
Journal of the Korean Statistical Society 45 (2016) 518–525

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Asymptotic equivalence between the default Bayes factors
and the ordinary Bayes factors with intrinsic priors�

Seong W. Kima, Jinheum Kimb,∗
a Department of Applied Mathematics, Hanyang University, Gyeonggi-Do 15588, South Korea
b Department of Applied Statistics, University of Suwon, Gyeonggi-Do 18323, South Korea

a r t i c l e i n f o

Article history:
Received 28 July 2015
Accepted 1 March 2016
Available online 8 April 2016

AMS 2000 subject classifications:
primary 62C10
secondary 62F15

Keywords:
Asymptotic equivalence
Fractional Bayes factor
Intrinsic Bayes factor
Intrinsic prior
Model selection

a b s t r a c t

In Bayesian model selection or testing problems, default priors are typically improper;
that is, the resulting Bayes factor is not well defined. To circumvent this problem, two
methodologies, namely, intrinsic and fractional Bayes factors are proposed and developed.
Further, these two Bayes factors are asymptotically equivalent to the ordinary Bayes factors
computed with proper priors called intrinsic priors. However, it seems that there are some
necessary conditions to satisfy asymptotic equivalence. Such conditions are derived and
justified in this article and illustrative examples are provided. Simulations are performed
to demonstrate the results.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Suppose that there are two models M1 and M2 contending with each other. Under model Mi, data z = (x1, . . . , xn)′
follow a parametric distribution with probability density function (pdf ) fi(z|θi) for i = 1, 2, where θi is a vector of unknown
parameters. Let πN

i (θi) be an improper prior density, andΘi be the parameter space for θi. The Bayes factor BN
21 of modelM2

to modelM1 is

BN
21 =

mN
2 (z)

mN
1 (z)

=
∫
Θ2

f2(z|θ2)π
N
2 (θ2)dθ2∫

Θ1
f1(z|θ1)π

N
1 (θ1)dθ1

, (1)

wheremN
i (z) is themarginal or predictive density underMi.We often call πN

i (θi) a ‘starting prior’. Since πN
i (θi) is improper,

the integral
∫
Θi
πN
i (θi)dθi diverges. This implies that there is no normalization ofπN

i (θi) available. Thus, it is defined up to an
arbitrary multiplicative constant such as ki. Subsequently, the Bayes factor in (1) contains a ratio of unspecified constants,
say k2/k1.
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This issue has been addressed by several authors including Geisser and Eddy (1979), Spiegelhalter and Smith (1982), and
SanMartini and Spezzaferri (1984). Berger and Pericchi (1996) introduced a newmodel selection criterion called the intrinsic
Bayes factor (IBF), using a data-splitting idea called the training sample method, which would remove the arbitrariness of
improper priors. One of the shortcomings of IBF approach is due to its considerable amount of computational expenses. To
mitigate this drawback, O’Hagan (1995) proposed another criterion, called the fractional Bayes factor (FBF). It is computed
by exponentiating the likelihood to a power δ for 0 ≤ δ ≤ 1. One of its advantages is that it does not require heavy
computation.

Meanwhile, Berger and Pericchi (1996) mentioned that if we have reasonable proper priors for each model, the training
sample computation is not needed. Berger and Pericchi (1996) suggested how to derive proper priors, called intrinsic priors.
Although intrinsic priors are neither necessarily unique nor proper, the motivation is based on the conjecture that the
ordinary Bayes factor with a set of intrinsic priors would provide results which are asymptotically equivalent to the IBF
or the FBF. However, there should be an additional condition needed in order for the two Bayes factors to be close to each
other asymptotically.

The rest of the paper is organized as follows. In Section 2, the intrinsic and fractional Bayes factors are reviewed. Also, we
present how to derive intrinsic priors in conjunction with these two Bayes factors. In Section 3, we provide a justification of
necessary conditions under which the asymptotic equivalence is satisfied. In Section 4, several intrinsic priors are derived
for testing two exponential means. In Section 5, a class of intrinsic priors is derived for testing two normal variances based
on the fractional approach. Numerical results based on various simulations are given in Section 6. We finish this article with
concluding remarks in Section 7.

2. Default Bayes factors and intrinsic priors

It has been seen that the Bayes factor BN
21 in (1) involves arbitrary constants. We discuss the method for removing this

arbitrariness in (1) by a training sample. Let x(l) be a training sample and let x(−l) be the remainder of the data. First,
compute the posterior πN

i (θi|x(l)) and then compute the Bayes factor with x(−l) as data, using πN
i (θi|x(l)) as the prior.

Then, by the Bayes theorem the Bayes factor is given by

B21(l) = BN
21 · BN

12(x(l)), (2)

where BN
12(x(l)) is the Bayes factor computed with the training sample x(l). In practice, x(l) is chosen to be minimal in the

sense that the marginalmN
i (x(l)) is finite and no subset of x(l) gives finite marginals. Note that B21(l) in (2) does not depend

on arbitrary constants, and thus is well defined. Furthermore, the Bayes factor defined by (2) depends on the choice of the
minimal training sample. To avoid this dependence, Berger and Pericchi (1996) suggested computing the average of B21(l)
over all x(l).

Definition 2.1. The IBF ofM2 toM1 is defined by

BI
21 =

1
L

L∑
l=1

B21(l) = BN
21 · CFA12, (3)

where L is the number of all possible minimal training samples, and the correction factor CFA12 is given by

CFA12 = 1
L

L∑
l=1

BN
12(x(l)).

On the other hand, we introduce the method for removing the arbitrariness in (1) by a portion of the likelihood with
fraction δ. O’Hagan (1995) proposed the following FBF.

Definition 2.2. The FBF of model M2 to model M1 is defined by

BF
21 = BN

21 · CFR12(δ), (4)

where the correction factor CFR12(δ) is given by

CFR12(δ) =
∫
Θ1
[f1(z|θ1)]δπN

1 (θ1)dθ1∫
Θ2
[f2(z|θ2)]δπN

2 (θ2)dθ2
.

A commonly suggested choice of δ is δ = m/n, where m is the size of the minimal training sample proposed by Berger and
Pericchi (1996), and n is the size of the whole sample.
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Under the regularity conditions in Berger and Pericchi (1996), a set of intrinsic priors defined by (π I
1, π

I
2) is a solution of

the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
π I
2(θ2)π

N
1 (ψ1(θ2))

πN
2 (θ2)π

I
1(ψ1(θ2))

= B∗2(θ2),

π I
2(ψ2(θ1))π

N
1 (θ1)

πN
2 (ψ2(θ1))π

I
1(θ1)

= B∗1(θ1).

(5)

Here,

ψi(θj) = lim
n→∞ E

Mj
θj
(θ̂i), for i �= j,

where θ̂i is the MLE of θi under model Mi, and

B∗i (θi) = lim
L→∞ EMi

θi
[CFA12] or B∗i (θi) = lim

n→∞ EMi
θi
[CFR12(δ)].

Berger and Pericchi (1996) noted that the solutions are not necessarily unique nor necessarily proper.

3. Generalization of asymptotic equivalence to BI
21 and BF

21(δ)

Let (π I
1, π

I
2) denote a set of intrinsic priors satisfying (5). Let ci be a normalizing constant corresponding toπ I

i for i = 1, 2,
and let r21 be a ratio c2/c1 of two normalizing constants. Berger and Pericchi (1996) suggested that the ordinary Bayes factors
with the normalized intrinsic priors, namely, π I∗

1 and π I∗
2 , are asymptotically equivalent to those obtained from (3) or (4)

when the sample size is large enough. Here, π I∗
i = c−1

i π
I
i denotes the normalized intrinsic prior of π I

i for i = 1, 2. That is,∫
Θi
π I∗
i (θi)dθi = 1. Note that their assertion is true as long as r12 is equal to one. So, we investigate whether their conjecture

can be generalized to the case that r12 is other than one or not.

Proposition 1. Under the regularity conditions in Berger and Pericchi (1996), as the sample size n goes to infinity, for the intrinsic
priors π I

1 and π I
2 satisfying (5), BI

21 in (3) or BF
21 in (4) can be approximated by r21BI∗

21, where

BI∗
21 =

∫
Θ2

f2(z|θ2)π
I∗
2 (θ2)dθ2∫

Θ1
f1(z|θ1)π

I∗
1 (θ1)dθ1

. (6)

Proof. Following the arguments of Berger and Pericchi (1996) and Moreno (1997), respectively, we have

CF = π
I
2(θ̂2)π

N
1 (θ̂1)

πN
2 (θ̂2)π

I
1(θ̂1)

(1+ o(1)),

with CF being CFA12 or CFR12(δ). Thus,

BI
21(or B

F
21) = BN

21
π I
2(θ̂2)π

N
1 (θ̂1)

πN
2 (θ̂2)π

I
1(θ̂1)

(1+ o(1))

=
∫
Θ2

f2(z|θ2)π
N
2 (θ2)dθ2∫

Θ1
f1(z|θ1)π

N
1 (θ1)dθ1

· π
I
2(θ̂2)π

N
1 (θ̂1)

πN
2 (θ̂2)π

I
1(θ̂1)

(1+ o(1)). (7)

Taking the limit of (7) becomes

lim
L→∞ BI

21(or lim
n→∞ BF

21) =
∫
Θ2

f2(z|θ2)π
N
2 (θ2)

π I
2(θ2)

πN
2 (θ2)

dθ2∫
Θ1

f1(z|θ1)π
N
1 (θ1)

π I
1(θ1)

πN
1 (θ1)

dθ1

=
∫
Θ2

f2(z|θ2)π
I
2(θ2)dθ2∫

Θ1
f1(z|θ1)π

I
1(θ1)dθ1

= c2
c1

∫
Θ2

f2(z|θ2)π
I∗
2 (θ2)dθ2∫

Θ1
f1(z|θ1)π

I∗
1 (θ1)dθ1

= r21BI∗
21.

This completes the proof. �

Remark 1. The implications of Proposition 1 can be justified in the following way. Even though proper intrinsic priors are
derived, asymptotic equivalence should not be guaranteed unless the ratio r21 is one.
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4. Testing exponential means

Sun and Kim (1999) derived a general set of intrinsic priors for testing k ordered exponential means with Jefferys
priors being used as starting priors for both models. It turned out that the normalizing constants were 1 for both π I

1 and
π I
2. Subsequently, the Bayes factors computed with these intrinsic priors get closer to the intrinsic Bayes factors as the

sample size grows. Kim (2000) derived several intrinsic priors in testing two exponential means, where Jefferys priors were
employed for both null and two-sided alternative hypotheses. The corresponding results are fairly similar to those of Sun
andKim (1999).Moreover, Kim andKim (2000) derived intrinsic priors for testing two exponentialmeanswith the fractional
Bayes approach. However, a lack of asymptotic equivalence was noted because the ratio of two normalizing constants was
not one, but this issue was not extensively justified in that paper. We now use different starting priors to derive several
intrinsic priors under different alternative hypotheses, where the ratio r21 in Proposition 1 is not one.

4.1. One-sided test

Let Exp(μ) denote the exponential distribution with mean μ. Suppose that we have independent observations Xij ∼
Exp(μi) for i = 1, 2; j = 1, . . . , ni. We use the following notation throughout this paper. Let n = n1 + n2. Assume that
n1/n→ a ∈ (0, 1) as n→∞. Consider two models (hypotheses),

M1 : μ1 = μ2 and M2 : μ1 < μ2.

Let μ denote the common value of μ1 and μ2 under M1. Uniform and Jeffreys priors are used as starting priors for each
hypothesis. That is, πN

1 (μ) = 1 and πN
2 (μ1, μ2) = 1/(μ1μ2). After some algebra described in Kim (2000) along with the

strong consistency of the MLE, the system of equations in (5) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
π I
2(μ1, μ2)

π I
1(aμ1 + (1− a)μ2)/(μ1μ2)

= μ1, 0 < μ1 < μ2 <∞,
π I
2(μ,μ)

π I
1(μ)/μ

2
= μ, 0 < μ <∞.

(8)

Theorem 1. For any legitimate pdf g(t) for t > 0, i.e.
∫∞
0 g(t)dt = 1, the set of intrinsic priors is composed of

π I
1(μ) = g(μ), 0 < μ <∞,

and

π I
2(μ1, μ2) = 1

μ2
g(aμ1 + (1− a)μ2), 0 < μ1 < μ2 <∞.

Further, π I
2 is a proper density.

Proof. By Lemma 1 of Kim (2000), (π I
1, π

I
2) is a solution of (8). To prove the propriety of π I

2, let s = μ1/μ2 and t = μ2. Then∫ ∞

0

∫ μ2

0
π I
2(μ1, μ2)dμ1dμ2 =

∫ 1

0

∫ ∞

0
g(t(as+ 1− a))dtds

= −1
a
log(1− a) ≡ c2.

This implies r21 = c2. �

4.2. Two-sided test

Consider the following hypotheses,

M1 : μ1 = μ2 and M2 : μ1 �= μ2.

Again, letμ denote the common value ofμ1 andμ2 underM1. We use uniform and Jeffreys priors as starting priors for each
hypothesis. That is, πN

1 (μ) = 1 and πN
2 (μ1, μ2) = 1/(μ1μ2). After some algebra described in Kim (2000) along with the

strong consistency of the MLE, the system of equations in (5) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
π I
2(μ1, μ2)

π I
1(aμ1 + (1− a)μ2)/(μ1μ2)

= B∗2(μ1, μ2), 0 < μ1, μ2 <∞,
π I
2(μ,μ)

π I
1(μ)/μ

2
= μ

3
, 0 < μ <∞,

(9)
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where

B∗2(μ1, μ2) = (μ1μ2)
2

(μ2 − μ1)3

{
(μ1 + μ2)(μ2 − μ1)

μ1μ2
+ 2 log

(
μ1

μ2

)}
.

Theorem 2. For any legitimate pdf g(t) for t > 0, the set of intrinsic priors is composed of

π I
1(μ) = g(μ), 0 < μ <∞,

and

π I
2(μ1, μ2) = 1

μ1μ2
B∗2(μ1, μ2)g(aμ1 + (1− a)μ2), 0 < μ1, μ2 <∞.

Further, π I
2 is a proper density.

Proof. By Lemma 1 of Kim (2000), (π I
1, π

I
2) is a solution of (8). To prove the propriety of π I

2, let s = μ1/μ2 and t = μ2. Then∫ ∞

0

∫ ∞

0
π I
2(μ1, μ2)dμ2dμ1 =

∫ ∞

0

∫ ∞

0

s
(1− s)3

[
(1+ s)(1− s)

s
+ 2 log s

]
g(t(as+ 1− a))dtds

=
∫ ∞

0

s
(1− s)3(as+ 1− a)

[
(1+ s)(1− s)

s
+ 2 log s

]
ds.

Let

q(s) = s
(1− s)3(as+ 1− a)

[
(1+ s)(1− s)

s
+ 2 log s

]
.

Since
∫ 1
0 q(s)ds = ∫∞

1 q(s)ds, it follows from the Mclaurin series expansion that∫ 1

0
q(s)ds = 2

∞∑
j=0

1
(j+ 2)(j+ 3)

∫ 1

0

(1− s)j

as+ 1− a
ds

= 0.7269.

This implies r21 = 1.4538. �

Remark 2. Similar to the results proposed by Kim (2000), we have seen that there is a class of proper intrinsic priors for
testing two exponential means. Specifically, the inverse gamma distribution is used for π I

1(μ) in our computation.

5. Testing two normal variances

Suppose we have independent observations Xij ∼ N(0, τi), i = 1, 2; j = 1, . . . , ni. Consider the following hypotheses,

M1 : τ1 = τ2 and M2 : τ1 �= τ2.
Let τ denote the common value of τ1 and τ2 under M1. We use Jeffreys prior for M1 as a starting prior. So, πN

1 (τ ) = 1/τ for
τ > 0. We use a flexible starting prior forM2. That is, the starting prior for M2 has the following form: for 0 ≤ α, β <∞,

πN
2 (τ1, τ2) =

1

τ 1+α1 τ
1+β
2

, 0 < τ1, τ2 <∞. (10)

When α = β = 0, πN
2 (τ1, τ2) becomes the Jeffreys prior. Kim and Kim (2002) derived several intrinsic priors under these

Jeffreys priors with both intrinsic and fractional approaches. It turned out that r21 was one for both approaches. When
α = 1/2 and β = 1, it becomes the reference prior of Berger and Bernardo (1992) in case of τ1 being the parameter of
interest. Finally, when α = β = 1/2, it is also the reference prior in case of the covariance being the parameter of interest.
Although the covariance is known with zero due to independence assumption, we use this starting prior for illustration.

We only consider the fractional approach in testing two normal variances. Simply following the procedures in Kim and
Kim (2002) with δ = 2/n, we can derive a general form of intrinsic priors⎧⎨⎩

π I
1(τ ) = g(τ ), 0 < τ <∞,
π I
2(τ1, τ2) =

aτ1 + (1− a)τ2
τ a+α1 τ

1−a+β
2

B∗2(τ1, τ2)π
I
1(aτ1 + (1− a)τ2), 0 < τ1, τ2 <∞, (11)

where g(τ ) is any legitimate pdf with support of τ > 0, and

B∗2(τ1, τ2) =
(aτ1)a+α((1− a)τ2)1−a+β

Γ (a+ α)Γ (1− a+ β)(aτ1 + (1− a)τ2)
.
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Theorem 3. The intrinsic prior π I
2(τ1, τ2) in (11) is proper.

Proof. Let s = τ1/τ2, t = τ2. Then∫ ∞

0

∫ ∞

0
π F
2 (τ1, τ2)dτ1dτ2 =

aa+α(1− a)1−a+β

Γ (a+ α)Γ (1− a+ β)
∫ ∞

0

∫ ∞

0
sa−1g((as+ 1− a)t)dtds

= aa+α(1− a)1−a+β

Γ (a+ α)Γ (1− a+ β)
∫ ∞

0

sa−1

as+ 1− a
ds

= aα(1− a)β
Γ (a)Γ (1− a)

Γ (a+ α)Γ (1− a+ β) ≡ c2.

This implies r21 = c2. �

Proposition 2. When g(τ ) in (11) is the pdf of inverse gamma distribution with hyperparameters λ and η, i.e. g(τ ) ∝
τ−(λ+1)e−η/τ , τ > 0, the ordinary Bayes factor with this set of intrinsic priors in (6) is given by

BI∗
21 = C · aa(1− a)1−a

Γ (a)Γ (1− a)

( n1∑
j=1

x21j +
n2∑
j=1

x22j + 2η

2

)n/2+λ
, (12)

where

C =
∫ ∞

0

sa−1−n1/2

(as+ 1− a)λ+1
·
( n1∑

j=1
x21j

2s
+

n2∑
j=1

x22j

2
+ η

as+ 1− a

)−n/2−λ
ds.

Remark 3. Proposition 2 can justify the result in Proposition 1 with the following sense. Note that the Bayes factor in (12)
is computed with the normalized version of (11). However, this Bayes factor does not depend on α and β , but does depend
only on the data and hyperparameters λ and η. Thus, it is virtually impossible to make an asymptotic equivalence between
BF
21 and BI∗

21, at least with the inverse gamma prior because BF
21 depends on the starting prior πN

2 which involves α and β .

6. Numerical results

In this section, simulation study is conducted to verify the findings in Proposition 1 based on finite samples. Given that
legitimate intrinsic priors are used, i.e. c1 = 1 for model M1 on both exponential and normal populations, we only need to
check the behaviors of asymptotic equivalence associated with the normalizing constant c2 of modelM2. Thus, we compute
two quantities of the relative differences (RD) between the IBF (or FBF) and the ordinary Bayes factor with intrinsic priors
to investigate how the value of c2 contributes in preserving asymptotic equivalence. More precisely, we calculate two RDs:

RD1 = |BI∗
21 − BI

21|
BI
21

(
or
|BI∗

21 − BF
21|

BF
21

)
and RD2 = |c2BI∗

21 − BI
21|

BI
21

(
or
|c2BI∗

21 − BF
21|

BF
21

)
. (13)

In (13), the former is suggested by Berger and Pericchi (1996), and the latter is based on our suggestion.

Example 1. We conducted several simulations for testing two exponential means. Three cases, namely, (μ1, μ2) =
(1, 1), (μ1, μ2) = (1, 2), and (μ1, μ2) = (1, 3), were examined with some choices of n1 and n2. The RD1 and RD2 described
in (13) and their standard deviations (SD) were computed based on 200 replications. We denote the Berger and Pericchi’s
suggestion by ‘B&P’ and our proposed assertion in Section 3 by ‘Proposed’ in Tables 1 and 2. Note that BI∗

21 in (13) is the
ordinary Bayes factor computedwith the inverse gamma priorwith the hyperparameters λ and η. More precisely, for testing
one-sided alternative BI∗

21 is

BI∗
21 = c−1

2

( n1∑
j=1

x1j +
n2∑
j=1

x2j + η
)n+λ∫ 1

0

(as+ 1− a)n−1sn2+λ[(
as+ 1− a

)( n1∑
j=1

x1j + s
n2∑
j=1

x2j
)
+ηs

]n+λ ds,

where c2 = − log(1− a)/a. Similarly, for two-sided alternative BI∗
21 is

BI∗
21 = c−1

2

( n1∑
j=1

x1j +
n2∑
j=1

x2j + η
)n+λ∫ ∞

0

(as+ 1− a)n−1sn2+λ+1r(s)

(1− s)3
[(

as+ 1− a
)( n1∑

j=1
x1j + s

n2∑
j=1

x2j
)
+ηs

]n+λ ds,
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Table 1
The relative differences (RD) and their standard deviations (SD) based on the Berger and
Pericchi’s suggestion (B&P) and our proposed assertion (Proposed) with 200 replications. The
normalizing constant for π I

2(μ1, μ2) is c2 = − log(1− a)/a.

(μ1, μ2) (n1, n2) B&P Proposed
RD1 SD RD2 SD

(1, 1) (5, 5) 0.7042 0.0017 0.2471 0.0001
(10, 10) 0.6660 0.0066 0.2056 0.0050
(10, 20) 0.4672 0.0043 0.2150 0.0029
(20, 10) 0.8285 0.0094 0.1103 0.0058
(30, 30) 0.5439 0.0035 0.1142 0.0026

(1, 2) (5, 5) 0.4205 0.0437 0.1437 0.0231
(10, 10) 0.3986 0.0034 0.0715 0.0020
(10, 20) 0.2021 0.0068 0.0666 0.0017
(20, 10) 0.6665 0.0037 0.0275 0.0005
(30, 30) 0.3692 0.0005 0.0176 0.0001

(1, 3) (5, 5) 0.2816 0.0064 0.1369 0.0090
(10, 10) 0.3108 0.0025 0.0696 0.0007
(10, 20) 0.1235 0.0052 0.0822 0.0047
(20, 10) 0.6257 0.0010 0.0197 0.0011
(30, 30) 0.3501 0.0001 0.0263 0.0001

Table 2
The relative differences (RD) and their standard deviations (SD) based on the Berger and Pericchi’s suggestion
(B&P) and our proposed assertion (Proposed) with 200 replications. The normalizing constant forπ I

2(μ1, μ2)

is c2 = 1.4538.

(μ1, μ2) (n1, n2) B&P Proposed
RD1 SD RD2 SD

(1, 1) (5, 5) 0.5353 0.0099 0.1208 0.0121
(10, 10) 0.4930 0.0045 0.0809 0.0073
(10, 20) 0.2833 0.0006 0.0787 0.0030
(20, 10) 0.8130 0.0010 0.0746 0.0069
(30, 30) 0.4735 0.0152 0.0449 0.0020

(1, 2) (5, 5) 0.5117 0.0276 0.1233 0.0072
(10, 10) 0.4973 0.0122 0.0810 0.0006
(10, 20) 0.2404 0.0110 0.0693 0.0065
(20, 10) 0.8623 0.0312 0.0779 0.0105
(30, 30) 0.4629 0.0188 0.0452 0.0076

(1, 3) (5, 5) 0.4639 0.0140 0.1144 0.0084
(10, 10) 0.4706 0.0186 0.0775 0.0009
(10, 20) 0.2211 0.0064 0.0609 0.0041
(20, 10) 0.8508 0.0206 0.0741 0.0036
(30, 30) 0.4665 0.0056 0.0426 0.0007

where c2 = 1.4538 and r(s) = (1 + s)(1 − s)/s + 2 log s. Note that one-dimensional numerical integration is needed in
calculating these two ordinary Bayes factors.We only report the resultswith the choice of (λ, η) = (0.1, 0.1). Similar results
were achieved when (λ, η) = (0.01, 0.01) and (1.0, 1.0).

Table 1 shows the results for testing the one-sided alternative, and those for the two-sided alternative are provided in
Table 2. We can see that the values of ‘B&P’ are huge with random in all cases, whereas those of ‘Proposed’ are relatively
small. In addition, as the sample size increases, the RD2 decreases, which is what we would expect from an asymptotic
sense.

Example 2. We performed simulations for testing two normal variances. The cases of τ1 = τ2 = 1 and τ1 = 1 and τ2 = 1.5
were examined with some choices of n1 and n2. Like did in Example 1, the RDs and their corresponding SDs were computed
using the normalizing constant c2 forπ I

2(τ1, τ2) given by Theorem 3.We also use the hyperparameters of (λ, η) = (0.1, 0.1)
in this computation.

Numerical results are reported in Table 3. When (α, β) = (0, 0), the corresponding normalizing constant becomes one.
So, two RDs should be the same accordingly. Except for the third column, we have similar results appeared in exponential
distributions. That is, all the results associated with ‘B&P’ are bad, whereas those associated with ‘Proposed’ are fairly nice
and consistent as the sample size increases. In particular, when (α, β) = (1/2, 1/2), the corresponding results seem to be
the best compared to others.
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Table 3
The relative differences (RD) and their standard deviations (SD) based on the Berger and Pericchi’s suggestion (B&P) and our proposed assertion (Proposed)
with 200 replications. The normalizing constant for π I

2(μ1, μ2) is c2 given by Theorem 3.

(τ1, τ2) (n1, n2) (α, β)

(0, 0) (1/2, 1/2) (1/2, 1)
B&P B&P Proposed B&P Proposed
RD1 SD RD1 SD RD2 SD RD1 SD RD2 SD

(1, 1) (5, 5) 0.0907 0.0032 0.5334 0.0058 0.0524 0.0017 0.2877 0.0047 0.0579 0.0016
(10, 10) 0.0513 0.0025 0.5680 0.0035 0.0198 0.0009 0.2827 0.0028 0.0298 0.0015
(10, 20) 0.0370 0.0005 0.6294 0.0008 0.0155 0.0007 0.3844 0.0007 0.0184 0.0001
(20, 10) 0.0361 0.0005 0.6275 0.0010 0.0156 0.0007 0.2178 0.0007 0.0253 0.0004
(30, 30) 0.0163 0.0004 0.5701 0.0007 0.0050 0.0001 0.2632 0.0005 0.0088 0.0005

(1, 1.5) (5, 5) 0.1094 0.0023 0.5648 0.0024 0.0472 0.0015 0.3129 0.0021 0.0685 0.0031
(10, 10) 0.0607 0.0006 0.5845 0.0009 0.0205 0.0003 0.2962 0.0007 0.0365 0.0004
(10, 20) 0.0383 0.0013 0.6329 0.0020 0.0153 0.0002 0.3873 0.0017 0.0185 0.0008
(20, 10) 0.0491 0.0014 0.6498 0.0022 0.0170 0.0006 0.2345 0.0016 0.0366 0.0014
(30, 30) 0.0219 0.0005 0.5786 0.0008 0.0056 0.0002 0.2701 0.0006 0.0134 0.0005

7. Concluding remarks

Both IBF and FBF are well defined, reasonable, and applicable in general settings. However, when we deal with non-
exchangeable cases, such as time series analysis, the training sample computation might be difficult. Moreover, it is often
difficult to obtain a minimal training sample in non-linear models. If we have reasonable proper priors for each model
(hypothesis), the training sample computation is not necessary. Berger and Pericchi (1996) suggested how to derive the
proper priors, called intrinsic priors. The ordinary Bayes factor computed with the set of intrinsic priors is asymptotically
equivalent to the corresponding IBF or FBF only when the ratio of two normalizing constants of intrinsic priors is one.

In our study, a justification of necessary conditions was provided to attain the asymptotic equivalence between BI∗
21 and

BI
21 (or B

F
21) regardless of whether the ratio is one or not. Such was illustrated with three examples. In addition, simulations

showed that all the results based on the assertion of Berger and Pericchi (1996) are not ideal, whereas those associated with
our generalization are fairly nice and consistent as the sample size increases.
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