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1. Introduction and preliminaries

The reliability function R(t) is defined as the probability of failure-free operation until time t. Thus, if the random variable
(rv) X denotes the lifetime of an item or system, then R(t) = P(X > t). Another measure of reliability under stress-strength
set-up is the probability P = P(X > Y), which represents the reliability of an item or system of random strength X subject
torandom stress Y. A lot of work has been done in the literature for the point and interval estimation and testing for R(t) and
P under censorings and complete sample case. For a brief review, one may refer to Bartholomew (1957, 1963), Basu (1964),
Chao (1982), Chaturvedi and Pathak (2012, 2013, 2014), Chaturvedi and Rani (1997, 1998), Chaturvedi and Singh (2006,
2008), Chaturvedi and Surinder (1999), Chaturvedi and Tomer (2002, 2003), Constantine, Karson, and Tse (1986), Johnson
(1975), Kelley, Kelley, and Schucany (1976), Pugh (1963), Sathe and Shah (1981), Tong (1974, 1975), Tyagi and Bhattacharya
(1989), and others.

Half logistic model, obtained as the distribution of the absolute standard logistic variate, is probability model considered
by Balakrishnan (1985). Balakrsihnan and Hossain (2007) considered generalized (Type II) version of logistic distribution
and derived some interesting properties of the distribution. Ramakrsihnan (2008) considered two generalized versions of
HLD namely Type I and Type Il along with point estimation of scale parameters and estimation of stress-strength reliability
based on complete sample. Arora, Bhimani, and Patel (2010) obtained the MLE of the shape parameter in a GHLD based
on Type I progressive censoring with varying failure rates. Kim, Kang, and Seo (2011) proposed Bayes estimators of the
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shape parameter and the reliability function for the GHLD based on progressively Type Il censored data under various loss
functions. Seo, Lee, and Kang (2012) developed an entropy estimation method for upper record values from the GHLD. Azimi
(2013) derived the Bayes estimators of the shape parameter and the reliability function for the GHLD based on Type Il doubly
censored samples. Seo and Kang (2014) derived the entropy of a GHLD by using Bayes estimators of an unknown parameter
in the GHLD based on Type II censored samples. They also compared these estimators in terms of the mean squared error
and the bias.

Let the life X of an item have the GHLD, then cumulative distribution function (cdf) and probability density function (pdf)
of the (rv) X are, respectively

1+e*
and
A 2e \*
f(x;k):1+e_x T ) x>0, A>0. (1.1)

Here, it should be noted that A is the shape parameter and, for A = 1, it comes out to be the half-logistic distribution.

The purpose of the present paper is many-fold. We develop point estimation procedures under Type II censoring and
a sampling scheme proposed by Bartholomew (1963). Testing procedures are also proposed. As far as point estimation is
considered, we derive UMVUEs and MLEs. A new technique of obtaining UMVUEs and MLEs is developed. For obtaining
UMVUEs, the major role is played by the estimators of the powers of the parameter. With the help of estimators of the
powers of the parameter, we obtain the estimators of pdf at a specified point, which is subsequently used to obtain the
UMVUEs of R(t) and P. The MLEs of the parameter is derived. Utilizing the invariance property of the MLEs, the MLE of the
pdf at a specified point is obtained, which is subsequently used to obtain the MLEs of R(t) and P. Thus, we have established
an interrelationship between various estimation problems and functional forms of the parametric functions to be estimated
are not needed.

In Sections 2 and 3, respectively, we provide point estimators under Type II cesoring and a sampling scheme proposed
by Bartholomew (1963). In Section 4, we developed test procedures. In Section 5, we present numerical findings. Finally, in
Section 6, discussions are made and conclusions are presented.

2. Point estimators under Type II censoring

Suppose n items are put on a test and the test is terminated after the first r ordered observations are recorded. Let 0 <
X1y <X -+ < Xi), 0 < r < n, be the lifetimes of first r ordered observations. Obviously, (n —r) items survived until X;.

Lemmal. Let S, = ), ln{ (e + 1)] +(Mm—r) ln[ 1(e*o + 1) } Then, S, is complete and sufficient for the distribution

given at (1.1). Moreover, the pdf of S, is

ror—1
r

g(s; A) = ()

exp(—As;), S > 0. (2.1)

Proof. (1.1) can be written as

fxA) =

A exp —Aln{l(e"—i—l)] X>0 A>0 (2.2)
T4er 2 ’ ’ ' '

From (2.2), the joint pdf of X(1) < X0y < -+ - X(n) i

n

1 L 1
* . _ n _ —(eXd
F¥Xys X@)s - - - s Xys A) = 0l | |<1 e ) exp( A ;:] ln{ > (e0 + ])}) (2.3)

i=1

Integrating out X1y, X¢+2), - - - » Xy from (2.3) over the region Xy < Xr41y < -+ < X, the joint pdf of X1y < X2y <
-+ X(ry comes out to be

h(xay, @y, - s Xgs ) =An(n—1)...(n—r+1) 1_[< ) exp(—As;). (2.4)
i=1

1
14 e7*m
It follows easily from (2.2) that thervU = A lnl % (e" + 1) } has exponential distribution with mean life 1/A. Moreover, if we

consider the transformationZ; = (n—i+1){Us —U4-1y}, i = 1,2, ..., r; Uy = 0,thenZs are independent and identically
distributed (i.i.d.) rv’s, each having exponential distribution with mean life 1/X. It is easy to see that Zir:l Z; = S;.Result (2.1)
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now follows from the additive property of gamma distribution (see Johnson & Kotz, 1970, p. 170). It follows from (2.4) that
S, is sufficient for the distribution given at (1.1). Since the distribution of S, belongs to exponential family of distributions,
it is also complete (see Rohatgi, 1976, p. 347).

The following theorem provides the UMVUEs of the powers of A.

Theorem 1. For q € (—o0, 00), the UMVUE of A% is

r'(r
2q #S;G, r—q> 0
M= —q )
0, otherwise.

Proof. From (2.1),

E(S;%)

s'97 1 exp(—As;)ds;
r) /0

_It-9,,
G

and the theorem follows from Lehmann-Scheffé theorem (see Rohatgi, 1976, p. 357). O

In the following lemma, we provide the UMVUE of the sampled pdf (1.1) at a specified point x.
Lemma 2. The UMVUE of f (x; 1) at a specified point x is
r—2 1
~ _ —X _ 1 _
Foea = 10=D+e™)'s (1 S ln{z(e + )}) , ln{z(e"+1)}<5r
0, otherwise.

Proof. We can write (2.2) as

o0

Fe ) = Z ( { ¢ +1)])i/\f+1. (2.5)

Using lemma 1 of Chaturvedi and Tomer (2002) and Theorem 1, from (2.5), the UMVUE of f (x; 1) at a specified point x is
fueny = (14+e7™)" Z

2 ( {;(ex+1)})ix;'l“
= -D(1+e) 12( 1)( i2)<s;11n{;(&+1)})i, ln{%(ex+1)}<5r

and the lemma holds. O

o i

In the following theorem, we obtain the UMVUE of R(t).
Theorem 2. The UMVUE of R(t) is given by

o~ | (1=s 3+ 0]) L mf3e e} <s

0, otherwise.

Proof. Since F(x, s;) = f(x; A)g(s;; A) is a continuous function of (X, S;) on the rectangle [t, c0) x [0, c0), the conditions
of Fubini’s theorem (see Bilodeau, Thie, & Keough, 2010, p. 207) are satisfied for the change of order of integration. Let us

consider the expected value of the integral ftoo f,, (x; A)dx with respect to S;, i.e.

/Ow{/toofu(x; A)dx]g(sr; Ayds, = /too[Esr{fH(x; A)}]dx

=/ﬁmmw
t

= R(¢). (2.6)
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We conclude from (2.6) that the UMVUE of R(t) can be obtained simply by integrating fll (x; A) from t to oo. Thus, from
Lemma 2,

o0 r—2
Ru(t) = (r—l)s;1/ (1+e—*)”<1 —Sr‘lln{%(e"+1)}> dx
t
1
=@r—1 1—y)%d
y ) Sflln{%(ef+1)}( y) Y

and the theorem follows.
Let X and Y be two independent rv’s following the classes of distributions f1(x; A1) and f>(y; A,) respectively, where

1
filx; &) = exp(—kl ll‘l{i(ex + l)]), x>0, A1>0

1
1+e*

and

]y 1
fay: 3) = = :ﬂ exp(—x2 ln{i(e” + 1)}), y>0, A > 0.

Let n items on X and m items on Y are put on a life test and the truncation numbers for X and Y are ry and r;, respectively.
Let us denote by

"
5, = Zln{%(e"(” + 1)} (-1 ln{%(e"(fﬂ + 1)}
i=1

and

T, = jr_ZZ]ln[;(eyU') n 1)} +(m—r2)ln{%(ey<'2) + 1)}. 0

In what follows, we obtain the UMVUE of P.

Theorem 3. The UMVUE of P is given by

rp—2 i
1y — 2\ /S \iH]
(=1 Z(_Ul( 2 i )(TL) B(i+ 1,1, Sy, < Ty
i=0 )

rn—1 _ .
(r—1) Z(—Uf(rl]. 1) (TQ)JB(;Jr L,—1), S, >T,.

Jj=0 Sry

N

Py =

Proof. It follows from Lemma 3 that the UMVUES of f; (x; A1) and f>(y; A,) at specified points x and y, respectively, are

T B 1 . ri—2 1
Fug ) = {1 =D+ 15r11<1_sr1]'“{5(e +1)}> - njge ) <s, (2.7)
0, otherwise.
and
o B B 1 rp—2 1
Fuy iy = 1= D(1+e7) 1Tr21<1 —Tr211n{5(ey+1)}> : 1n{5(eY+1)} <T, 28)
0, otherwise.

From the arguments similar to those adopted in proving Theorem 2, it can be shown that the UMVUE of P is given by

Py = f Fin: Anfan(v; A2)dxdy
y

=0 x=y

= f Ruu(v; A)fan (v; A2)dy,
y

=0
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which on using Theorem 2 and (2.8) gives that

rp—2

R o o - 1 r—1 B 1
Py = (rz_ 1)/y20(1+e )’) Tr2]<1 _Srllln{i(ey—’—l)}) (1—Tr2111‘1{5(ey+1)}) dy7

ln[%(e”—l— ) < Srl,ln{%(e" +1)} <,
=2

min{Sr1 ,Trz) 1 1 ri—1 1
= (p— 1)[ (1+e7) T;‘(l —s! ln[f(ey + 1)}) x (1 —r! ln[f(ey + 1)}) dy. (2.9)
o 2 2 12 2 M3

Now, from (2.9), for S;; < T

2
mn—

-~ ! rg—2 Trz 1
Pi=(—1 [ 27 {1—(1—z)s—} dz
-1,

r

1 S rp-1§
= (rz—l)/ (1—u)“—1{1—1u}2 Ty
0 Trz Tr2

rp—2 : 1
— ifl2— 2 SL a i1 -1
_ (r2—1);(—1)< i >(Tr2> /0 (1 — uy"~du

and the first assertion follows. Furthermore, for S;, > T;,,

" = T — 1 Tr \J 1 .
Pp=(—-1 Z(—l)’( ) )(rz) / u?72(1 — uydu
=0 J Sr 0
and the second assertion follows. O

Since the likelihood function is of the same form as (2.3), it can be easily seen that the MLE of A under Type Il censoring is

r

= —. 2.10
=3 (2.10)
From (2.10) and one-to-one property of the MLEs, the MLE of f (x; A) at a specified point x is
~ r 1 r 1
XA =—< )ex ——ln{f e+ 1 ] . 2.11
fis 1) = ({0 p( 5 InjzE+1) 10

In the following theorem we obtain the MLE of R(t).

Theorem 4. The MLE of R(t) is given by
~ r 1
Ru(t) = ex ——ln[fet—t—l] .
n(t) P( 3 2( )
Proof. We know that,

Ru(t) = / Fu(x; M)dx,

which, on using (2.11), gives us

ro [ 1 r 1,

S—r[ (1+ex)exp(—srln{2(e +l)})dx
[o¢]

= e Ydy
/s'rln{;(efﬂ)}

and the theorem follows. O

Eu(f)

In the following theorem, we obtain the MLE of P.
Theorem 5. The MLE of P is given by

~ -1
Py =135y (rzsn + rlTrz) :
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Proof. From one-to-one property of the MLEs,

Py = / Fun; A)fan (v; Az)dxdy
y

=0 x=y

=0

o0
= / Run(y; A)fan(y; A2)dy,
y

which, on using Lemma 3 and Theorem 4, gives that

B [ P N R T

o T,
/ exp(—iv)e_”dv
y=0 25
& T,
= / exp{—(]—i—]rz)v}dv
y=0 r25r1

and the theorem follows. O

3. Point estimators under the sampling scheme of Bartholomew (1963)

Let X1y < X@2) < -+ < X(n) be the failure times of n items under test from (1.1). The test begins at time Xy = 0 and
the system operates till X1y = x(1) when the first failure occurs. The failed item is replaced by a new one and the system
operates till the second failure occurs at time X3y = x(2), and so on. The experiment is terminated at time t,. Here, X;) is the
time until ith failure measured from time 0.

Lemma 3. if N(ty) be the number of failures during the interval [0, ty], then

(nk lnl;(re:O + 1)}) exp<—”)“ ln{%(eto + 1)})

Proof. Let us make the transformations

Wy = ln{%(ex(” +)}, w= ln{%(ex(z) +1)} —ln{%(ex“) +1)}

P[N(to) = r|to] =

1 1
Wy =In{ S (0 + 1)} {2 (o + 1)},
The pdf of Wy is

h(w1) = nA exp(—niws).

Moreover, W,, ..., W,, are independent and identically distributed as W;. Using the monotonicity property of ln{ % (e" +

1)},

P[N(tp) =r|to] = P[Xy) =< to] — P[X¢+1) < to]
1 1 1 1
_ p[m{z(eX<r> +1)) =i 2o+ 1)” - P|:ln{2(ex<f+” F)) =m|S@+ 1)”
= P|:W1 +Wy+--- W, < ln{%(eto + ‘l)}i| _ IJ|:W1 + Wy 4+ - .Wr+1 < ln{%(efo + ])}:| (31)

From the additive property of exponentially distributed rv’s (see Johnson & Kotz, 1970, p. 170), U = nA Z;:l W; follows
gamma distribution with pdf

h(u) = ;u”]e’1 u>0 (3.2)
T r(n ’ ' ’
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Using (3.2) and a result of Patel, Kapadia, and Owen (1976, p. 244), we obtain from (3.1) that
-l o0 o0
P[N(ty) =r1|tg] = ——— et du — —— I T
ra+1) Jnfleon} L) Jn{leorn})
J
; {nkln{;(eto + 1)]}

 {niln{l(e + 1) j .
:exp{—nkln{%(et"—i—])}} Z{ [ : }} -, 7

|
Jj=0 I J

Il
o

and the lemma follows. O

In the following theorem, we derive the UMVUE of A%, where q is a positive integer.

Theorem 6. For q to be a positive integer, the UMVUE of A4 is given by

. r! il et 11 - -
A = r—q)! nn[i(e + )} » rma=0

0, otherwise.

Proof. It follows from Lemma 3 and Fisher-Neyman factorization theorem (see Rohatgi, 1976, p. 341) that r is sufficient
for estimating A. Moreover, since the distribution of r belongs to exponential family, it is also complete (see Rohatgi,
1976, p. 347). The theorem now follows from the result that the gth factorial moment of distribution of r is given by

E[r(r— D...r—q+ 1)] = (nkln{ (efo +1)])q |

In the following lemma, we obtain the UMVUE of the sampled pdf (1.1) at a specified point x.

Lemma 4. The UMVUE of f (x; 1) at a specified point x is
1 A\
r(nln{z(eto—i—l)](l—i-e ))
fit 1) = 1 1., - 1, 1
><[1—ln[z(e"—i—l)}(nln[z(eo+1)]) ] , ln[i(e +1)]<nln[5(et°—|—l)]

0, otherwise.

Pl;OOf. Using lemma 1 of Chaturvedi and Tomer (2002) and Theorem 6, from (2.5), the UMVUE of f (x; 1) at a specified point
xis
) )
0 | .
= (1+e™) ; . l( { (e + )})1{0_:!_1)!}<n1n{;(et° + 1)})
r(nln{%(eq’ + )} (1+e >_1 i( 1)! ( i 1) <1n[%(ex + 1)}<nln{%(efo + ])])‘1)1"
ln[%(e" + 1)] < nln[%(eto + 1)]

and the lemma follows. O

i=

fie ) = (147 1i i( {

—(i+1)

In the following theorem, we derive the UMVUE of R(t).
Theorem 7. The UMVUE of R(t) is given by

Ri(t) = |:1—ln{;(e‘—i—1)}(nln{;(ef0+1)})]]r’ ln{%(et+1)}<nln{%(et0+.l)}

0, otherwise.
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Proof. From the arguments similar to those adopted in the proof of Theorem 2, using Lemma 4,

Rit) = / fixs
t

—1qr—-1

= W /;OO(1 +eX)1|:1 —ln{%(ex+ 1)}("1111{%(8% + 1)}) i| ’
ln[%(e" + 1)} < nln[%(ero " 1)}
- r/‘“{5(exﬂ)}(nln{%(etoﬂ)])_] (1—y)dy

and the theorem follows. O

In what follows, we obtain UMVUE of P. Suppose n items on X and m items on Y are put through a life test and ty and tgg
are their truncation times, respectively. Let r; items on X and r, items on Y fail before times ty and tq, respectively.

Theorem 8. The UMVUE of P is given by
n

) /0][1 - mln{;(etoo + l)}(n 1n{;(et° + 1)})1} (1—2)""dz,

nln{%(et0 + 1)} > mln{%(e‘o_0 + 1)}
) 1yt oty ]

0
x (1 —2)?7ldz, nln{%(et" + 1)} > mln[%(e‘00 + 1)]

L)

Proof. Using the arguments similar to those applied in the proofs of Theorems 2 and 5, we get

P = / Ju®s A)fa(y; Az)dxdy
y

=0 Jx=y

= /y: Ru: A)fa v A2)dy

rz(m ln{%(emo + 1)})1 /y:(l +e‘y)1[1 - ln{%(ey + 1)}<nln{%(et" + 1)DT
|:1 — ln[ mlnl (efoo 1)}>_11|r2]dy,

ln{%ey+1 }<nln —(e+1) n{l(ey+1)}<mln{%(e[°°+])}

1 mm{nln(e[0 +1),mIn(ef0041)}
:rz(mln t00+1 )

x|:1—1n[ }( { e“’+1)]>_l}r1
|:1—1n{ }(mln{ (e + )})Tz_ldy. (33)

The theorem now follows from (3.3). O

(14e)

Corollary 1. In the case when ty = to, but A1 # XAy,
r .
AT my\i
rzZ(-W( .‘)(—) B+ 1,1, m<n
pary i n
D .
[Ty — 1\ /n\jt1
TZZ(_DI(Z . )(*) BGi+1,r1+1), m>n.
i=0 J m

P =
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Proof. From Theorem 8, form < n,

1 mn
P = rzf (1 - Tz) (1—2)2"dz
0 n
. iffy(m e i -1
rz;(_n ; o ; zZZ(1—2)?""dz

and the first assertion follows. Again from Theorem 8, for m > n,

. n/m m L5}
P = r2/ (1 - —z) (1—-2)2"'dz
0 n
n 1 n \?!
r2<) / (1—wh (1 — —u) du
m) Jo m

rp—1 1 p1
=1\ (n / ; r
E -1 — w1l —u)d
2 ,'=0( )l( .’ ><m> 0 ( U) !

and the second assertion follows. O

It follows from Lemma 3, that the MLE of A under the sampling scheme of Bartholomew (1963) is

-1

= r(n ln[%(e[0 + 1)}) ) (34)

From (3.4) and one-to-one property of the MLEs, the MLE of f (x; 1) at a specified point x is

fie 2 = r(n ln{%(e[0 + 1)}(6_X + 1)) exp[—rln{;(e" + 1)}(11 ln[%(e[O + 1)}>_1]. (3.5)

-1

Theorem 9. The MLE of R(t) is given by
~ 1,, 1,, -1
Ri(t) = exp —rln{i(e +1)}(nln{5(e°+l)}> .

Proof. From (3.5),

R(t) = / it Adx
t

ot [l
= /r:{;(etﬂ)} (nln{%@roﬂ)})” e Vdy

and the theorem follows. O

Theorem 10. The MLE of P is given by
—1

S © _ 1 (¥ 1 £ —v
Pl_/; exp|: rlmln{z(eo"—|—1)}<r2nln{2(e°—l—l)}) v:|e dv.

Proof. From Theorem 9 and (3.5),

P = f Fir (6 2)fa(y; A)dxdy
y

=0 Jx=y

= / Ru(x; A)far(v; Aa)dy

0
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- (omlgenl) [ e ol sl (onflie ])

1 1 !
X exp|:—r2 ln{i(ey + 1)}<m ln{i(efoo + 1)}) ]dy
-1
and the theorem follows on putting Z = r, lnI%(e” + 1)}<m In{ 3 (efo + 1)}) . O

Corollary 2. In the case when ty = tgg, but, A1 # A,

P = ron(rn +rm)~"

Remarks. (i) In the literature, researchers have dealt with the estimation of R(t) and P, separately. If we look at the proofs
of Theorems 2-5 and 7-10, we observe that the UMVUE(S) /| MLE(S) of power(s) of parameter is used to obtain UMVUE(S)
| MLE(S) of the sampled pdf(s), which is (are) subsequently used to estimate R(t) and P. Thus, for both the estimation
problems, the basic role is played by the estimator(s) of power(s) of parameter. In this way, we have justified estimation
of power(s) of parameter.

(ii) We have established interrelationship between the two estimation problems.

(iii) In the present approaches of obtaining UMVUES and MLES, one does not need the expressionsgf R(t) and P.

(iv) It follows from Theorem 1 that V(Ay) = A2(r—2)~! — Oasr— oo. Moreover, from (2.10), E(Ay) = ra(r — 1)~ T
asr — oo and V(k,,) =r’*(r—1)72(r —2)"" - 0asr — oo. Thus, i andAy are consistent estimators of A. Since
f,, x; 1), f" x; 1), R,,(t) R,, (t), P,, and PH are continuous functions of consistent estimators, they are also consistent
estimators.

. ~1
(v) Similarly, it follows from Theorem 6 that V() = A(n In{1(eo + 1)}) — 0asn — o0o. Moreover, from (3.4),

~ ~ -1 . ~
E(A)) = Aand V(X)) = A(n ln{%(e‘0 + 1)}) — 0asn — oo.Thus, A; and A; are also consistent estimators of A.

Since,f, x; 1), f,(x; A, f?, (1), ﬁ, (0, 13, and F, are continuous functions of consistent estimators, they are also consistent
estimators.

4. Test procedures for various hypotheses

An important hypothesis in life-testing experiments is Hy : A = X against H; : A # Xq. It follows from (2.4) that, the
likelihood function for observing X is given by

r - 1
LAX) =n(n—1)...(n —r + DA {]‘[(m) } exp(—AS;). (4.1)
i=1
Now, under Hy
r - 1 . —
s(;lop LAX) =n(n—1)...(n—r1+ 1)x0{g<w) } exp(—roS;), @p = {A: A= Ao}

and

r r -l
sgpL(Mx):n(n—l) (n—r+1){sr}{n(mﬂexp(—r), O ={\:1>0}.

i=1
Therefore, the likelihood ratio (LR) is given by

sup L(A|X)
900 = sup L(A|X)

_ @ OrSr)r exp(—AoS; + 7). (4.2)

We note that the first term on the right hand side of (4.2) is an increasing function of S;. Denoting by X(22r) (.), the Chi-square
statistic with 2r degrees of freedom and using the fact that 2A,S, ~ x3. the critical region is given by

{0 < S <ko}U{ky < S < o0},

where, ko and kj, are obtained such that P[x2,, < 2Aoko or 2Aoky < x| = @
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Similarly, using Lemma 4, it can be shown that, under the sampling scheme of Bartholomew (1963), the critical region
for testing Hp : A = A¢ against Hy : A # )¢ is given by

1
{r <kjorr >k}, r~ Poisson(nkln{i(efo + 1)})

Another important hypothesis in life-testing experiments is Hy : A < X¢ against H; : A > Aq It follows from (2.4) that,
for )»1 < )»2,

h(xay, X@), -, X3 A1) <)\1

.
= —) expi(Ay — A1)S;t. (4.3)
h(xay, X@)s - X3 A2) )\2) {2 =207}

It follows from (4.3) that h(x(1), X2), - . . , X(); A) has monotone likelihood ratio in S, Thus, the uniformly most powerful
critical region (UMPCR) for testing Hy against Hy is given by (see Lehmann, 1959, p. 88)

1, ifS < kg
P(x) = {0, otherwise,

where, k is obtained such that P[Xér) < ZAOkg] =a.

Similarly, using Lemma 4, it can be shown that, under the sampling scheme of Bartholomew (1963), the UMPCR for
testing Hy : A < XAg against Hy : A > Aq is given by

1, ifr <k
P(x) = {O, otherwise,

where, k7 is obtained such that P[r < k’l’] =a.

It can be shown that P = A;(A; 4+ A,)~'. Suppose, we want to test Hy : P = Py against Hy : P # P,. It follows that Hy is
equivalent to A; = KXy, where K = Py(1 — Py)~'. Thus, Hp : A1 = KAy, and Hy : A; # KX,. It can be shown that, under Hy,

21 = (rl + Tz)(5r1 +K71Tr2)71

and
~ —1
A= (r+r)(KSy, +Tp,) .
For a generic constant k, the likelihood of observing x(1y, X2), . . ., X(rp) and Y1y, ¥2), - - - » Y(rp) 18
L(A, A2lX(1)s X@)s - - - Xy Y1) Yo - - -2 Vi) = KATAS exp(—2A4Sy, — A2Th,).
Thus,
—(r1+r2)
sup L(A, A20X(1)s X@)s « - - Xy Y1) Yo - - > Vi) = K(KSp, + Tp,) (ritez exp{—(r; +12)} (4.4)
“0
and
sup L(A1, A2lX(1)s X@)s - - -+ X(ry)» Y1), V@) - - - Yay) = k()T (T) 2 exp{—(r1 +12) }. (4.5)
[C]

From (4.4) and (4.5), the likelihood ratio criterion is
S, r . —(r1+12)
X1, X2), -2 X)), Y1), V@) -+ -2 V) = k<1> (1 + Ki) .
TTz r

Denoting by F(a, b) the F-statistic with (a, b) degrees of freedom and using the fact that ii ~ %F (2r1, 2ry), the critical
)

region is given by

S S
{i < ky orTj > k/z},

sz ]

where, k; and ki, are obtained such that P[F(Zﬁ, 2r) < '%kz or '%k/z < F(2rq, 2r2)] = .



A. Chaturvedi et al. / Journal of the Korean Statistical Society 45 (2016) 314-328 325
5. Simulation studies and real life data analysis

In order to investigate the performances of estimators obtained under Type Il censoring, we have generated the following
sample of size n = 50 from (1.1) with (A = 2, r = 35).

0.03557, 0.04390, 0.05849, 0.07581, 0.08980, 0.09512, 0.15476, 0.15672, 0.15883, 0.18973,
0.19693, 0.19744, 0.25391, 0.29171, 0.29456, 0.29595, 0.30608, 0.35567, 0.35874, 0.40511,
Sample 1. 0.51386, 0.53380, 0.53397, 0.53851, 0.54353, 0.64291, 0.69078, 0.74089, 0.77141, 0.78130,
0.85495, 0.88166, 0.88959, 0.93080, 0.96709, 0.99934, 1.01677, 1.04662, 1.14260, 1.16183,
1.31862, 1.40385, 1.67627, 1.68607, 1.73305, 1.80235, 1.96938, 2.31859, 2.60060, 3.16414.

Here, R(1.5) = 0.1331163 and for ¢ = 2, we have A% = 4.0, )112[ = 3.6706660 and 3:121 = 4.0076340. For the same sample
we also observe that S35 = 17.48332, IA?”(l.S) =0.1327089 and R;;(1.5) = 0.1328605.

In order to obtain the estimates of P, we have generated two samples of sizesn = 40 and m = 50 from X and Y
populations with (A; = 1.5, r; = 30) and (A, = 2.5, r, = 35) respectively.

0.01390, 0.01999, 0.02407, 0.10932, 0.14757, 0.22437, 0.23892, 0.24690, 0.31548, 0.31598,
0.33807, 0.37595, 0.41559, 0.43652, 0.51984, 0.56983, 0.58488, 0.58512, 0.60319, 0.64334,
0.68058, 0.75704, 0.90135, 0.94744, 0.95669, 0.97402, 0.98917, 1.05542, 1.12621, 1.15212,
1.23539, 1.24687, 1.33331, 1.43316, 1.54729, 1.59163, 2.05774, 2.19345, 2.47098, 2.63974.

Sample 2.

0.00561, 0.01720, 0.03715, 0.05352, 0.06566, 0.07054, 0.07495, 0.14592, 0.18657, 0.18920,
0.25015, 0.26663, 0.27329, 0.27555, 0.27924, 0.28733, 0.34623, 0.34653, 0.35539, 0.36918,
Sample 3. 0.38105, 0.38257, 0.41951, 0.44008, 0.44338, 0.44734, 0.45479, 0.45757, 0.47485, 0.48859,
0.49504, 0.52409, 0.60360, 0.63920, 0.65156, 0.68071, 0.71227, 0.72568, 0.82186, 0.86101,
0.91877 0.92865, 0.98415, 1.00283, 1.19383, 1.21007, 1.32116, 1.45646, 2.30930, 2.96547.

For these two samples, we have S3g = 16.96735, T35 = 11.85217, P = 0.6250000, 13[1 = 0.6279613 and FH = 0.6254931.
In order to compare the performances of estimators obtained under the sampling scheme of Bartholomew (1963), first
we have generated the following sample of size n = 50 from (1.1) with (A = 1.5, t5 = 0.5).

0.01482, 0.01501, 0.02427, 0.03059, 0.04498, 0.04616, 0.04883, 0.07409, 0.12092, 0.12726,
0.14244, 0.20716, 0.22625, 0.26113, 0.26478, 0.26734, 0.28106, 0.30782, 0.32811, 0.38861,
Sample 4. 0.39100, 0.45515, 0.51289, 0.59869, 0.69617, 0.71387, 0.76371, 0.79266, 0.8222, 0.84549
0.85455 0.92352, 0.93130, 0.99186, 1.01629, 1.16967, 1.17996, 1.18517, 1.25318, 1.52630,
1.52848 1.55159, 1.55272, 1.67781, 1.77616, 1.84483, 1.97855, 2.01709, 2.45541, 2.59038.

Here, we observe that r = 22. Again, for g = 2, we obtained A2 = 2.2500000, A2 = 2.3415660 and %2 = 2.4530690. For
the same sample we have R(0.8) = 0.4882488, IAQI (0.8) = 0.4669112 and R;(0.8) = 0.5851892.

In order to obtain the estimates of P, we have generated samples of size n = 50 and m = 30 from X and Y populations,
respectively, for (A; = 1.5, to = 1.0) and (A, = 2.5, tgo = 1.0).

0.04369, 0.05539, 0.06486, 0.06557, 0.17431, 0.20020, 0.20764, 0.21177, 0.29985, 0.30308,
0.37475, 0.38439, 0.40060, 0.43005, 0.44059, 0.47568, 0.51463, 0.56283, 0.60545, 0.61437,
Sample 5. 0.62927, 0.70739, 0.79281, 0.85155, 0.85884, 0.90207, 0.97803, 0.99725, 1.12290, 1.13807,
1.15342, 1.20459, 1.22793, 1.29950, 1.38227, 1.43545, 1.64240, 1.64661, 1.75696, 1.79753,
1.85814, 1.97025, 2.04686, 2.26356, 2.28556, 2.28863, 2.42240, 2.55530, 2.93035, 3.11324.

0.05832, 0.06896, 0.6935, 0.09352, 0.10416, 0.10787, 0.12729, 0.15383, 0.16423, 0.18712,
Sample 6. 0.27414, 0.31500, 0.34236, 0.35265, 0.39001, 0.39691, 0.43116, 0.45483, 0.53379, 0.56427,
0.66435, 0.67791, 0.79948, 0.82972, 0.83108, 0.92230, 0.95735, 0.98113, 1.43755, 1.52208.
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Table 1
Failure log times to breakdown of an insulating fluid testing experiment.

0.270027  1.02245  1.15057  1.42311 1.54116 157898  1.8718 1.9947
2.08069 2.11263 248989 345789 3.48186  3.52371 3.60305  4.28895

Table 2
Estimates of powers of A based on Type II censoring.
r 4 8 12 16

An 021725 037317 041954  0.55071
):121 0.03146  0.11936  0.16001  0.28306
IH 0.28966  0.42648  0.45768  0.58742
3:]2] 0.08391 0.18189  0.20947  0.34506

Table 3
Estimates of R(t) based on Type Il censoring.
t r
4 8 12 16

05 Re(t) 09402 089976 0.88825  0.85598
Ru(t) 092185 0.88709 0.87935  0.84787
08 Ry(t) 089972 083471 081679 0.76678
Ru(t) 087071 081559  0.80352  0.75521
1 Ru(t) 087124 079032 076852  0.7079
Ru(t) 083558 076761 075291  0.6947
12 Ry(t) 084185 074568 07204  0.65036
Ru(t) 080005 072004 070294  0.6361
15  Ry(t) 079656 0.67926 064963 0.56791
Ru() 074672 0.6505  0.63036 0.55307

Table 4
Estimates of powers of A based on the sampling
scheme of Bartholomew (1963).

tt 15 2 3 43
r 4 8 11 16

Al 0.24795  0.34873  0.29188  0.27622
klz 0.04611 0.10641  0.07745  0.07153
A 0.24795  0.34873  0.29188  0.27622
If 0.06148  0.12161  0.08519  0.0763

Here, we observe that r; = 28, , = 28, P = 0.6250000, 131 = 0.6271232 and 51 = 0.6250000.

For the theory developed in Section 4, for testing the hypothesis Hy : A = Ag against Hy : A # Ao under Type Il sampling
scheme, we have considered Sample 1. Now with the help of chi-square table at « = 5% level of significance (LOS), we
obtained ko = 12.18939 and k; = 23.7558. Hence, in this case we may accept Hy at 5% LOS as S35 = 17.48332.

Again, for testing Hy : A < X against H; : A > Ao we have considered Sample 1. Now at 5% LOS, we obtained
ki = 12.93482 and hence in this case we may accept Hy as S35 = 17.48332.

In order to test Hy : P = Py against H; : P # Py under Type Il sampling scheme, we have considered Samples 2 and 3.
For these two samples, we obtain S3p/T35 = 1.431582. Now, with the help of F-table at 5% LOS, we obtain k, = 0.869331
and k), = 2.325576. Hence, in this case we may accept Hy at 5% LOS.

For testing the hypothesis Hy : A = A¢ against H; : A % Ao under the sampling scheme of Bartholomew (1963), we have

considered Sample 4. Using the fact that r ~ Poisson(nk ln{ %(e‘0 + 1) }) with help of Poisson table at 5% LOS, we obtain

ki1 = 11 and k} = 28. Hence, in this case we may accept Hy at 5% LOS as r = 22.

Again, for testing Hp : 1 < A against Hy : A > Aq at 5% LOS, we obtained ki = 12. Hence in this case we may accept Ho
at 5% LOS as r = 22 (corresponding to Sample 4).

Table 1 gives the failure log times to breakdown of an insulating fluid experiment (see Nelson, 1982). Seo, Kim, and Kang
(2013), applying Kolmogorov test, showed that the data follow GHLD.

In what follows, we compute estimators of powers of A and R(t) based on different types of censorings (see Tables 2-5).
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Table 5
Estimates of R(t) based on the sampling scheme of Bartholomew
(1963).

t to 1.5 2 3 43

r 4 8 11 16

05 R(t) 093214 090613 092099 092516
Ri(t) 088621 085396 091726 096516
08 R(t) 088665 0.84498 0.86901  0.87584
Ri(t) 08632 08251 090017 095774
1 Ri(t) 085488 0.80314 0.83318 08418
Ri(t) 084402 080122 0.88583  0.95144
12 Ri(t) 082229 076096 079683  0.80723
Ri(t) 082117 077299 086861  0.94381
15  R(t) 077248 069798 0.74208  0.75506
Ri() 07788 072129 0.83633 092924

6. Discussions and conclusions

If we look at the simulation results under Type II censoring scheme, it is clear that estimated values of MLES are better
than estimated values of UMVUES. It is also clear that, under the sampling scheme of Bartholomew (1963), estimated values
of UMVUEs of A and R(t) are better than their corresponding estimated values of MLEs. But, under the sampling scheme of
Bartholomew (1963), estimated value of MLE of P is more efficient than estimated value of UMVUE of P.

Thus, the problems of estimating R(t) and P are considered. UMVUES and MLES are derived. A comparative study of the
two methods of estimation is done. By estimating the sampled pdf to obtain the estimators of R(t) and P, an interrelationship
between the two estimation problems is established. Simulation study is performed.
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