots of the two
series are depicted in Fig. 1 and exhibit a trend and a seasonal component for the two series. As we analyze monthly data,
the period s = 12 has been naturally selected.

In order to stabilize the variance and make the data more normal distribution-like, we use a Box–Cox transformation
for both variables. The trend was removed by using the first difference of the transformed data. The detrended series are
depicted in Fig. 2. Results indicate that they are stationary.

Vector autoregressive (VAR) models are often used tomodel population time series data. However instead of considering
season as categorical variable as in Zhou, Fujiwara, and Grant (2016), our initial model consists in a 2-dimensional vector
periodic autoregressive (PVAR) given by:

Yns+ν =
p(ν)∑
k=1

Φk(ν)Yns+ν−k + εns+ν, (9)

whereYt = (Yt , Xt )& is a 2 × 1 vector andΦk(ν) =
(
Φk,ij(ν)

)
i,j=1,2, k = 1, . . . , p(ν), are the autoregressivemodel coefficients

during season ν. For a detailed presentation of PVAR models see Ursu and Duchesne (2009).
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(a) Sea surface temperature.

(b) Catch per unit effort.

Fig. 1. Plot of average monthly sea surface temperature and catch per unit effort between 1989 and 2012.

(a) Detrended sea surface temperature.

(b) Detrended catch per unit effort series.

Fig. 2. Plot of the first difference of transformed time series.

Periodic vector AR models of orders p(ν) = 1, . . . , 5 have been fitted by the least squares method. The least squares
estimators show that the PVAR coefficients in the (2, 1) positions of the Φk(ν) matrix denoted by Φk,21(ν) are all close to
zero and are very small relative to their respective standard errors (not presented here). This suggests that the input variable
Xt is not influenced by the variable Yt , and, hence, that Xt is exogenous for Yt . Estimation results suggest the relevance of
a PARX model given in Eq. (1) which relates the SST to the CPUE. Such a relation has been analyzed by Stoffer (1986) in a
spatial context.
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Table 6
Fitting a PARX model to the shrimp data.

P M BIC nb. of parameters nb. of possible models

12 7 599.78 77 12582912
11 8 620.43 78 12582912
11 9 610.12 81 25165824
12 8 595.39 71 25165824

Table 7
Parameters estimates and their standard errors (in parentheses) for the PARX model. The residual standard deviation is given in the last column. Period
1 corresponds to February.

Parameter estimates Season

1 2 3 4 5 6 7 8 9 10 11 12

φ̂1 −0.49 −0.75 −0.43 −0.89 −0.83 −0.62 −0.83 −1.23
(0.09) (0.09) (0.05) (0.21) (0.07) (0.14) (0.11) (0.16)

φ̂2 −0.36 −0.29 −0.40 −0.19 −0.72
(0.06) (0.08) (0.13) (0.11) (0.19)

φ̂3 −0.27 −0.57 0.43 −0.67 0.44 −0.52
(0.08) (0.07) (0.18) (0.11) (0.11) (0.20)

φ̂4 −0.28 −0.88
(0.05) (0.10)

φ̂5 −0.21 −0.67 −0.35
(0.10) (0.07) (0.16)

φ̂6 −0.46 −0.74 −0.27 0.55
(0.11) (0.06) (0.11) (0.22)

φ̂7 0.70
(0.21)

φ̂8 −0.57 0.29
(0.11) (0.11)

φ̂9 −0.48
(0.06)

φ̂10 0.64 −1.21
(0.26) (0.07)

φ̂11 0.74 0.52 −0.73 0.74 0.63 −0.45
(0.16) (0.13) (0.09) (0.19) (0.10) (0.09)

φ̂12 −0.22 0.33 −0.51 0.46
(0.08) (0.15) (0.07) (0.13)

θ̂0 17.31 7.44
(7.47) (2.32)

θ̂1 −20.27 12.14 −10.63 16.09
(9.21) (4.63) (2.44) (2.41)

θ̂2 13.27 −17.00
(4.49) (6.84)

θ̂3 12.52 −18.42 26.29 −11.38
(2.83) (4.43) (2.79) (3.92)

θ̂4 −9.52 −12.92
(2.77) (6.64)

θ̂5 −10.02 −4.29 17.87 28.42 −17.89 −9.15
(6.44) (1.58) (7.12) (5.35) (3.24) (3.71)

θ̂6 19.43 −7.56 19.61 −13.79
(3.44) (3.86) (3.20) (6.48)

θ̂7 8.14 −24.01
(2.08) (2.97)

θ̂8 −27.30
(6.05)

σ̂ 6.96 9.39 3.33 0.82 4.19 5.93 4.59 0.52 6.75 1.61 5.96 7.69

GA is run for 50 iterationswith a size of the population equal toNp = 40, a probability of crossover of Pc = 0.8, amutation
probability Pm = 0.01 and with one elite individual. Several maximal values for AR order and for exogenous variables have
been considered. The order of P = 12 seems to be a reasonable choice and implies that for each observation, lags from a
whole year are included.

Table 6 shows the results. We choose the last model P = 12,M = 8 for our case-study which implies a good balance in
the trade-off value of BIC and number of parameters. Let us remark that the number of parameters decreases from 252 in
the saturated model (in which all the parameters are estimated) to 71 in our model. Estimates of the parameters and their
associated standard errors are given in Table 7.
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(a) Autocorrelation function for residuals.

(b) Partial autocorrelation function for residuals.

Fig. 3. The ACF and PACF plots of the model residuals, showing the bounds±1.96/
√
Ns.

(a) Periodic ACF of residuals. (b) Periodic PACF of residuals.

Fig. 4. The periodic ACF and PACF plots of the model residuals.

The analysis of the residuals for the estimated model P = 12,M = 8 is needed to test its relevance. The stationarity
of the residuals allows us to apply the standard 95% confidence limits (that is 1.96

√
Ns). The usual sample autocorrelation

(ACF) and partial autocorrelation (PACF) plots show no significant autocorrelation (Fig. 3). We examine also the periodic
ACF (Fig. 4(a)) and PACF (Fig. 4(b)) as in Hipel and McLeod (1994). The residuals for each season fall within the confidence
limits (that is 1.96

√
N), meaning that the seasonal residuals are white. The normal probability plot of the residuals shows

no obvious violation of the normality assumption (Fig. 5).
This numerical example shows that our identification and estimationmethods performwell for an analysis of the relation

between the CPUE and SST as in Stoffer (1986). To show the interest of PARX model, results have to be compared with the
ones we could obtained with PAR models for each variable and in particular for the variable of interest. The results of the
PAR model for the CPUE variable give a BIC = 686.1 for 41 estimates parameters. The comparison between the PAR and the
PARX models shows an improvement of the BIC criteria with a value of BIC = 595.39 at the expense of more parameters to
estimate, 71. We also compared our selection method based on GA with other methods like the stepwise regression. Using
Matlab stepwise routine, the value for the BIC criteria is BIC = 690.17 and the number of estimated parameters is 24. This
example puts forward the trade-off between the value of the BIC and the number of estimated parameters. However the
performance of the automatic procedure based on GA with respect to other methods allows to investigate a large range of
models and to select the best one as in the case-study.
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Fig. 5. Normal probability plot of residuals.

This paper shows that the PARX model gives better results than the PAR model in both simulation experiments and the
real case-study. It also shows that the procedure of variables selection is more efficient with GAmethod than other methods
like stepwise as pointed out by Hocking (1976).

6. Conclusions

This paper studies the properties of identification and estimation procedure for periodic autoregressive models with one
exogenous variable (PARX). This procedure is based on genetic algorithm combined with Bayesian Information Criterion
which is used to investigate the space of solutions and to select the set of parameters that corresponds to the best model.
Results of several Monte-Carlo simulation experiments show that PARX models with different number of seasons can be
correctly identified by the proposed procedure.

Using time series data from the shrimp French Guiana fishery, a PARX model relying the catch-per-unit-effort as
dependent variable to the sea surface temperature as exogenous variable has been estimated. Results show that the PARX
model performs better that the PAR model applied only for the dependent variable. The introduction of the exogenous
variable improves the Bayesian Information Criterion at the expense of more parameters to estimate. However the trade-
off remains in favor of the use of PARX model since the main advantage of our procedure is a sharp fall of the number of
parameters to estimate with respect to the saturated model. It turns out that this method appears to be easier to implement
for providing short term forecasts to fisheries managers.

Considering PARX models with several exogenous variables and multivariate PARX models should be interesting to
analyze. In both cases the number of models to investigate becomes so huge that the use of genetic algorithms is needed to
overcome the computational challenge and the difficulty for researchers and decision-makers to identify the right model. In
a marine fishery context for instance, genetic algorithms could be used to select a subset of exogenous variables among the
sea surface temperature, thewind velocity, the nutrient flows from rivers, rain precipitation or the southern oscillation index
in the Pacific Ocean concerning the El Niño-La Niña phenomena that explain fish recruitment and harvest (Sanz et al., 2016).
Genetic algorithms could also be useful to analyze space–time models by considering multivariate PARX models dealing
with different fishing areas and different environmental conditions.
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