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a b s t r a c t

Interval-valued data are observed as ranges instead of single values and frequently appear

with advanced technologies in current data collection processes. Regression analysis of

interval-valued data has been studied in the literature, but mostly focused on parametric

linear regression models. In this paper, we study interval-valued data regression based on

nonparametric additive models. By employing one of the current methods based on linear

regression, we propose a nonparametric additive approach to properly analyze interval-

valued data with a possibly nonlinear pattern. We demonstrate the proposed approach

using a simulation study and a real data example, and also compare its performance with

those of existing methods.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Humans have been interested in weather forecasting through the ages. Reoccurring astronomical and meteorological
eventswere used to record seasonal changes in theweather during early times. After developing instruments tomeasure the
properties of the atmosphere, such as temperature, pressure, andhumidity, effortsweremade to understand the atmosphere
using the measurements of the properties. Knowledge of the atmosphere has been considered a key factor for weather
forecasting (Lutgens & Tarbuck, 2007). Statistical weather forecasting is a method of weather prediction using statistical
models to describe relations among such meteorological variables. It was first studied during the mid-twentieth century by
Wadsworth (1951) and Wadsworth, Bryan, and Gordon (1948). After that, statistical prediction of variability in weather or
meteorological variables such as surface temperature and sea level pressure has been an important problem and studied
by many researchers for decades. For example, see Barnett (1985), Davis (1976), Gillett, Zwiers, Weaver, and Stott (2003),
Kutzbach (1967), andMin, Legutke, Hense, andKwon (2005), amongothers. Stationswere constructedworldwide to observe
weather and meteorological variables, and with development of science and technology the number of stations and the
amount of data generated from them have increased exponentially.

Although computing power is highly advanced recently, sometimes it is not practical to analyze massive sized data sets.
Consequently, such huge data sets are aggregated to intervals with lower and upper bounds or to histograms. Researchers
sometimes encounter interval-valued data, which are either inherently observed as or processed to be intervals. Examples
are blood pressure (Billard & Diday, 2000) and income level in survey data (Xu, 2010), among others. Interval-valued data
belong to a broader category of data forms called symbolic data (Diday, 1987). It is difficult to analyze these types of data
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(a) Sea level pressure vs. temperature. (b) Sea level pressure vs. wind speed.

Fig. 1. Plots of interval-valued data for Hawaiian climate data.

with classical methods. To illustrate this point, we consider a real interval-valued Hawaiian climate data set. There are three
random variables: X1 = the daily temperature in Hawaii, X2 = the daily wind speed in Hawaii, and Y = the daily sea level
pressure in Hawaii. The interval-valued data used in this illustration were converted from a total of 5408 single-valued
observations which are collected in 2012 from 16 stations. The lower bound and the upper bound of the intervals are the
Q1 and Q3 of the 16 stations, respectively. The sample size of the data is thus 366. The original data are publicly available
from the National Climate Data Center at http://www.ncdc.noaa.gov/.

Fig. 1 shows the plots of the interval-valued data for Hawaiian climate data. We observe a decreasing pattern for the
relationship between the sea level pressure and the temperature and an increasing pattern between the sea level pressure
and thewind speed. However, themain difficulty is to take into account internal variation or structurewithin an observation,
that is, an interval.

Researchers have studied adaptation of classical methods to the symbolic data extensively. For example, see Diday
(1995), Diday and Emilion (1996, 1998), and Diday, Emilion, and Hillali (1996), among others. After the establishment
of the adaptation, researchers have considered regression approaches to interval-valued data actively. Billard and Diday
(2000) introduced a regression approach first, which fits a linear regression model on the center point of the intervals and
applies the fitted model to the lower and the upper bounds of the predictor variables to obtain a prediction. Lima Neto,
de Carvalho, and Tenorio (2004) extended this approach to the range of the intervals and proposed a regression method.
This method fits two separate linear regression models on the center and the range of the intervals. Later, Billard and Diday
(2007) employed this idea and proposed a bivariate approach which fits two regression models on both of the center and
the range of the intervals simultaneously as the predictors. Recently, Lima Neto, Cordeiro, and de Carvalho (2011); Lima
Neto, Cordeiro, Carvalho, Anjos, and Costa (2009) considered the bivariate generalized linear model by Iwasaki and Tsubaki
(2005) to analyze interval-valued data, and Lima Neto and de Carvalho (2010) introduced a method for fitting a constrained
linear regression model to interval-valued data. The proposed method fits a constrained linear regression model on the
center point and range of the interval values. Xu (2010) proposed a symbolic covariance method based on the symbolic
sample covariance introduced by Billard (2007, 2008). Research for analyzing interval-valued data has been a very active
area and considered using various approaches. See, for example, Ahn, Peng, Park, and Jeon (2012), Blanco-Fernandez, Corral,
and Gonzalez-Rodriguez (2011), Silva, Lima Neto, and Anjos (2011), and Yang, Jeng, Chuang, and Tao (2011) among others,
and Blanco-Fernandez, Colubi, and Gonzalez-Rodriguez (2013) for a recent review.

Regression approaches for interval-valued data in the literature have been mostly developed based on linear regression
models as described above. However, there might be cases where interval-valued data are not generated from a linear
regression model, but some nonlinear regression model. One could check scatter plots of data to see if there are nonlinear
patterns between the response variable and some of the explanatory variables. For such cases it may not be appropriate to
use the existing regression approaches for interval-valued data.

In this paper we consider regression analysis of interval-valued data based on nonparametric additive models in order
to provide a better prediction for interval-valued data with nonlinear patterns. In many practical applications, using linear
regressionmodels is too restrictive andmay have a problem ofmisspecification. To avoid such limitations, researchers often
prefer to use nonparametric regression models such as kernel regression, local polynomial, k-nearest neighbors, and so on.
The reason is that nonparametric regressionmodelsmake few assumptions about the regression function. However, because
of the same reason they are very difficult to interpret compared to the classic linear models. Not only that, completely
unstructured nonparametric regressions would not work well due to the curse of dimensionality (Friedman & Stuetzle,
1981). Nonparametric additive models (Buja, Hastie, & Tibshirani, 1989; Hastie & Tibshirani, 1990; Stone, 1985) provide a
useful compromise between the restrictive linear model and the fully unstructured nonparametric model.

The additivemodel is a special case of the projection pursuit regressionmodel proposed by Friedman and Stuetzle (1981).
The alternating least squares model (van der Burg & de Leeuw, 1983) and the alternating conditional expectation model
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(Breiman & Friedman, 1985) also contain the additivemodel as a special case. The procedure called the backfitting algorithm
(Buja et al., 1989; Friedman & Stuetzle, 1981) can be used to fit the additive model.

The nonparametric additive model has been extended to the generalized additive model (GAM) introduced by Hastie
and Tibshirani (1984). Like the generalized linear model it assumes that the response variable comes from an exponential
family. The GAM has been studied extensively by many researchers (e.g., Hastie & Tibshirani, 1990; Horowitz & Mammen,
2011; Linton & Härdle, 1996 and Yang, Sperlich, & Härdle, 2003). This model is estimated by penalized maximum likelihood
estimation where the penalized likelihood is maximized by penalized iteratively reweighted least squares (P-IRLS). Using
the backfitting algorithm in P-IRLS has been considered, but estimating the smoothing parameters was difficult to integrate
into this approach (Wood, 2004). Then, Wood (2000, 2004) proposed a generalized cross validation (GCV) method which
can be used for the GAMwith penalized regression splines. The (generalized) nonparametric additive model is still an active
research area. See Carroll, Maity, Mammen, and Yu (2009), Curtis, Banerjee, and Ghosal (2014), McLean, Hooker, Staicu,
Scheipl, and Ruppert (2014), Wong, Yao, and Lee (2014) and Yu, Park, and Mammen (2008) for examples; Horowitz (2014)
for a recent review.

A new regression approach for interval-valued data based on a nonparametric additive model is proposed in Section 2,
after describing some of the current methods for analyzing interval-valued data based on the linear regression model. The
performances of the proposed method are compared with those of the existing methods on the basis of simulation studies
in Section 3. In Section 4, the proposed method is illustrated using a real data set which is publicly available. We conclude
this article in Section 5 by providing discussion and future research topics.

2. Methodology

Let X1, . . . , Xp be p interval-valued explanatory variables, and Y be the interval-valued response variable. That is, we
observe their realizations in intervals: Xij = [XLij, XUij] ⊂ R, with XLij ≤ XUij, XLij, XUij ∈ R, and Yi = [YLi, YUi] ⊂ R with
YLi ≤ YUi, YLi, YUi ∈ R, for i = 1, . . . , n and j = 1, . . . , p.

2.1. Current methods

Althoughwe consider the nonparametric additivemodel to analyze interval-valued data in this paper,most of the current
methods have been studied for the linear regression model. Thus, we first state two of them here based on the following
linear regression model:

Y = Xβ + ε, (1)

where Y = (Y1, . . . , Yn)
T , X = (X1, . . . ,Xn)

T , Xi = (1, Xi1, . . . , Xip)
T for i = 1, . . . , n, β = (β0, β1, . . . , βp)

T , ε =
(ε1, . . . , εn)

T and εi are independently distributed from N(0, σ 2).
Billard and Diday (2000) proposed the center method (CM) that fits a linear regression model to the midpoint of the

interval values. Let Xc
1 , . . . , X

c
p , Y

c be the center points of the intervals X1, . . . , Xp, Y , respectively. Then, the CM changes the
original model (1) into a standard linear regression model by

Yc = Xcβc + εc, (2)

where Yc = (Y c
1 , . . . , Y

c
n )

T , Xc = (Xc
1, . . . ,X

c
n)

T , Xc
i = (1, Xc

i1, . . . , X
c
ip)

T for i = 1, . . . , n, βc = (βc
0, β

c
1, . . . , β

c
p)

T , εc =
(εc1, . . . , ε

c
n)

T . An estimator of βc, β̂
c
is obtained by the least squares estimation. The CM applies the fitted model to the

lower and upper bounds of the interval of explanatory variables to predict the lower and upper bounds of the interval of the
response variables, respectively.

Lima Neto et al. (2004) proposed the center and range method (CRM). In addition to the same center model given in (2),
the CRM fits another linear regression model to the range of the intervals. Let Xr

1, . . . , X
r
p , Y

r be the ranges of the intervals

of X1, . . . , Xp, Y , respectively. Also, let the observed values of Xr
j and Y r be Xr

ij = XUij − XLij and Y r
i = YUi − YLi, respectively,

where i = 1, . . . , n, and j = 1, . . . , p. Then, the range model is given by

Yr = Xrβr + εr , (3)

where Yr = (Y r
1 , . . . , Y

r
n )

T , Xr = (Xr
1, . . . ,X

r
n)

T , Xr
i = (1, Xr

i1, . . . , X
r
ip)

T for i = 1, . . . , n, βr = (βr
0, β

r
1, . . . , β

r
p)

T and

εr = (εr1, . . . , ε
r
n)

T . Again, an estimator, β̂
r
is obtained by the least squares estimation. The center and the range of the

response variable are predicted separately, and the predicted interval Ŷ = [̂YL, ŶU ] is obtained by

ŶL = Ŷ c − Ŷ r/2, ŶU = Ŷ c + Ŷ r/2, (4)

where Ŷ c and Ŷ r are the predicted values under the models (2) and (3), respectively.
Recently, Xu (2010) proposed the symbolic covariancemethod (SCM) that uses the symbolic covariancematrix proposed

by Billard (2007, 2008). He considered the following model with centered variables,

Y− Ȳ = (X− X̄)β + ε, (5)
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where X̄ and Ȳ are the symbolic sample mean matrix of the explanatory variables and the vector of the symbolic sample
means of the response variable, respectively. The symbolic sample mean of interval-valued variable Xj (j = 1, . . . , p) is
defined as (Bertrand & Goupil, 2000)

X̄j = 1

2n

n∑
i=1

(XLij + XUij).

The least squares estimator β̂ is given by

β̂ = {(X− X̄)T (X− X̄)}−1(X− X̄)T (Y− Ȳ)

= S−1
XX SXY , (6)

where SXX is the symbolic sample variance–covariance matrix of the explanatory variables and SXY is the vector of the
symbolic sample covariances between the explanatory variables and the response variable. The symbolic sample covariance
between Xj and Xk (j, k = 1, . . . , p) is defined as follows (Billard, 2007, 2008):

Cov(Xj, Xk) = 1

6n

n∑
i=1

[
2(XLij − X̄j)(XLik − X̄k)+ (XLij − X̄j)(XUik − X̄k)

+ (XUij − X̄j)(XLik − X̄k)+ 2(XUij − X̄j)(XUik − X̄k)
]
. (7)

2.2. Proposed method

Suppose (Yi, Xi1, . . . , Xip), i = 1, . . . , n are n independent samples from the following nonparametric additive model:

Y = μ+
p∑

j=1

fj(Xj)+ ε, (8)

whereμ is an intercept term, fj’s are unknown smooth functions, and ε is an unobserved randomvariablewithmean zero and

finite variance σ 2. It should be assumed that E[fj(Xj)] = 0 for j = 1, . . . , p in order to prevent identifiability problems. This
model includes the linear regressionmodel as a special case,where fj(Xj) = βjXj, but it ismore general. This is nonparametric
because fj’s can be any arbitrary nonlinear functions without assuming any parameters. However, the idea is still the same
as the linear model that each explanatory variable makes a separate contribution to the response variable and they just
add up.

The functions fj can be estimated using the backfitting algorithm (Buja et al., 1989; Friedman & Stuetzle, 1981), where
one can use an arbitrary smoother to estimate the functions. The algorithm is as follows:

(1) Initialize. Set μ̂ = Ȳ and set f
(0)
j = 0 for j = 1, . . . , p

(2) Cycle. For k = 1, . . . , p set

f
(l+1)
k = S

[{
Yi − μ̂−

∑
j�=k

f
(l)
j

}n
1

]
.

(3) Until. The individual functions converges.

Here, S is a smoothing operator which is usually selected to be a cubic spline smoother, but can be any other appropriate
fitting smoothers.

There is another approach for representing the smooth functions, which uses penalized regression splines. In penalized
regression splines themodel’s smoothness can be controlled by adding a penalty function to the fitting objective. For a cubic
spline, let the knot locations and the basis functions be denoted by {X∗jk : k = 1, . . . , qj−2} andR(Xj, X

∗
jk) for k = 1, . . . , qj−2,

respectively, for j = 1, . . . , p. Using this cubic spline basis for fj the additive model (8) becomes a linear model Y = Xβ+ ε,

where the ith row of the model matrix is Xi = (vT1, . . . , v
T
p), vj = (1, Xj, R(Xj, X

∗
j1), . . . , R(Xj, X

∗
j,(qj−2)))

T for j = 1, . . . , p,

and β is the vector of the unknown parameters. Then, the penalized regression splines minimizes

‖Y− Xβ‖2 +
p∑

j=1

θj

∫ [
f ′′j (x)

]2
dx,

where θj’s are the smoothing parameters estimated by cross validation. See Wood (2000, 2004, 2011) for details.
When there are several smooth functions in an additive model, some of them might not be important to explain the

variation in the response variable. In order to address such problem, one should consider performing a hypothesis testing

for some subset, βj, of β. Let V
β̂j

be the covariance matrix of β̂j. We have that under the null hypothesis βj = 0 β̂j is
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approximately normally distributed with mean vector 0 and the covariance matrix V
β̂j
. Therefore, the p-value for the test

that βj = 0 is calculated based on the approximate result,

β̂
T

j V̂
r−
β̂j

β̂j/r

φ̂/(n− edf)
∼ Fr, edf,

where r = rank(V
β̂j
), Vr−

β̂j

is the rank r pseudoinverse of the covariance matrix, φ is an unknown scale parameter, and ‘edf’

denotes the estimated degrees of freedom for the model. See Wood (2006) for details.

We introduce the CRM for interval-data linear regression to the above nonparametric additivemodel (8) and propose the
center and range additive model (CRAM). The CRAM fits two separate nonparametric additive models to the center point
and the range of the intervals, respectively, as follows:

Y c
i = μc +

p∑
j=1

f cj (X
c
ij)+ εci , (9)

Y r
i = μr +

p∑
j=1

f rj (X
r
ij)+ εri , (10)

where μc and μr are intercept terms, f cj ’s and f rj ’s are unknown smooth functions, and εci and εri are unobserved random

variables withmean zeros and finite variances σ 2
c and σ 2

r , respectively. Then, the predicted interval Ŷ = [̂YL, ŶU ] is obtained
by the same manner as in the CRM (4).

3. Simulation studies

In this simulation studywe compared the proposedCRAMwith the two existingmethods, the CRMand the SCM.Note that
the CRAM is for nonparametric additive regression models while the CRM and the SCM are for parametric linear regression
models. Since there are no current methods for analyzing interval-valued data in additive regression, it is meaningful to
compare the proposed method with those.

3.1. Study design

Let X1, X2, . . . , X10 be ten interval-valued explanatory variables, and Y be the interval-valued response variable, where
Xij = [XLij, XUij] for i = 1, . . . , n, j = 1, . . . , 10, and Yi = [YLi, YUi] for i = 1, . . . , n, as defined in Section 2. Let Xc

ij and Y c
i

be the centers of jth explanatory variable and the response variable of the ith observation, respectively. Also, let Xr
ij and Y r

i

be the ranges of jth explanatory variable and the response variable of the ith observation, respectively. Then, we considered
three simulation settings as follows:

1. Setting I (A linear regression model based on CRM):

(i) For ith observation, we first generated Xc
i1 uniformly from {11, . . . , 20}, Xc

i2 from {21, . . . , 30}, Xc
i3 from

{31, . . . , 50}, Xc
i4 from {51, . . . , 70}, Xc

i5 from {71, . . . , 90}, Xc
i6 from {91, . . . , 110}, Xc

i7 from {111, . . . , 130}, Xc
i8 from{131, . . . , 150}, Xc

i9 from {151, . . . , 170}, and Xc
i,10 from {171, . . . , 190} for i = 1, . . . , n.

(ii) Then we generated Y c
i using the following linear regression model:

Y c
i = β0 + β1X

c
i1 + · · · + β10X

c
i,10 + εci . (11)

The values of regression coefficients were set to be βT = (β0, β1, . . . , β10) = (0, 0.3,−0.6, 0.5,−0.9, 0, 0, 0, 0,
0, 0). The errors εci are normally distributed with mean 0 and variance σ 2.

(iii) For the ith observation, we randomly generated Xr
i1 fromU(1, 2), Xr

i2 fromU(2, 3), Xr
i3 fromU(3, 4), Xr

i4 fromU(4, 5),
Xr
i5 from U(5, 6), Xr

i6 from U(6, 7), Xr
i7 from U(7, 8), Xr

i8 from U(8, 9), Xr
i9 from U(9, 10), Xr

i,10 from U(10, 11), and Y r
i

from U(1, 2) for i = 1, . . . , n.

2. Setting II (A linear regression model based on SCM):

(i) For ith observation, we first generated XLij and XUij from N(0, 1) for i = 1, . . . , n and j = 1, . . . , 10.

(ii) Then we generated YLi and YUi using the following linear regression model:

YLi = β0 + β1XLi1 + · · · + β10XLi,10 + εLi;
YUi = β0 + β1XUi1 + · · · + β10XUi,10 + εUi. (12)

The values of regression coefficients were set to be βT = (β0, β1, . . . , β10) = (0, 0.3,−0.6, 0.5,−0.9, 0, 0, 0, 0,
0, 0), which is the same as in Setting I. The errors εLi and εUi are normally distributed with mean 0 and variance σ 2.

3. Setting III (A nonparametric additive model):

(i) For ith observation, we first generated Xc
ij from U(0, 1) for i = 1, . . . , n and j = 1, . . . , 10.
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(ii) Then we generated Y c
i using the following nonparametric additive model:

Y c
i = μc +

10∑
j=1

f cj (X
c
ij)+ εci . (13)

Here, the intercept term μc and the smooth functions f cj (x), j = 1, . . . , 10, were given by

μc = 0, f c1 (x) = −6x,

f c2 (x) = 20 sin(0.5πx), f c3 (x) = −3 cos
{
π(6x− 5)/3

}
f c4 (x) = (2− 3x)3/2, f c5 (x) = · · · = f c10(x) ≡ 0.

The errors εci are normally distributed with mean 0 and variance σ 2.

(iii) For the ith observation, we randomly generated Xr
ij from U(0, 1) for j = 1, . . . , 10 and Y r

i from U(0, 1) for
i = 1, . . . , n.

In Setting I we generated the centers from uniform distributions with different intervals, respectively, such that the centers
of the intervals get larger from 15 to 180. Thus, one can expect the generated centers are getting larger as well. Thus, we
also generated ranges from uniform distribution with different intervals, respectively, so that the lengths of the ranges get
larger from 1 to 11. On the other hand, in Setting III all ranges were generated from the same distribution U(0, 1) because
all centers were generated from the same distribution as well.

Nonparametric additive models can be used to analyze data generated from a linear regression model because fjs are
arbitrary smooth functions. As mentioned in the previous section, the linear regression model is a special case of the
nonparametric additive model. On the other hand, when data are generated from a nonparametric additive model such
as (13), one should not use linear regression model (11) or (12) to analyze the data because the model cannot capture the
nonlinearity of the data well. However, we can try to use a cubic polynomial regression model to fit to such data and hence,
we used CRM with the following cubic polynomial center model, denoted CRM3, and compared it with other methods for
Setting III:

Y c
i = β0 +

10∑
j=1

{βjX
c
ij + βj+10(X

c
ij)

2 + βj+20(X
c
ij)

3} + εci . (14)

Similarly, we used SCM with higher order terms (including quadratic and cubic) in the design matrix, denoted SCM3, for
Setting III.

We tested three sample sizes (n = 100, 200 and 500) and two error variances (σ 2 = 9 and 25) for each simulation
setting. Using 100 simulation runs, we compared the performance of the three methods in terms of three criteria found in
the literature: (i) the lower bound root mean squared error (RMSEL), (ii) the upper bound root mean squared error (RMSEU ),
and (iii) the symbolic correlation coefficient (r). Lima Neto and de Carvalho (2008) proposed the RMSEL and the RMSEU

which measure the difference between the predicted intervals and the observed intervals. They are defined as follows:

RMSEL =

√√√√√ n∑
i=1

(YLi − ŶLi)2

n
and RMSEU =

√√√√√ n∑
i=1

(YUi − ŶUi)2

n
,

where [YLi, YUi] and [̂YLi, ŶUi] are the observed and the predicted intervals of ith observation, respectively. Billard (2007,
2008) proposed the symbolic correlation coefficient which measures the correlation between the predicted intervals and
the observed intervals. Then, Xu (2010) applied it to the regression problem. The symbolic correlation coefficient, r , is defined
by

r(Y , Ŷ ) = Cov(Y , Ŷ )√
S2Y S

2

Ŷ

,

where Cov(Y , Ŷ ) is the symbolic sample covariance between Y and Ŷ in (7), and the S2Y and S2
Ŷ
are the symbolic sample

variances of Y and Ŷ , respectively. The symbolic sample variance of Y , S2Y , is defined by

S2Y =
1

3n

n∑
i=1

(Y 2
Li + YLiYUi + Y 2

Ui)−
[

1

2n

n∑
i=1

(YLi + YUi)

]2

.

In order to compute the above three criteria we generated testing sets with the same sample size (n = 100, 200 and 500)
independently.
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Table 1
RMSEL , RMSEU , the symbolic correlation coefficient (r) and their standard errors (in parentheses) from the simulation setting I (a linear regression model

based on CRM) with σ = 3, 5 and n = 100, 200, 500.

σc n CRM SCM CRAM

3

100

RMSEL 1.0410 (0.0248) 1.2474 (0.0280) 1.5039 (0.0456)

RMSEU 1.0223 (0.0250) 1.2625 (0.0306) 1.5230 (0.0466)

r 0.9900 (0.0004) 0.9835 (0.0006) 0.9735 (0.0016)

200

RMSEL 0.7072 (0.0138) 1.1187 (0.0188) 0.9822 (0.0234)

RMSEU 0.7018 (0.0153) 1.1262 (0.0159) 0.9833 (0.0232)

r 0.9951 (0.0002) 0.9871 (0.0004) 0.9893 (0.0005)

500

RMSEL 0.4546 (0.0097) 0.9250 (0.0096) 0.5958 (0.0145)

RMSEU 0.4537 (0.0100) 0.9243 (0.0128) 0.5972 (0.0149)

r 0.9980 (0.0001) 0.9909 (0.0002) 0.9959 (0.0002)

5

100

RMSEL 1.7694 (0.0392) 1.9296 (0.0373) 2.5054 (0.0505)

RMSEU 1.7750 (0.0382) 1.9296 (0.0419) 2.5385 (0.0526)

r 0.9691 (0.0015) 0.9626 (0.0015) 0.9296 (0.0033)

200

RMSEL 1.1815 (0.0278) 1.4146 (0.0278) 1.6104 (0.0447)

RMSEU 1.1837 (0.0297) 1.3926 (0.0290) 1.6095 (0.0458)

r 0.9855 (0.0008) 0.9807 (0.0009) 0.9719 (0.0019)

500

RMSEL 0.7395 (0.0142) 1.0842 (0.0176) 0.9321 (0.0245)

RMSEU 0.7385 (0.0152) 1.1013 (0.0187) 0.9385 (0.0248)

r 0.9943 (0.0002) 0.9871 (0.0004) 0.9896 (0.0006)

Table 2
RMSEL , RMSEU , the symbolic correlation coefficient (r) and their standard errors (in parentheses) from the simulation setting II (a linear regression model

based on SCM) with σ = 3, 5 and n = 100, 200, 500.

σc n CRM SCM CRAM

3

100

RMSEL 1.5462 (0.0245) 1.3932 (0.0262) 1.8239 (0.0308)

RMSEU 1.5394 (0.0260) 1.3369 (0.0196) 1.8349 (0.0264)

r 0.7263 (0.0091) 0.5968 (0.0095) 0.5714 (0.0139)

200

RMSEL 1.4414 (0.0156) 1.2501 (0.0140) 1.5848 (0.0188)

RMSEU 1.4062 (0.0152) 1.2140 (0.0134) 1.5454 (0.0179)

r 0.7929 (0.0044) 0.6414 (0.0059) 0.7054 (0.0061)

500

RMSEL 1.3551 (0.0109) 1.1685 (0.0121) 1.3979 (0.0084)

RMSEU 1.3485 (0.0094) 1.1823 (0.0075) 1.3988 (0.0083)

r 0.8140 (0.0033) 0.6643 (0.0031) 0.7825 (0.0035)

5

100

RMSEL 2.7905 (0.0433) 2.1945 (0.0375) 3.1908 (0.0540)

RMSEU 2.7679 (0.0375) 2.1676 (0.0352) 3.2544 (0.0492)

r 0.5708 (0.0145) 0.4500 (0.0148) 0.4451 (0.0145)

200

RMSEL 2.5589 (0.0345) 1.9806 (0.0245) 2.7414 (0.0382)

RMSEU 2.5918 (0.0310) 1.9933 (0.0305) 2.7933 (0.0335)

r 0.6303 (0.0076) 0.4995 (0.0101) 0.5267 (0.0100)

500

RMSEL 2.4117 (0.0237) 1.7930 (0.0189) 2.4430 (0.0213)

RMSEU 2.4674 (0.0165) 1.8412 (0.0210) 2.5402 (0.0181)

r 0.6763 (0.0050) 0.5464 (0.0056) 0.6228 (0.0065)

3.2. Results

We summarize the simulation results in Tables 1–3. Table 1 shows the values of the three criteria and their standard
errors from the simulation of Setting I (a linear regression model based on CRM) with σ = 3, 5 and n = 100, 200, 500.
When data were generated from a linear regression model, as expected, RMSEL and RMSEU based on CRM were smaller
(and r was larger) than those based on SCM and CRAM. However, as n increased, the values of RMSEL and RMSEU for CRAM
decreased rapidlywhile those for SCMdecreased slowly. As a result, RMSEL and RMSEU for CRAMbecame smaller than those
for SCM. For example, when σ = 3 and n = 200, the RMSEU for CRAM was 0.9833 while that for SCM was 1.1262 (14.5%
larger). Overall, although CRM performed the best, CRAM outperformed SCM for some cases, especially for large samples
with small standard deviation in this simulation setting.

Table 2 shows the values of the three criteria and their standard errors from the simulation of Setting II (a linear regression
model based on SCM) with σ = 3, 5 and n = 100, 200, 500. The results are similar with those from Setting I. RMSEL and
RMSEU based on CRMand SCMwere smaller than those based on CRAM. Especially, we can see from the table that RMSEL and
RMSEU based on SCM are consistently smaller than those based on the other methods in all cases. However, the difference
got smaller as the sample size n increased. Interestingly, the symbolic correlation coefficient, r , for SCMwas not higher than
that for the other methods except when n = 100. CRAM outperformed SCM in terms of r in most cases.

Table 3 shows the three criteria and their standard errors from the simulation of Setting III (a nonparametric additive
model) with σ = 3, 5 and n = 100, 200, 500. As expected, CRM3 and SCM did not perform well in terms of RMSEL, RMSEU

and the symbolic correlation coefficient (r) for data generated from a nonparametric additivemodel, while CRAMperformed
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Table 3
RMSEL , RMSEU , the symbolic correlation coefficient (r) and their standard errors (in parentheses) from the simulation setting III (a nonparametric additive

model) with σ = 3, 5 and n = 100, 200, 500.

σc n CRM3 SCM CRAM

3

100

RMSEL 2.0391 (0.0272) 11.3007 (0.1140) 1.4977 (0.0274)

RMSEU 1.9901 (0.0279) 9.9525 (0.0671) 1.5497 (0.0301)

r 0.9622 (0.0011) −0.2142 (0.0085) 0.9786 (0.0010)

200

RMSEL 1.3694 (0.0186) 11.4418 (0.0925) 1.0544 (0.0226)

RMSEU 1.3510 (0.0162) 9.9366 (0.0451) 1.0458 (0.0231)

r 0.9823 (0.0005) −0.2014 (0.0056) 0.9900 (0.0005)

500

RMSEL 0.8934 (0.0107) 11.4104 (0.0593) 0.6316 (0.0089)

RMSEU 0.8953 (0.0106) 9.8209 (0.0333) 0.6363 (0.0089)

r 0.9925 (0.0002) −0.2016 (0.0035) 0.9966 (0.0001)

5

100

RMSEL 3.3200 (0.0560) 11.8915 (0.1848) 2.2484 (0.0514)

RMSEU 3.3294 (0.0598) 10.1318 (0.0886) 2.2951 (0.0532)

r 0.9021 (0.0035) −0.2001 (0.0092) 0.9542 (0.0023)

200

RMSEL 2.1980 (0.0315) 11.5124 (0.0962) 1.7179 (0.0296)

RMSEU 2.1833 (0.0330) 9.9949 (0.0521) 1.7094 (0.0297)

r 0.9546 (0.0017) −0.1974 (0.0057) 0.9726 (0.0011)

500

RMSEL 1.3163 (0.0163) 11.5607 (0.0743) 1.0659 (0.0265)

RMSEU 1.3205 (0.0146) 9.8279 (0.0373) 1.0722 (0.0260)

r 0.9836 (0.0004) −0.1997 (0.0035) 0.9899 (0.0005)

Table 4
The estimated regression coefficients of Hawaiian climate data using CRM, CRM3, SCM and CRAM2.

CRM CRM3 SCM CRAM2

β̂
c

β̂
r

β̂
c

β̂
r

β̂ β̂
c

β̂0 1030.94 0.7212 −7720.14 0.5609 1033.19 1013.64

β̂1 −0.2331 350.777 −0.2531

β̂2 0.5224 0.0289 1.2134 0.1716 0.4216 0.5183

β̂3 4.6906

β̂4 −0.0474 −0.0336

β̂5 0.0208

β̂6 0.0024

better. Especially, SCM performed very poorly. In most cases, the values of RMSEL and RMSEU for SCM were very large
compared to CRAM and the symbolic correlation coefficient for SCM was closed to zero while that for CRAM was almost
one.

Our simulation study suggests that one should use the proposedmethodwhendata have anonlinear pattern. It performed
much better than the two existing methods for data generated from a nonparametric additive model. The gains in terms of
RMSEL and RMSEU were substantial compared to SCM.

4. Application to real data

4.1. Interval-valued data

In this section we apply the proposed CRAM to a real interval-valued data set. We use CRM(3), SCM and CRAM to analyze
the data and compare the results each other. To compare the performances of the proposed and the current methods, we
calculate the threemeasures, RMSEL, RMSEU and r using the leave-one-out cross-validation (CV). We consider the Hawaiian
climate data set described in the introduction. We use models (1), (5) and (8) to describe the relationship between the daily
sea level and other variables.

From Fig. 1 we can see nonlinear relations in both plots although it may be weak because of the large variability of the
data. Fig. 2 shows the scatter plots of the center and the range of the response variable against those of the explanatory
variables. Here we can also see weak nonlinear patterns between Xc

1 and Y c ; Xr
2 and Y r . Thus, the linear models (1) or (5)

may not be appropriate to describe the relationships.

When applying the proposedmethod to this data set, since the relationship between Xc
2 and Y c looks linear from Fig. 2(c),

we consider two additive models for the center as follows:

(i) CRAM1: Y c
i = μc + f c1 (X

c
i1)+ f c2 (X

c
i2)+ εci .

(ii) CRAM2: Y c
i = μc + f c1 (X

c
i1)+ βc

2X
c
i2 + εci .

Table 4 shows the results of data analysis using the fourmethods. Note that CRAM1 is established for fully nonparametric
additive models, and hence there is no result of the estimated regression coefficients for CRAM1 in Table 4. Instead, one can
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(a) Xc
1 vs. Y c . (b) Xr

1 vs. Y r .

(c) Xc
2 vs. Y c . (d) Xr

2 vs. Y r .

Fig. 2. Scatter plots of the center and the range of the response variable against those of the explanatory variables for Hawaiian climate data.

Table 5
RMSEL , RMSEU and r for CRM, CRM3, SCM, CRAM1 and CRAM2 of Hawaiian climate data.

CRM CRM3 SCM CRAM1 CRAM2

RMSEL 1.8223 1.8041 1.9631 1.7676 1.7712

RMSEU 1.7700 1.7604 1.7890 1.7164 1.7204

r 0.5189 0.5337 0.4910 0.5594 0.5525

see plots of the fitted component smooth functions against the center and the range of the explanatory variables in Fig. 3.
The values of the estimated parameters using CRM (the center model) and SCM are similar to each other. The center model
for CRAM2 contains a regression coefficient βc

2 whose estimated value is also similar with those using CRM and SCM. The

estimated intercept parameters β̂c
0 (CRM), β̂0 (SCM) and μ̂c (CRAM2) have similar values as well. For the range model of

the CRM, the estimated coefficient of Xr
1 was not significant and the corresponding term was removed from the model. For

CRM3, since we use cubic polynomial regression models for the center and the range models, there are 7 parameters in the
model. However, insignificant parameters were removed from the models.

From Fig. 3 we can see that there may be nonlinear relationships between the center of the response variable, Y c and
Xc
1 , Xc

2 , although the curvature is somewhat weak for Xc
2 . For the range model, smooth terms for Xr

1 were not significant,
while we can see a strong curvature in the smooth term for Xr

2 .

Table 5 shows the three measures, RMSEL, RMSEU and r , for the five methods. From the table, we can see that CRAM1
performs the bestwhile SCMperforms theworst. Since CRM3uses cubic polynomial regressionmodels for the center and the
rangemodels, it performs slightly better. The centermodel for CRAM2 includes a parametric term forXc

2 since its relationship
with Y c looks linear. It performs better than other methods and similarly well compared with CRAM1.

4.2. Comparison with original data

In this sectionwe consider the original data and compare the results of analyzing the original data with those from fitting
the interval-valued data.We first analyze the original data using the standard linear regressionmodel and the nonparametric
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(a) Xc
1 vs. f̂ c1 (X

c
1 ). (b) Xc

2 vs. f̂ c2 (X
c
2 ).

(c) Xr
2 vs. f̂ c2 (X

r
2).

Fig. 3. Plots of the fitted component smooth functions (solid) against the center and the range of the explanatory variables with their corresponding

confidence bands (dashed) and partial residuals (circle) for Hawaiian climate data.

(a) X1 vs. Y . (b) X2 vs. Y .

Fig. 4. Scatter plots of the original Hawaiian climate data and the corresponding fitted lines based on simple linear regression.

additive model and compare the results each other. We calculate RMSE and r using the leave-one-out CV to compare the
performances.

From Fig. 4 we can see again weak nonlinear relations in both plots. We superimposed the fitted lines on the scatter
plots based on simple linear regression, from which we can see using the linear model may not be appropriate since it
underestimated the data in the lower part of X1 and overestimated the data in the lower part of X2 because of the large
amount of variability of the data as well as the denseness in a certain region of the data.

Table 6 shows the results of data analysis using the linear model. The values of the estimated parameters using the linear
model are overall similar with those using CRM (the center model) and SCM based on the interval-valued data. However,
the estimate of the regression coefficient for X2 using the original data is much smaller than those using the interval-valued
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(a) X1 vs. f̂1(X1). (b) X2 vs. f̂2(X2).

Fig. 5. Plots of the fitted component smooth functions (solid) against the explanatory variables with their corresponding confidence bands (dashed) and

partial residuals (circle) for the original Hawaiian climate data.

Table 6
The estimated regression coefficients of the

original Hawaiian climate data using linear

regression.

β̂0 1036.43

β̂1 −0.2712

β̂2 0.1743

Table 7
RMSE and r for the linear model and the additive model of the

original Hawaiian climate data.

Linear model Additive model

RMSE 2.1567 2.0508

r 0.4864 0.5565

data. Fig. 5 shows plots of the fitted component smooth functions against the explanatory variables using the additivemodel.
We can see from the figure that there may be nonlinear relationships between Y and X1, X2. Table 7 shows RMSE and r for
the linear model and the additive model. From the table we can see that the additive model performs better than the linear
model.

The results from fitting the original Hawaiian climate data are different from those from fitting the interval-valued data.
Since the interval-valuedHawaiian climate datawere converted from the original single-valued observations, comparing the
results based on the two different types of data may help us to understand where the difference comes from. As mentioned
earlier, the main difference is from the estimated value of the regression coefficient for X2. The estimate of the regression
coefficient for X2 using the original data is smaller than those using the interval-valued data while the estimated coefficients
forX1 are similar to each other. One possible reason for this differencemaybe that the data are distributed in the larger region
of X2 than X1. Because of the reason the data are denser in the range of X1 except the lower part than X2. Consequently, the
intervals for X1 of the interval-valued data may contain the information of the data more uniformly than those for X2, and
hence the estimated coefficients for X1 are similar to each other while those for X2 are not. This difference may imply that
analyzing interval-valued data has a limitation because we cannot correctly restructure the variability of the original data
using the interval-valued data.

In order to compare the performance of the methods we computed RMSEL, RMSEU and the symbolic correlation
coefficient, r , for the interval-valued data while RMSE and the correlation coefficient, r , between the predicted value and
the observed value for the original data. Although their definitions are not the same, we may still use those corresponding
criteria to compare the results from fitting the interval-valued data with those from the original data in the sense that a
point is a special case of intervals where the lower and upper bounds are equal. From Tables 5 and 7 we can see that RMSEL

and RMSEU for CRAM1 are smaller than RMSE for the additive model while the values of r are similar to each other. The
difference between the results may come from the fact that the size and the variability of the original data are larger than
those of the interval-valued data.

However, the smoothing parameter selection using the GCVmay play a role in the discrepancy between the results. There
are some issues with CV for grouped/discretized data in kernel density estimation. Jang and Loh (2010) discussed them and
proposed a method using a combined cross-validation to select the optimal bandwidth in kernel density estimation with
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grouped data. In our analysis the value of GCV is 2.9293 for the center model of the interval-valued data while 4.203 for
the original data. The selected smoothing parameters based on those values of GCV are 0.00294 and 0.07036 for Xc

1 and Xc
2 ,

respectively for the center model of the interval-valued data while 0.00039 and 0.00091 for X1 and X2, respectively for the
original data. To check whether the smoothing parameter selection plays any role we replaced the smoothing parameters
for the interval-valued data by those for the original data and fitted the CRAM again. The resulting values of RMSEL, RMSEU

and r are 1.7674, 1.7180 and 0.5556, respectively, which are very similar to the original values. Therefore, we can see that
the difference between the results from fitting the original and the interval-valued data may not come from the smoothing
parameter selection using the GCV for the nonparametric additive models.

5. Concluding remarks

In this paper, we proposed the center and range additive method (CRAM) to analyze interval-valued data. When scatter
plots of data show nonlinear patterns, current methods such as the center and range method (CRM)may not be appropriate
because they are designed to fit a linear regression model on interval-valued data. The proposed method introduces a
nonparametric additive regression model, and fits two separate nonparametric additive models to the center point and
the range of the intervals, respectively. We demonstrated its utility using simulation studies and a real data example from
the literature.

There is an issue to be addressed for the proposed method. It does not ensure that the estimated ranges are positive.
Although one can take the absolute value of an estimated range to establish predicted intervals, itwould bemore appropriate
if there is a method to obtain a positive estimator of the range. We would address this issue using constrained estimation
methods in the near future.

The proposedmethod depends on themodel used for describing the relationship between the variables in data. Depend-
ing on underlying data structure, one can easily extend the proposedmethod to semiparametric additive models. Of course,
one could consider other models such as nonlinear regression models, nonparametric or semiparametric additive models.

One major issue of interval-valued data is that there is no or little information about internal variation of the data. Due
to this lack of information, one cannot carry out statistical inference on regression coefficients such as confidence interval
and hypothesis testing. Althoughwe did hypothesis testing and determined the best model in the real data examples, it was
done separately based on the center and rangemodels and hence it might not be a very reliable decision. In order to address
this issue, Ahn et al. (2012) proposed a resampling approach for interval-valued data regression. One could employ their
proposed method to ours and carry out a proper statistical inference.
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