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a b s t r a c t

A new strategy for forecasting realized volatility (RV) is proposed for the heteroscedastic

autoregressive (HAR)model of Corsi (2009). The strategy is constraining the sumof theHAR

coefficients to one, resulting in an integrated model, called IHAR model. The IHAR model

is motivated by stationarity of estimated HAR model, downward biases of estimated HAR

coefficients, and over-rejection of ADF test for long-memory processes. Considerable out-

of-sample forecast improvements of the IHARmodel over theHARmodel are demonstrated

for RVs of 4 financial assets: the US S&P 500 index, the US NASDAQ index, the Japan yen/US

dollar exchange rate, and the EU euro/US dollar exchange rate. Forecast improvement

is also verified in a Monte Carlo experiment and in an empirical comparison for an

extended data set. The forecast improvement is shown to be a consequence of the fact

that the IHAR model takes better advantage of the long memory of RV and the conditional

heteroscedasticity of RV than the HAR model.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Forecasting volatility is essential for financial pricing, asset allocation, and risk management. Among many volatility
measures, realized volatility (RV) based on intra-day high frequency asset observations is one of themajor interests building
a large amount of results in the recent literature. A good review on RV is provided byMcAleer andMedeiros (2008) in which
we find a review on forecasting RV in Section 5.

The HAR (Heteroscedastic AutoRegressive) model proposed by Corsi (2004, 2009) is very useful in forecasting financial
realized volatility. The HAR model is conceptually appealing because it represents volatilities of different short-term and
long-term market participants via daily, weekly, and monthly volatility components. We find many successful applications
and extensions of the model. Among many others, we refer Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and
Reno (2010) formodels with jump;McAleer andMedeiros (2008) formodels having leverage effect; Busch, Christensen, and
Nielsen (2011) for models with implied volatility and jumps; Hwang and Shin (2014) for an infinite order model; Hwang
and Shin (2013, 2015) and Song and Shin (2015) for structural breaks; and Yun and Shin (2015) for the issue of overnight in
RV forecasting.

The HARmodel represents efficiently long-memories of financial volatilities by employing the efficient regressors of the
one-day lag, one-day lagged weekly moving average, and one-day lagged monthly moving average of realized volatility.
However, we note that the HAR model is an AR(22) model and estimated HAR models are usually stationary. For example,

∗ Corresponding author. Tel.: +82 2 3277 2614; fax: +82 2 3277 3606.

E-mail address: shindw@ewha.ac.kr (D.W. Shin).

http://dx.doi.org/10.1016/j.jkss.2015.12.004

1226-3192/© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.



372 S. Cho, D.W. Shin / Journal of the Korean Statistical Society 45 (2016) 371–380

the estimatedmodels for the USD/CHF exchange rate and the US T-bond realized volatilities in Corsi (2009) are all stationary
because the sums 0.91, 0.81 of the three HAR coefficients are all smaller than 1.

We point out that the estimated-stationaritymatters in forecasting long-term realized volatilities. It is well known in the
literature that financial volatilities are long memory, see for example, the seminal papers by Andersen, Bollerslev, Diebold,
and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001a,b). Especially the latter two papers discussed long-
memory properties of realized exchange rate volatilities and realized stock price volatilities. In the estimated stationary HAR
model for financial volatilities, autocorrelation functions (ACFs) for large lags decay faster at exponential rates than algebraic
rates of the usual ACFs of financial volatilities. Therefore, some of the long memories in the financial volatilities remain
unexplained by the estimated stationary HAR models. Owning to the unexplained long-memories, long-term volatility
forecasts regress to the global mean more rapidly than they should be, resulting in efficiency losses in long-term forecasts.
More discussions on the unexplained memory problems will be made in Section 2.

In order to achieve better long-term forecasts, we propose a new strategy of constraining the sum of HAR coefficients to
1. The constrained model is a unit-root model and is nonstationary. We call the model an ‘‘integrated HAR’’, IHAR, model.
The IHARmodel will be more motivated in Section 2 by over-rejection of the ADF test against fractional integration, by level
shift in realized volatility, and by downward biases of the estimated HAR coefficients. The forecast advantage of the IHAR
model over the HAR model will be investigated in a Monte-Carlo study of Section 3.

In Section 4, out-of-sample forecast performances of the proposed IHAR model will be compared with those of the HAR
model and other two models of random walk and fractional integration for 4 RVs based on high frequency data sets: 2 US
stock price indices and 2 foreign exchange rates relative to US dollar for, roughly, the last two decades. The comparison
reveals considerable forecast improvement of the IHAR model over the HAR model and the other two models. Similar
favorable results are observed for the IHAR forecasts in an extended comparison in Section 5 for an expanded data set
consisting of all the 20 index series in the realized library of Oxford-Man Institute.

2. An Integrated HAR model

We first discuss some problems in terms of memory properties of the HAR model and next propose the IHAR model to
overcome the problems. The HAR model of Corsi (2009) is

yt+1 = φ0 + φdyt + φwywt + φmy
m
t + εt+1, (1)

where εt is a sequence of regression error and ywt = (yt + · · · + yt−4)/5, y
m
t = (yt + · · · + yt−21)/22 are the weekly and

monthly moving averages of yt .
We claim that, even though the HAR model explains successfully a large part of long-memory in financial volatilities,

some non-negligible part of long-memory remains unexplained. The unexplained long-memory problems of HAR models
are discussed in terms of stationarity of the estimated HAR model and biases of estimated HAR coefficients. Firstly, since
model (1) is a special case of AR(22) model, the autocorrelation function (ACF) decays to zero exponentially for large lag
if φd + φw + φm < 1 and other technical conditions for stationarity hold. Obviously, the exponential decay of the ACF
is faster than the algebraic decay of the ACFs of long-memory processes for financial volatilities. Secondly, the estimated
HAR coefficients are biased downward. We note in Shaman and Stine (1988) and Tanaka (1984) that the ordinary least

squares (OLS) estimate φ̂1 based on a sample of size n for an AR(1) model yt+1 = φ0 + φ1yt + εt+1 has the downward bias

E[φ̂1 − φ1] = −(1 + 3φ1)/n + O(n−2). Similarly, the sum of estimated HAR coefficients is also downwardly biased. Both
the exponential decay of the ACF of the HAR model and the downward bias of the estimated HAR coefficients imply that
the estimated HAR models are less long memory than they should be for forecasting long-memory volatilities. Therefore,
long-term forecasts from the HAR models remain to be improved.

Usually, since financial volatilities are longmemory, the sumof the estimatedHAR coefficients is close to 1. For examples,
we have 0.93, 0.96, 0.95 for the KOSPI (Korean stock price index), the Koreawon—USdollar exchange rate, and theUS S&P500
realized volatilities, respectively, in Park and Shin (2014); 0.97 for the US S&P500 realized volatility in Busch et al. (2011).
Noting that these estimates are underestimated, together with ‘‘less-long-memory’’ property of the estimated stationary
HAR models, we consider an alternative model having 1 for the sum of the HAR coefficients for forecasting long-memory
volatilities. The model is an integrated model as given by

yt+1 = φ0 + φdyt + φwywt + φmy
m
t + εt+1, φd + φw + φm = 1, (2)

which will be called an IHAR model.
Some recent papers such as Hwang and Shin (2013), Song and Shin (2015), and Varneskov and Perron (2015) report

presence of level shifts in volatility which makes the volatility process nonstationary. Such nonstationarity would be more
well-captured by the IHAR model than the HAR model.

The IHAR forecast model may bemoremotivated by the high acceptance rate of the ADF (Augmented Dickey–Fuller) test
against long-memory nonstationary fractional integrations. Bisaglia and Procidano (2002) and many others reported that
the ADF tests fail to detect nonstationarity of fractional integration FI(d)

(1− B)dyt = at

with 0.5 < d < 1, where B is the back-shift operator such that Byt = yt−1 and at is a white noise. We report a
Monte-Carlo acceptance rate of the level 5% ADF test for model (1) when data are generated from nonstationary fractional
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Table 1
Acceptance rate of ADF test for model (1) when DGP is FI(d).

n d

0.5 0.6 0.7 0.8 0.9 1

1250 0.06 0.27 0.56 0.78 0.90 0.95

2500 0.00 0.07 0.33 0.67 0.88 0.95

5000 0.00 0.01 0.16 0.55 0.84 0.95

integration FI(d), d = 0.5, 0.6, . . . , 1, for sample size n = 1250, 2500, 5000, (5 years, 10 years, 20 years). The FI(d)
process is simulated using the procedure described in Section 3. The ADF test is constructed from HAR model (1) and is

ADF = (φ̂d + φ̂w + φ̂m − 1)/se(φ̂d + φ̂w + φ̂m). The simulation results are almost the same as those of the ADF test
constructed from the AR(22) model. Table 1 shows acceptance rate of the ADF test based on 10,000 replications. It reveals
that the unit root hypothesis is accepted at high frequency for d close to 1. Diebold and Kilian (2000) demonstrated that
pretesting unit root generally improves forecast accuracy. From Table 1, we know that, for d close to 1, pretesting results
would be almost the same as imposing unit root. This indicates that, for data sets from nonstationary fractional integration
with d close to 1, a unit root HAR model (2) is more suitable than a stationary HAR model (1) for forecasting long-memory
data such as realized volatility.

It is useful to reparameterize (2) into an augmented Dickey–Fuller-type regression

yt+1 − yt = φ0 + φw(ywt − yt)+ φm(y
m
t − yt)+ εt+1, (3)

fromwhich we estimate φw, φm and their standard errors by OLS regression. For an estimate of φd and its standard error, we
can apply the deltamethod to φd = 1−φw−φm using the estimation results for (φw, φm)

′ obtained from fitting (3). Instead,

one may use another reparameterization yt+1− ymt = φ0+φd(yt − ymt )+φw(ywt − ymt )+ εt+1 for φ̂d and its standard error.
The reparameterization method may be simpler for practitioners than the delta-method if they use statistical softwares.

There is a large literature acknowledging long range dependence and proposing methods which accommodate the long
range dependence, for example, Barigozzi, Brownlees, Giampiero, Gallo, andVeredas (2014) and Brownlees andGallo (2010).
The proposed IHAR model fits in this more general strand of the literature.

3. A Monte Carlo forecast comparison

This section compares forecast performance of the proposed IHAR model with that of the HAR model for a class of
long-memory processes: fractional integration FI(d) given by (1 − B)dyt = at with fractional integration parameter
d = 0.6, 0.7, 0.8, 0.9,where at is awhite noise process.We choose the fractional integration because it is frequently used for
modeling financial volatility, see Kellard, Dunis, and Sarantis (2010) for example. In addition to the long memory structure,
we consider another structure of GARCH(1,1) for the error process in order to address the conditional heteroscedasticity of
realized volatility pointed out by Corsi, Mittnik, Pigorsch, and Pigorsch (2008) and others. We note the observations of Corsi
(2009, Figure 5) and Hwang and Shin (2013, Figure 1) that residuals from HAR fittings reveal strong volatility clustering, see
also the lower block of Table 5.

The artificial data yt are recursively computed using a large lag AR approximation

yt = −
L∑

j=1

πjyt−j + at , at = σtεt , σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, πj = Γ (j− d)/{Γ (−d)Γ (j+ 1)}

with L = 1000 to the FI(d) model. The π coefficients are recursively computed by πj = πj−1(j − 1 − d)/j, j =
1, 2, 3, . . . , π0 = 1. In order to remove the start-up effect, {yt , t = −m,−m + 1, . . . , 0, 1, . . . , n} are generated with
y−m = y−m−1 = · · · = y−m−L = 0 and m = 50,000 and {yt , t = 1, . . . , n} is used for analysis. For the GARCH parameters,
we consider two cases (α0 = 1, α1 = 0, β1 = 0) and (α0 = 0.1, α1 = 0.5, β1 = 0.4) which will be denoted by IID and
GARCH, respectively. Note that IID and GARCH errors are homoscedastic and conditionally heteroscedastic, respectively.

Artificial long-memory data sets yt , t = 1, . . . , n are simulated with independent standard normal errors εt generated
by RNNOA, a FORTRAN subroutine in IMSL library for n = 1250, 2500, 5000. For each sample {yt , t = 1, . . . , n}, h-step
ahead forecasts ŷn+h|n are computed from estimated HAR model and estimated IHAR model for h = 1, 5, 22, 66, 250 which
correspond to a day, a week, a month, a quarter, and an year respectively. Note that one year forecast is not rare in financial
risk analysis. For example, one may be interested in one-year VaR (value at risk) for a financial position for which one need
volatility forecasts of the log-returns up to one-year ahead. This procedure is repeated K = 10,000 times independently to

produce a set of K independent h-step ahead forecasts ŷ
(k)
n+h|n, k = 1, . . . , K .

For each model HAR and IHAR, we first compute the forecast MAE(h) (mean absolute error) of the h-step ahead forecasts

ŷn+h|n computed from the model as given byMAE(h) =∑K
k=1 |ŷ(k)n+h|n − yn+h|/K . Table 2 reports MAE efficiency of the IHAR

forecast relative to the HAR forecast given by

Relative MAE efficiency = MAE of the HAR forecasts/MAE of the IHAR forecasts. (4)
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Table 2
MAE efficiency of the IHAR forecasts relative to the HAR forecasts.

h DGP: FI(d)–IID DGP: FI(d)–GARCH

d

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

n = 1250 (5 years)

1 0.995 0.997 0.999 1.000 0.998 1.000 1.001 1.002

5 0.994 0.999 1.003 1.005 0.995 1.003 1.010 1.014

22 0.974 0.992 1.009 1.020 0.975 0.997 1.016 1.031

66 0.964 1.000 1.029 1.050 0.975 1.016 1.046 1.068

250 0.900 0.959 1.018 1.074 0.905 0.972 1.035 1.096

n = 2500 (10 years)

1 0.999 1.001 1.001 1.001 1.000 1.001 1.001 1.001

5 0.995 1.000 1.003 1.003 0.994 1.000 1.004 1.007

22 0.977 0.992 1.003 1.010 0.976 0.994 1.007 1.016

66 0.967 0.995 1.012 1.023 0.976 1.005 1.022 1.035

250 0.961 1.023 1.060 1.080 0.973 1.034 1.065 1.084

n = 5000 (20 years)

1 0.998 0.999 1.000 1.000 0.997 0.999 1.000 1.000

5 0.995 0.999 1.000 1.001 0.993 0.998 1.002 1.002

22 0.971 0.987 0.996 1.002 0.975 0.993 1.003 1.009

66 0.982 1.001 1.010 1.014 1.005 1.023 1.027 1.028

250 1.018 1.072 1.073 1.061 1.032 1.089 1.087 1.073

Note: Efficiency value larger than 1 implies better IHAR forecast than HAR forecast.

Table 3
Basic statistics of the RVs.

Size(n) Min. Median Max. Mean St.dev Skewness Kurtosis

S&P500 4627 11.17 69.18 760.48 81.20 51.69 3.33 20.59

NASDAQ 4629 20.60 99.21 847.85 123.95 80.44 2.32 8.77

JPY/USD 4765 0.77 36.98 536.91 40.48 19.49 6.00 109.65

EUR/USD 4299 1.26 37.40 286.51 39.95 16.00 2.25 17.97

Note: Unit = bp, 1bp = 0.01%. The scale BP is applied only for Min, Median, Max, Mean, and St.dev.

From Table 2, we see efficiency gain of the IHAR model over the HAR model for strong long memory cases. Consider first
the strong long memory cases of d = 0.8, 0.9. We note that relative efficiency is generally greater than 1. The efficiency is
larger for larger h or for GARCH error. For d = 0.7, efficiency of the IHARmodel is almost the same as that of the HARmodel.
On the other hand, for d = 0.6, we see some efficiency loss for the IHAR model relative to the HAR model.

Interestingly, even for the 1-step forecast of h = 1, we observe better IHAR forecasts than HAR forecasts for d close to 1,
which is more significant for the conditionally heteroscedastic GARCH error than for the homoscedastic IID error. The extra
improvement for the GARCH error case is more significant for d close to 1, for larger h, or for smaller T .

From thisMonte Carlo efficiency study,we can say that the IHARmodel produces better long-term forecasts than theHAR
model for a strong long memory processes while it looses forecast efficiency for weak long memory processes. Conditional
heteroscedasticity of error, i.e. conditionally heteroscedastic volatility of realized volatility, gives extra improvements for
the IHAR forecasts.

4. A real data set out-of-sample forecast comparison

We compare out-of-sample forecast performance of the IHAR model with that of the HAR model as well as those
of random walk model and fractional integration model. We choose daily realized volatilities (RVs) of 2 stock price
indices and 2 foreign exchange rates: the US S&P 500 index (S&P500), the US NASDAQ index, the Japan yen/US dollar
exchange rate (JPY/USD), and the EU euro/US dollar exchange rate (EUR/USD). The data period is Jan. 1 1999–May 26
2015 for the EUR/USD and Jan. 1 1997–May 26 2015 for the other assets. The data sets are purchased from tickdatamarket
(www.tickdatamarket.com). The RV of a given asset for a given day is the square root of the sumof squares of 5min intra-day
log-returns. Plots of the RV series are displayed in Fig. 1. We will apply models (1) and (2) for forecasting yt = RVt .

4.1. Preliminary analysis

Basic statistics of the RVs are reported in Table 3. We see some asymmetries for all the 4 RVs as measured by (min,
median, max) = (11.17, 69.18, 760.48) and skewness = 3.33 for S&P500 for example. We also observe non-normality of
sharp central tendency as measured by kurtosis = 20.59 for S&P500 for example.
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Table 4
Fractional integration parameter (d̂) and tests for nonstationarity for the RVs.

d̂ se(d̂) d̂/se(d̂) (d̂− 0.5)/se(d̂)

S&P500 0.588 0.029 20.485 3.063

NASDAQ 0.538 0.028 18.903 1.350

JPY/USD 0.402 0.029 14.107 −3.433

EUR/USD 0.398 0.031 12.742 −3.284

Fig. 1. Time series plots of the realized volatility series.

Fig. 2. Sample ACF plots of the realized volatility series.

Long-memory features of the RVs are analyzed by the sample autocorrelation function (SACF) in Fig. 2 and estimated

fractional integration parameter d̂ in Table 4. The SACFs decline to zero very slowly implying persistent long memories. The
fractional integration parameter d is estimated by the method of Geweke and Porter-Hudak (1983), called GPH, for which
we use the tuning parameter n0.75 as Kellard et al. (2010) did. The RVs of the stock prices have estimated d values somewhat

greater than 0.5, indicating nonstationaritywhile the RVs of the exchange rates have d̂ somewhat smaller than 0.5 indicating
stationarity.

Tests for nonstationarity are conducted using the GPH tests as reported in Table 4. For the S&P500, the GPH test

(d̂− 0.5)/se(d̂) rejects the null hypothesis d ≤ 0.5 against nonstationarity d > 0.5 at 1% level. For the other assets, the GPH

test (d̂− 0.5)/se(d̂) does not reject stationarity.

Sample estimation results for RVs are reported in Table 5. The IHAR model reveals much smaller constant estimates
with smaller standard errors than those of the HAR model. The daily coefficients of the IHAR models are similar to those
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Table 5
In-sample estimation results of the HAR and the IHAR models.

S&P500 NASDAQ JPY/USD EUR/USD

HAR IHAR HAR IHAR HAR IHAR HAR IHAR

Estimation results

Const.× 104 4.166*** −0.030 4.507*** −0.036 4.316*** −0.037 3.383*** 0.012

(0.852) (0.4) (1.162) (0.571) (0.723) (0.219) (0.680) (0.183)

Day 0.447*** 0.452*** 0.443*** 0.446*** 0.265*** 0.268*** 0.170*** 0.172***

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.018) (0.018)

Week 0.329*** 0.329*** 0.287*** 0.288*** 0.263*** 0.265*** 0.332*** 0.335***

(0.026) (0.026) (0.027) (0.027) (0.031) (0.031) (0.035) (0.035)

Month 0.173*** 0.220*** 0.233*** 0.266*** 0.364*** 0.466*** 0.414*** 0.493***

(0.021) (0.019) (0.022) (0.02) (0.031) (0.026) (0.034) (0.030)

Residual analysis by GARCH(1,1) fitting

α̂0 × 107 1.338*** 1.420*** 2.550*** 2.603*** 0.499*** 0.398*** 0.348*** 0.347***

(0.199) (0.204) (0.366) (0.360) (0.094) (0.076) (0.052) (0.051)

α̂1 0.145*** 0.144*** 0.198*** 0.192*** 0.092*** 0.087*** 0.061*** 0.064***

(0.013) (0.013) (0.014) (0.014) (0.009) (0.008) (0.006) (0.007)

β̂1 0.843*** 0.842*** 0.810*** 0.812*** 0.893*** 0.903*** 0.917*** 0.915***

(0.012) (0.013) (0.012) (0.012) (0.011) (0.010) (0.008) (0.008)

Note: (α̂0, α̂1, β̂1) are the GARCH(1,1) parameters of the residual. Numbers in parentheses are standard errors.
*** Significance at the 0.1% level.

of the HAR models and so are the weekly coefficients. On the other hand, the monthly coefficients of the IHAR models are
non-negligibly greater than those of the HAR models. This indicates that the monthly term plays a more important role in
the IHAR model than in the HAR model for forecast, which produces a much better long-term IHAR forecasts than the HAR
forecasts as will be investigated in the following subsection.

The residuals have strong conditional heteroscedasticity as in Corsi et al. (2008). The GARCH parameters (α̂1, β̂1) are

highly significant and indicate strong persistency in volatility movements as indicated by the near unity sums α̂1 + β̂1. As
discussed in the Monte Carlo experiment in Section 3, this point is related with improved forecast performance of the IHAR
model relative to the HAR model. This issue will be more discussed in the following subsection.

4.2. Forecast comparison

Let an asset be given which is one of the S&P500, the NASDAQ, the JPY/USD, or the EUR/USD. Forecast performances of
the HAR model (1), the IHAR model (2), random walk (RW) model yt+1 = yt + εt+1, and fractional integration (FI) model
(1 − B)dyt+1 = φ0 + εt+1 are compared for predicting the last m observations where m is 15% of the whole observation,
m = 0.15n, and n is the number of observations of the asset given in Table 3. Starting from the day corresponding to
t = 0.85n, for each T = 0.85n, 0.85n+1, . . . , n−h, out-of-sample h-step ahead forecasts ŷT+h|T are constructed from each
of the 4models estimated using data set {y1, . . . , yT }, h = 1, 5, 22, 66, 250. The performance criteria MAE(h), RMSE(h), and
MAPE(h) are computed for each model and h, which are

MAE(h) = M−1
n−h∑

T=0.85n

|ŷT+h|T − yT+h|, RMSE(h) =
√√√√M−1

n−h∑
T=0.85n

(ŷT+h|T − yT+h)2,

MAPE(h) = 100×M−1
n−h∑

T=0.85n

|ŷT+h|T − yT+h|/yT+h,

where M = n − h + 1 − 0.85n = 0.15n − h + 1. The MAE efficiency of the IHAR forecast relative to the HAR forecast is
given by (4) and other efficiencies are defined similarly.

Table 6 reports efficiencies of the IHAR forecasts relative to the forecasts based on the other models HAR, RW, and FI. We
observe that, for all the 4 RVs, the IHAR model tends to produce uniformly best forecasts for all h considered here in all the
three performance criteria MAE, RMSE, MAPE.

The left block of Table 6 shows efficiencies of the IHAR forecasts relative to the HAR forecasts. In all the 3 performance
measures, we see that all the efficiency values are greater than 1, indicating better forecast performance of the IHAR model
over the HAR model, and that the efficiency values increase as h increases.

In MAE performance, the efficiency values for (S&P500, NASDAQ, JPY/USD, EUR/USD) are: (1.514, 1.692, 1.231, 1.354),
substantially greater than 1 for the three month forecasts of h = 66; (1.136, 1.152, 1.233, 1.181), meaningfully greater than
1 for the monthly forecast of h = 22; (1.032, 1.042, 1.111, 1.078), somewhat greater than 1 for the weekly forecast of h = 5;
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Table 6
MAE, RMSE, and MAPE efficiencies of the IHAR forecasts relative to benchmark models HAR, random walk (RW), and fractional integration (FI).

h HAR/IHAR RW/IHAR FI/IHAR

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

S&P 500

1 1.021*** 1.002 1.063 1.084*** 1.118*** 1.057 0.996 0.998 1.001

5 1.032a 1.005 1.112 1.138*** 1.162*** 1.126 1.069** 1.084** 1.067

22 1.136** 1.028 1.314 1.167*** 1.173*** 1.152 1.129*** 1.134*** 1.124

66 1.514*** 1.309** 1.814 1.172*** 1.169*** 1.152 1.152*** 1.148*** 1.139

250 2.152*** 1.748*** 2.511 1.163*** 1.138** 1.171 1.155 1.132** 1.169

NASDAQ

1 1.024*** 1.005 1.063 1.069** 1.111*** 1.047 0.997 0.993 1.012

5 1.042* 1.015 1.116 1.151*** 1.179*** 1.137 1.059* 1.082** 1.061

22 1.152** 1.062 1.310 1.163*** 1.179*** 1.157 1.118*** 1.128*** 1.124

66 1.692*** 1.418*** 1.984 1.195*** 1.169*** 1.180 1.166*** 1.140*** 1.163

250 2.670*** 2.172*** 3.238 1.108*** 1.104** 1.123 1.101 1.093* 1.128

JPY/USD

1 1.061*** 1.007 1.154 1.233*** 1.261*** 1.163 1.040*** 1.018** 1.091

5 1.111*** 1.024a 1.263 1.269*** 1.295*** 1.211 1.115*** 1.118*** 1.135

22 1.233* 1.079 1.502 1.265*** 1.297*** 1.210 1.188*** 1.193*** 1.188

66 1.231 1.083 1.543 1.133** 1.186* 1.148 1.092* 1.125a 1.133

250 1.322 1.108 1.354 1.077 1.146** 1.096 1.056 1.113* 1.084

EUR/USD

1 1.044*** 1.002 1.108 1.271*** 1.253*** 1.228 1.071*** 1.019 1.126

5 1.078*** 1.008 1.188 1.271*** 1.254*** 1.230 1.127*** 1.086* 1.158

22 1.181* 1.042 1.379 1.348*** 1.336*** 1.311 1.251*** 1.229*** 1.259

66 1.354 1.138 1.728 1.170*** 1.178** 1.166 1.142** 1.132* 1.177

250 1.125 1.004 1.437 1.015 1.048 1.025 1.000 1.024 1.032

Note: Efficiency value larger than 1 indicates better forecast accuracy of the IHAR forecast than the benchmark model forecast.
a Significance at the 10% level by the Diebold–Mariano test.
* Significance at the 5% level by the Diebold–Mariano test.
** Significance at the 1% level by the Diebold–Mariano test.
*** Significance at the 0.1% level by the Diebold–Mariano test.

(1.021, 1.024, 1.061, 1.044), still greater than 1 in the 1-step forecast. We see similar relative performances in the other
RMSE and MAPE performances.

Even for the 1-step forecast, the IHAR model is better than the HAR model. A reason for this improvement is explained
by observing the highly significant estimated GARCH(1,1) parameters of the residuals in the bottom block of Table 5, whose
sums are all close to 1. Therefore, as observed in the Monte Carlo comparison in Section 3, conditional heteroscedasticity in
the residual would have produced better 1-step forecast for the IHAR model than for the HAR model.

Table 6 also reports statistical significances of the MAE and RMSE efficiencies of the IHAR forecasts over the HAR
forecasts computed from the Diebold–Mariano test of Diebold and Mariano (1995). For the long-run variance estimates
of the mean loss-differences in the Diebold–Mariano tests for h-step ahead forecasts, we use sample autocovariances of the
loss-differences for lags up to (h−1)with unit kernel. Consider first the RVs of the stock prices S&P andNASDAQ: in theMAE
performance, we see statistical significances for all h; in the RMSE performance, we see high significance for h = 66, 250
but no significance for h = 1, 5, 22. Consider next the RVs of the JPY/USD and the EUR/USD: in the MAE performance, we
note statistical significances for h = 1, 5, 22; in the RMSE performance, we see some significance for h = 5.

We may explain the improved long-term forecasts from the IHAR models over those from the HAR models by three
reasons. One reason is that the long-memories of the RVs are so much more persistent than the memories represented by
the estimated stationary HAR models that the IHAR models with unit root are more consistent with the long memory RVs
than the estimated HAR models. On the other hand, in the estimated HAR models, the long-term forecasts regress to the
global means at more rapid speeds than those implied by the long-memories of the RVs, resulting in the relative poor long-
term forecasts. Another reason is that, as verified in Section 3, conditionally heteroscedastic volatility of RV shown in the
lower block of Table 5 is a featurewhich the IHARmodel takes better advantage of than the HARmodel in forecasting. A third
reason is that, as mentioned in the later paragraph of the preceding subsection, the improvedmonthly coefficient estimates
in the IHAR model capture the strong long-memory dynamics of the RVs better than those of the HAR model.

The middle block of Table 6 shows efficiencies of the IHAR forecasts relative to RW forecasts, which are the last value of
RVs for all h. Note that random walk is a simple AR(1) model with a unit root. For h = 1, 5, 22, 66, 250, for all 4 RVs, IHAR
forecasts are better than RW forecasts in all measures MAE, RMSE, and MAPE.

The right block of Table 6 displays efficiencies of the IHAR forecasts relative to FI forecasts. We note general uniform
dominance of IHAR forecasts over the FI forecasts.
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Fig. 3. Relative efficiencies of h-step ahead out-of-sample IHAR forecasts for the 20 indexes in Oxford-Man library.

We can say that the IHARmodel produces the best forecasts among the 4models for all h considered here in all measures.
For short-term forecast of h = 1, 5, we see that HAR is the next best one followed by FI and next by the worst RW. For long-
term forecast of h = 66, 250, FI is the second best, RW is the third best and HAR seems to be the worst.

5. An extended comparison

This section makes a forecast comparison of the 4 models, HAR, IHAR, RW, and FI, for all the index related RV series
contained in the realized library of Oxford-Man Institute which are freely available on the website (http://realized.oxford-
man.ox.ac.uk/). The names of the index series are listed in Table 7. Data period is Jan. 3 2000–Dec. 15 2015. Sampling interval
for RV is 5 min. Efficiencies of the IHAR forecasts relative to the HAR, RW, FI forecasts are computed in the same manner as
those for Section 4.2 and are displayed in Fig. 3.

From Fig. 3, we see that the IHAR model has substantial forecast advantage over all the 3 other models HAR, RW, and FI
for the extended RV data sets. More detailed investigations follow.
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Table 7
Data number and description in Fig. 3.

Number Asset Number Asset

1 S&P 500 11 Swiss Market Index

2 NASDAQ 12 AEX Index

3 JPY/USD 13 DAX

4 EUR/USD 14 CAC 40

5 KOSPI Composite Index 15 Euro STOXX 50

6 Russel 2000 16 Hang Seng

7 Nikkei 225 17 IBEX 35

8 FTSE 100 18 FTSE MIB

9 DJIA 19 Bovespa Index

10 IPC Mexico 20 All Ordinaries

The top part of Fig. 3 shows the efficiencies of IHAR forecasts relative to HAR forecasts. We observe

1. In MAPE performance, the IHAR model is substantially better than the HAR model for all the 20 assets.
2. In MAE performance, for the first 10 assets, the IHAR model is better than the HAR model; for the last 10 assets the IHAR

model and the HAR model have similar 1, 5, 22 step forecast accuracy while the IHAR model has worse 66, 250 step
forecasts than the HAR model.

3. In the RMSE performance, no model dominates the other model in forecast performance.

Themiddle and bottom parts of Fig. 3 show the efficiencies of the IHAR forecasts relative to the RW forecasts and relative
to the FI forecasts, respectively. We observe the efficiency values are almost uniformly significantly larger than 1, implying
uniformly significantly better the IHAR forecasts relative to the RW forecasts and relative to the FI forecasts for all h in all
the 3 measures MAE, RMSE, and MAPE.

6. Conclusion

We have proposed an integrated HAR (IHAR) model whose HAR coefficient sum is one. Forecast advantages of the IHAR
model over the existing HAR model and two benchmark models of random walk (RW) and fractional integration (FI) are
demonstrated for 4 realized volatilities of US S&P500 index, NASDAQ index, the Japan yen/US dollar exchange rate, and the
EU euro/US dollar exchange rate. The improvement ismore conspicuous for long-term forecasts. The superior IHAR forecasts
relative to the 3 other HAR, RW, FI forecasts are also justified by a Monte-Carlo simulation and by an empirical comparison
for all 20 index volatilities in a realized volatility library of Oxford-Man Institute. The improved forecasts are due to the
fact that, compared with the HAR model, the proposed IHAR model has better addressing of the long memory feature of
the realized volatility and of the conditional heteroscedastic feature of the realized volatility. The spirit of imposing unit
root may be applied to vector valued financial volatilities for which a vector error correction HAR model may have forecast
advantage over a vector HARmodel considered by Busch et al. (2011). Especially, it would be a good topic of future research
to study vector error correction HARmodel to improve the vector HAR forecasts of a vector of realized volatility and implied
volatility by Busch et al. (2011).
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