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Twomeasures of reliability are considered,R(t) = P(X > t) and P = P(X > Y ). Estimation

and testing procedures are developed for R(t) and P under Type II cesoring and a sampling

scheme of Bartholomew (1963). Two types of point estimators are considered (i) uniformly

minimumvariance unbiased estimators (UMVUEs) and (ii)maximum likelihood estimators

(MLEs). A new technique of obtaining these estimators is introduced. A comparative study

of different methods of estimation is done. Testing procedures are developed for the

hypotheses related to different parametric functions.
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1. Introduction and preliminaries

The reliability function R(t) is defined as the probability of failure-free operation until time t . Thus, if the random variable
(rv) X denotes the lifetime of an item or system, then R(t) = P(X > t). Another measure of reliability under stress–strength
set-up is the probability P = P(X > Y ), which represents the reliability of an item or system of random strength X subject
to random stress Y . A lot of work has been done in the literature for the point and interval estimation and testing for R(t) and
P under censorings and complete sample case. For a brief review, one may refer to Bartholomew (1957, 1963), Basu (1964),
Chao (1982), Chaturvedi and Pathak (2012, 2013, 2014), Chaturvedi and Rani (1997, 1998), Chaturvedi and Singh (2006,
2008), Chaturvedi and Surinder (1999), Chaturvedi and Tomer (2002, 2003), Constantine, Karson, and Tse (1986), Johnson
(1975), Kelley, Kelley, and Schucany (1976), Pugh (1963), Sathe and Shah (1981), Tong (1974, 1975), Tyagi and Bhattacharya
(1989), and others.

Half logistic model, obtained as the distribution of the absolute standard logistic variate, is probability model considered
by Balakrishnan (1985). Balakrsihnan and Hossain (2007) considered generalized (Type II) version of logistic distribution
and derived some interesting properties of the distribution. Ramakrsihnan (2008) considered two generalized versions of
HLD namely Type I and Type II along with point estimation of scale parameters and estimation of stress–strength reliability
based on complete sample. Arora, Bhimani, and Patel (2010) obtained the MLE of the shape parameter in a GHLD based
on Type I progressive censoring with varying failure rates. Kim, Kang, and Seo (2011) proposed Bayes estimators of the
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shape parameter and the reliability function for the GHLD based on progressively Type II censored data under various loss
functions. Seo, Lee, and Kang (2012) developed an entropy estimationmethod for upper record values from the GHLD. Azimi
(2013) derived the Bayes estimators of the shape parameter and the reliability function for the GHLD based on Type II doubly
censored samples. Seo and Kang (2014) derived the entropy of a GHLD by using Bayes estimators of an unknown parameter
in the GHLD based on Type II censored samples. They also compared these estimators in terms of the mean squared error
and the bias.

Let the life X of an item have the GHLD, then cumulative distribution function (cdf) and probability density function (pdf)
of the (rv) X are, respectively

F(x; λ) = 1−
(

2e−x

1+ e−x

)λ
, x > 0, λ > 0

and

f (x; λ) = λ

1+ e−x

(
2e−x

1+ e−x

)λ
, x > 0, λ > 0. (1.1)

Here, it should be noted that λ is the shape parameter and, for λ = 1, it comes out to be the half-logistic distribution.

The purpose of the present paper is many-fold. We develop point estimation procedures under Type II censoring and
a sampling scheme proposed by Bartholomew (1963). Testing procedures are also proposed. As far as point estimation is
considered, we derive UMVUEs and MLEs. A new technique of obtaining UMVUEs and MLEs is developed. For obtaining
UMVUEs, the major role is played by the estimators of the powers of the parameter. With the help of estimators of the
powers of the parameter, we obtain the estimators of pdf at a specified point, which is subsequently used to obtain the
UMVUEs of R(t) and P . The MLEs of the parameter is derived. Utilizing the invariance property of the MLEs, the MLE of the
pdf at a specified point is obtained, which is subsequently used to obtain the MLEs of R(t) and P . Thus, we have established
an interrelationship between various estimation problems and functional forms of the parametric functions to be estimated
are not needed.

In Sections 2 and 3, respectively, we provide point estimators under Type II cesoring and a sampling scheme proposed
by Bartholomew (1963). In Section 4, we developed test procedures. In Section 5, we present numerical findings. Finally, in
Section 6, discussions are made and conclusions are presented.

2. Point estimators under Type II censoring

Suppose n items are put on a test and the test is terminated after the first r ordered observations are recorded. Let 0 <
X(1) ≤ X(2) · · · ≤ X(r), 0 < r < n, be the lifetimes of first r ordered observations. Obviously, (n− r) items survived until X(r).

Lemma 1. Let Sr = ∑r
i=1 ln

{
1
2

(
ex(i) + 1

)} + (n − r) ln
{

1
2

(
ex(i) + 1

)}
. Then, Sr is complete and sufficient for the distribution

given at (1.1). Moreover, the pdf of Sr is

g(sr; λ) = λr sr−1
r

Γ (r)
exp(−λsr), sr > 0. (2.1)

Proof. (1.1) can be written as

f (x; λ) = λ

1+ e−x
exp

(
−λ ln

{1
2

(
ex + 1

)})
, x > 0, λ > 0. (2.2)

From (2.2), the joint pdf of X(1) ≤ X(2) ≤ · · · X(n) is

f ∗(x(1), x(2), . . . , x(n); λ) = n!λn
n∏

i=1

(
1

1+ e−x(i)

)
exp

(
−λ

n∑
i=1

ln

{1
2

(
ex(i) + 1

)})
. (2.3)

Integrating out x(r+1), x(r+2), . . . , x(n) from (2.3) over the region x(r) ≤ x(r+1) ≤ · · · ≤ x(n), the joint pdf of X(1) ≤ X(2) ≤
· · · X(r) comes out to be

h(x(1), x(2), . . . , x(r); λ) = λrn(n− 1) . . . (n− r + 1)

r∏
i=1

(
1

1+ e−x(1)

)
exp(−λsr). (2.4)

It follows easily from (2.2) that the rv U = λ ln

{
1
2

(
ex+1

)}
has exponential distribution withmean life 1/λ. Moreover, if we

consider the transformation Zi = (n− i+1){U(i)−U(i−1)}, i = 1, 2, . . . , r; U0 = 0, then Zi’s are independent and identically
distributed (i.i.d.) rv’s, each having exponential distributionwithmean life 1/λ. It is easy to see that

∑r
i=1 Zi = Sr . Result (2.1)
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now follows from the additive property of gamma distribution (see Johnson & Kotz, 1970, p. 170). It follows from (2.4) that
Sr is sufficient for the distribution given at (1.1). Since the distribution of Sr belongs to exponential family of distributions,
it is also complete (see Rohatgi, 1976, p. 347).

The following theorem provides the UMVUEs of the powers of λ.

Theorem 1. For q ∈ (−∞,∞), the UMVUE of λq is

λ̂
q

II =
⎧⎨⎩

Γ (r)

Γ (r − q)
S−q
r , r − q > 0

0, otherwise.

Proof. From (2.1),

E(S−q
r ) = λr

Γ (r)

∫ ∞

0

sr−q−1
r exp(−λsr)dsr

= Γ (r − q)

Γ (r)
λq

and the theorem follows from Lehmann–Scheffé theorem (see Rohatgi, 1976, p. 357). �

In the following lemma, we provide the UMVUE of the sampled pdf (1.1) at a specified point x.

Lemma 2. The UMVUE of f (x; λ) at a specified point x is

f̂II(x; λ) =
⎧⎨⎩(r − 1)

(
1+ e−x

)−1
S−1
r

(
1− S−1

r ln

{1
2

(
ex + 1

)})r−2

, ln

{1
2

(
ex + 1

)}
< Sr

0, otherwise.

Proof. We can write (2.2) as

f (x; λ) = (1+ e−x
)−1

∞∑
i=0

(−1)i

i!
(
ln

{1
2

(
ex + 1

)})i

λi+1. (2.5)

Using lemma 1 of Chaturvedi and Tomer (2002) and Theorem 1, from (2.5), the UMVUE of f (x; λ) at a specified point x is

f̂II(x; λ) =
(
1+ e−x

)−1
∞∑
i=0

(−1)i

i!
(
ln

{1
2

(
ex + 1

)})i

λi+1
II

= (r − 1)
(
1+ e−x

)−1
S−1
r

r−2∑
i=0

(−1)i
(
r − 2

i

)(
S−1
r ln

{1
2

(
ex + 1

)})i

, ln

{1
2

(
ex + 1

)}
< Sr

and the lemma holds. �

In the following theorem, we obtain the UMVUE of R(t).

Theorem 2. The UMVUE of R(t) is given by

R̂II(t) =
⎧⎨⎩
(
1− S−1

r ln

{1
2

(
et + 1

)})r−1

, ln

{1
2

(
ex + 1

)}
< Sr

0, otherwise.

Proof. Since F(x, sr) = f (x; λ)g(sr; λ) is a continuous function of (X, Sr) on the rectangle [t,∞) × [0,∞), the conditions
of Fubini’s theorem (see Bilodeau, Thie, & Keough, 2010, p. 207) are satisfied for the change of order of integration. Let us

consider the expected value of the integral
∫∞
t

f̂II(x; λ)dxwith respect to Sr , i.e.∫ ∞

0

{∫ ∞

t

f̂II(x; λ)dx
}
g(sr; λ)dsr =

∫ ∞

t

[
Esr
{
f̂II(x; λ)

}]
dx

=
∫ ∞

t

f̂II(x; λ)dx
= R(t). (2.6)
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We conclude from (2.6) that the UMVUE of R(t) can be obtained simply by integrating f̂II(x; λ) from t to ∞. Thus, from
Lemma 2,

R̂II(t) = (r − 1)S−1
r

∫ ∞

t

(
1+ e−x

)−1

(
1− S−1

r ln

{1
2

(
ex + 1

)})r−2

dx

= (r − 1)

∫ 1

S−1
r ln

{
1
2
(et+1)

}(1− y
)r−2

dy

and the theorem follows.

Let X and Y be two independent rv’s following the classes of distributions f1(x; λ1) and f2(y; λ2) respectively, where

f1(x; λ1) = λ1

1+ e−x
exp

(
−λ1 ln

{1
2

(
ex + 1

)})
, x > 0, λ1 > 0

and

f2(y; λ2) = λ2

1+ e−y
exp

(
−λ2 ln

{1
2

(
ey + 1

)})
, y > 0, λ2 > 0.

Let n items on X and m items on Y are put on a life test and the truncation numbers for X and Y are r1 and r2, respectively.
Let us denote by

Sr1 =
r1∑
i=1

ln

{1
2

(
ex(i) + 1

)}+ (n− r1) ln
{1
2

(
e
x(r1) + 1

)}
and

Tr2 =
r2∑
j=1

ln

{1
2

(
ey(j) + 1

)}+ (m− r2) ln
{1
2

(
e
y(r2) + 1

)}
. �

In what follows, we obtain the UMVUE of P .

Theorem 3. The UMVUE of P is given by

P̂II =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(r2 − 1)

r2−2∑
i=0

(−1)i
(
r2 − 2

i

)( Sr1
Tr2

)i+1

B(i+ 1, r1), Sr1 < Tr2

(r2 − 1)

r1−1∑
j=0

(−1)j
(
r1 − 1

j

)(Tr2
Sr1

)j
B(j+ 1, r2 − 1), Sr1 > Tr2 .

Proof. It follows from Lemma 3 that the UMVUES of f1(x; λ1) and f2(y; λ2) at specified points x and y, respectively, are

f̂1II(x; λ1) =
⎧⎨⎩(r1 − 1)

(
1+ e−x

)−1
S−1
r1

(
1− S−1

r1
ln

{1
2

(
ex + 1

)})r1−2

, ln

{1
2

(
ex + 1

)}
< Sr1

0, otherwise.

(2.7)

and

f̂2II(y; λ2) =
⎧⎨⎩(r2 − 1)

(
1+ e−y

)−1
T−1
r2

(
1− T−1

r2
ln

{1
2

(
ey + 1

)})r2−2

, ln

{1
2

(
ey + 1

)}
< Tr2

0, otherwise.

(2.8)

From the arguments similar to those adopted in proving Theorem 2, it can be shown that the UMVUE of P is given by

P̂II =
∫ ∞

y=0

∫ ∞

x=y

f̂1II(x; λ1)f̂2II(y; λ2)dxdy

=
∫ ∞

y=0

R̂1II(y; λ1)f̂2II(y; λ2)dy,
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which on using Theorem 2 and (2.8) gives that

P̂II = (r2 − 1)

∫ ∞

y=0

(
1+ e−y

)−1
T−1
r2

(
1− S−1

r1
ln

{1
2

(
ey + 1

)})r1−1(
1− T−1

r2
ln

{1
2

(
ey + 1

)})r2−2

dy,

ln

{1
2

(
ey + 1

)}
< Sr1 , ln

{1
2

(
ey + 1

)}
< Tr2

= (r2 − 1)

∫ min{Sr1 ,Tr2 }

y=0

(
1+ e−y

)−1
T−1
r2

(
1− S−1

r2
ln

{1
2

(
ey + 1

)})r1−1

×
(
1− T−1

r2
ln

{1
2

(
ey + 1

)})r2−2

dy. (2.9)

Now, from (2.9), for Sr1 < Tr2 ,

P̂II = (r2 − 1)

∫ 1

1− Sr1
Tr2

Zr2−2
{
1− (1− z)

Tr2

Sr1

}r1−1

dz

= (r2 − 1)

∫ 1

0

(1− u)r1−1
{
1− Sr1

Tr2
u

}r2−1 Sr1

Tr2
du

= (r2 − 1)

r2−2∑
i=0

(−1)i
(
r2 − 2

i

)( Sr1
Tr2

)i+1
∫ 1

0

ui(1− u)r1−1du

and the first assertion follows. Furthermore, for Sr1 > Tr2 ,

P̂II = (r2 − 1)

r1−1∑
j=0

(−1)j
(
r1 − 1

j

)(Tr2
Sr1

)j ∫ 1

0

ur2−2(1− u)jdu

and the second assertion follows. �

Since the likelihood function is of the same form as (2.3), it can be easily seen that theMLE of λ under Type II censoring is

λ̃II = r

Sr
. (2.10)

From (2.10) and one-to-one property of the MLEs, the MLE of f (x; λ) at a specified point x is

f̃II(x; λ) = r

Sr

( 1

1+ e−x

)
exp

(
− r

Sr
ln

{1
2

(
ex + 1

)})
. (2.11)

In the following theorem we obtain the MLE of R(t).

Theorem 4. The MLE of R(t) is given by

R̃II(t) = exp

(
− r

Sr
ln

{1
2

(
et + 1

)})
.

Proof. We know that,

R̃II(t) =
∫ ∞

t

f̃II(x; λ)dx,
which, on using (2.11), gives us

R̃II(t) = r

Sr

∫ ∞

t

( 1

1+ e−x

)
exp

(
− r

Sr
ln

{1
2

(
ex + 1

)})
dx

=
∫ ∞

r
Sr

ln

{
1
2
(et+1)

} e−ydy

and the theorem follows. �

In the following theorem, we obtain the MLE of P .

Theorem 5. The MLE of P is given by

P̃II = r2Sr1

(
r2Sr1 + r1Tr2

)−1

.
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Proof. From one-to-one property of the MLEs,

P̃II =
∫ ∞

y=0

∫ ∞

x=y

f̃1II(x; λ1)̃f2II(y; λ2)dxdy

=
∫ ∞

y=0

R̃1II(y; λ1)̃f2II(y; λ2)dy,

which, on using Lemma 3 and Theorem 4, gives that

P̃II = r2

Tr2

∫ ∞

y=0

exp

(
− r1

Sr1
ln

{1
2

(
ey + 1

)})( 1

1+ e−y

)
exp

(
− r2

Tr2
ln

{1
2

(
ey + 1

)})
dy

=
∫ ∞

y=0

exp

(
− r1Tr2

r2Sr1
v
)
e−vdv

=
∫ ∞

y=0

exp

{
−
(
1+ r1Tr2

r2Sr1

)
v

}
dv

and the theorem follows. �

3. Point estimators under the sampling scheme of Bartholomew (1963)

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the failure times of n items under test from (1.1). The test begins at time X(0) = 0 and
the system operates till X(1) = x(1) when the first failure occurs. The failed item is replaced by a new one and the system
operates till the second failure occurs at time X(2) = x(2), and so on. The experiment is terminated at time t0. Here, X(i) is the
time until ith failure measured from time 0.

Lemma 3. if N(t0) be the number of failures during the interval [0, t0], then

P[N(t0) = r|t0] =

(
nλ ln

{
1
2

(
et0 + 1

)})r

r! exp

(
−nλ ln

{1
2

(
et0 + 1

)})
.

Proof. Let us make the transformations

W1 = ln

{1
2

(
eX(1) + 1

)}
, W2 = ln

{1
2

(
eX(2) + 1

)}− ln

{1
2

(
eX(1) + 1

)}
, . . . ,

Wn = ln

{1
2

(
eX(n) + 1

)}− ln

{1
2

(
eX(n−1) + 1

)}
.

The pdf ofW1 is

h(w1) = nλ exp(−nλw1).

Moreover, W2, . . . ,Wn, are independent and identically distributed as W1. Using the monotonicity property of ln

{
1
2

(
ex +

1
)}

,

P[N(t0) = r|t0] = P[X(r) ≤ t0] − P[X(r+1) ≤ t0]

= P

[
ln

{1
2

(
eX(r) + 1

)} ≤ ln

{1
2

(
et0 + 1

)}]− P

[
ln

{1
2

(
eX(r+1) + 1

)} ≤ ln

{1
2

(
et0 + 1

)}]
= P

[
W1 +W2 + · · ·Wr ≤ ln

{1
2

(
et0 + 1

)}]− P

[
W1 +W2 + · · ·Wr+1 ≤ ln

{1
2

(
et0 + 1

)}]
. (3.1)

From the additive property of exponentially distributed rv’s (see Johnson & Kotz, 1970, p. 170), U = nλ
∑r

i=1 Wi follows
gamma distribution with pdf

h(u) = 1

Γ (r)
ur−1e−1, u > 0. (3.2)
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Using (3.2) and a result of Patel, Kapadia, and Owen (1976, p. 244), we obtain from (3.1) that

P[N(t0) = r|t0] = 1

Γ (r + 1)

∫ ∞

ln

{
1
2
(et0+1)

}nλ e−uurdu− 1

Γ (r)

∫ ∞

ln

{
1
2
(et0+1)

}nλ e−uur−1du

= exp

{
−nλ ln

{1
2
(et0 + 1)

}}
⎛⎜⎜⎜⎝ r∑

j=0

{
nλ ln

{
1
2

(
et0 + 1

)}}j

j! −
r−1∑
j=0

{
nλ ln

{
1
2

(
et0 + 1

)}}j

j!

⎞⎟⎟⎟⎠
and the lemma follows. �

In the following theorem, we derive the UMVUE of λq, where q is a positive integer.

Theorem 6. For q to be a positive integer, the UMVUE of λq is given by

λ̂
q

I =
⎧⎨⎩ r!
(r − q)!

(
n ln

{1
2

(
et0 + 1

)})−q

, r − q ≥ 0

0, otherwise.

Proof. It follows from Lemma 3 and Fisher–Neyman factorization theorem (see Rohatgi, 1976, p. 341) that r is sufficient
for estimating λ. Moreover, since the distribution of r belongs to exponential family, it is also complete (see Rohatgi,
1976, p. 347). The theorem now follows from the result that the qth factorial moment of distribution of r is given by

E

{
r(r − 1) . . . (r − q+ 1)

}
=
(
nλ ln

{1
2

(
et0 + 1

)})q

. �

In the following lemma, we obtain the UMVUE of the sampled pdf (1.1) at a specified point x.

Lemma 4. The UMVUE of f (x; λ) at a specified point x is

f̂I(x; λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r

(
n ln

{1
2

(
et0 + 1

)}(
1+ e−x

))−1

×
[
1− ln

{1
2

(
ex + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]r−1

, ln

{1
2

(
ex + 1

)}
< n ln

{1
2

(
et0 + 1

)}
0, otherwise.

Proof. Using lemma 1 of Chaturvedi and Tomer (2002) and Theorem 6, from (2.5), the UMVUE of f (x; λ) at a specified point
x is

f̂I(x; λ) =
(
1+ e−x

)−1
∞∑
i=0

(−1)i

i!
(
ln

{1
2

(
ex + 1

)})i

λ
(i+1)
I

= (1+ e−x
)−1

∞∑
i=0

(−1)i

i!
(
ln

{1
2

(
ex + 1

)})i{ r!
(r − i− 1)!

}(
n ln

{1
2

(
et0 + 1

)})−(i+1)

= r

(
n ln

{1
2

(
et0 + 1

)}(
1+ e−x

))−1 r−1∑
i=0

(−1)i
(
r − 1

i

)(
ln

{1
2

(
ex + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1)i

,

ln

{1
2

(
ex + 1

)}
< n ln

{1
2

(
et0 + 1

)}
and the lemma follows. �

In the following theorem, we derive the UMVUE of R(t).

Theorem 7. The UMVUE of R(t) is given by

R̂I(t) =
⎧⎨⎩
[
1− ln

{1
2

(
et + 1

)}(
n ln
{1
2
(et0 + 1)

})−1
]r
, ln

{1
2

(
et + 1

)}
< n ln

{1
2

(
et0 + 1

)}
0, otherwise.
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Proof. From the arguments similar to those adopted in the proof of Theorem 2, using Lemma 4,

R̂I(t) =
∫ ∞

t

f̂I(x; λ)dx

= r

n ln

{
1
2

(
et0 + 1

)} ∫ ∞

t

(
1+ e−x

)−1

[
1− ln

{1
2

(
ex + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]r−1

,

ln

{1
2

(
ex + 1

)}
< n ln

{1
2

(
et0 + 1

)}
= r

∫ 1

ln

{
1
2

(
ex+1

)}(
n ln

{
1
2

(
et0+1

)})−1 (1− y)r−1dy

and the theorem follows. �

In what follows, we obtain UMVUE of P . Suppose n items on X andm items on Y are put through a life test and t0 and t00
are their truncation times, respectively. Let r1 items on X and r2 items on Y fail before times t0 and t00, respectively.

Theorem 8. The UMVUE of P is given by

P̂I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2

∫ 1

0

[
1−m ln

{
1

2

(
et00 + 1

)}(
n ln

{
1

2

(
et0 + 1

)})−1

z

]r1
(1− z)r2−1dz,

n ln

{1
2

(
et0 + 1

)}
> m ln

{1
2

(
et00 + 1

)}
r2

∫ n ln

{
1
2
(et0+1)

}(
m ln

{
1
2
(et00+1)

})−1

0

[
1−m ln

{1
2

(
et00 + 1

)}(
n ln
{1
2
(et0 + 1)

})−1

z

]r1
× (1− z)r2−1dz, n ln

{1
2

(
et0 + 1

)}
> m ln

{1
2

(
et00 + 1

)}
.

Proof. Using the arguments similar to those applied in the proofs of Theorems 2 and 5, we get

P̂I =
∫ ∞

y=0

∫ ∞

x=y

f̂1I(x; λ1)f2I(y; λ2)dxdy

=
∫ ∞

y=0

R̂1I(y; λ1)f̂2I(y; λ2)dy

= r2

(
m ln

{1
2

(
et00 + 1

)})−1 ∫ ∞

y=0

(
1+ e−y

)−1

[
1− ln

{1
2

(
ey + 1

)}(
n ln

{
1

2

(
et0 + 1

)})−1]r1
×
[
1− ln

{1
2

(
ey + 1

)}(
m ln

{1
2

(
et00 + 1

)})−1]r2−1

dy,

ln

{1
2

(
ey + 1

)}
< n ln

{1
2

(
et0 + 1

)}
, ln

{1
2

(
ey + 1

)}
< m ln

{1
2

(
et00 + 1

)}
= r2

(
m ln

{1
2

(
et00 + 1

)})−1 ∫ min{n ln(et0+1),m ln(et00+1)}

y=0

(
1+ e−y

)−1

×
[
1− ln

{1
2

(
ey + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]r1
×
[
1− ln

{1
2

(
ey + 1

)}(
m ln

{1
2

(
et00 + 1

)})−1]r2−1

dy. (3.3)

The theorem now follows from (3.3). �

Corollary 1. In the case when t0 = t00, but λ1 �= λ2,

P̂I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2

r1∑
i=0

(−1)i
(
r1

i

)(m
n

)i
B(i+ 1, r2), m < n

r2

r2∑
i=0

(−1)i
(
r2 − 1

j

)( n

m

)j+1

B(j+ 1, r1 + 1), m > n.
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Proof. From Theorem 8, form < n,

P̂I = r2

∫ 1

0

(
1− m

n
z

)r1

(1− z)r2−1dz

= r2

r1∑
i=0

(−1)i
(
r1

i

)(
m

n

)i ∫ 1

0

zi(1− z)r2−1dz

and the first assertion follows. Again from Theorem 8, form > n,

P̂I = r2

∫ n/m

0

(
1− m

n
z

)r1

(1− z)r2−1dz

= r2

(
n

m

)∫ 1

0

(1− u)r1

(
1− n

m
u

)r2−1

du

= r2

r2−1∑
i=0

(−1)j
(
r2 − 1

j

)(
n

m

)j+1 ∫ 1

0

uj(1− u)r1du

and the second assertion follows. �

It follows from Lemma 3, that the MLE of λ under the sampling scheme of Bartholomew (1963) is

λ̃I = r

(
n ln

{1
2

(
et0 + 1

)})−1

. (3.4)

From (3.4) and one-to-one property of the MLEs, the MLE of f (x; λ) at a specified point x is

f̃I(x; λ) = r

(
n ln

{1
2

(
et0 + 1

)}(
e−x + 1

))−1

exp

[
−r ln

{
1

2

(
ex + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]
. (3.5)

Theorem 9. The MLE of R(t) is given by

R̃I(t) = exp

[
−r ln

{1
2

(
et + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1
]
.

Proof. From (3.5),

R̃I(t) =
∫ ∞

t

f̃I(x; λ)dx

= r

(
n ln

{1
2

(
et0 + 1

)})−1 ∫ ∞

t

(
e−x + 1

)−1
exp

[
−r ln

{1
2

(
ex + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]
dx

=
∫ ∞

r ln

{
1
2
(et+1)

}(
n ln

{
1
2
(et0+1)

})−1 e−ydy

and the theorem follows. �

Theorem 10. The MLE of P is given by

P̃I =
∫ ∞

0

exp

[
−r1m ln

{1
2

(
et00 + 1

)}(
r2n ln

{1
2
(et0 + 1)

})−1

v

]
e−vdv.

Proof. From Theorem 9 and (3.5),

P̃I =
∫ ∞

y=0

∫ ∞

x=y

f̃1I(x; λ1)̃f2I(y; λ2)dxdy

=
∫ ∞

0

R̃1I(x; λ1)̃f2I(y; λ2)dy
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= r2

(
m ln

{1
2

(
et00 + 1

)})−1 ∫ ∞

0

(
1+ e−y

)−1
exp

[
−r1 ln

{1
2

(
ey + 1

)}(
n ln

{1
2

(
et0 + 1

)})−1]

× exp

[
−r2 ln

{1
2

(
ey + 1

)}(
m ln

{1
2

(
et00 + 1

)})−1]
dy

and the theorem follows on putting Z = r2 ln

{
1
2

(
ey + 1

)}(
m ln
{
1
2
(et00 + 1)

})−1

. �

Corollary 2. In the case when t0 = t00, but, λ1 �= λ2,

P̃I = r2n(r2n+ r1m)
−1.

Remarks. (i) In the literature, researchers have dealt with the estimation of R(t) and P , separately. If we look at the proofs
of Theorems2–5 and7–10,weobserve that theUMVUE(S) /MLE(S) of power(s) of parameter is used to obtainUMVUE(S)
/ MLE(S) of the sampled pdf(s), which is (are) subsequently used to estimate R(t) and P . Thus, for both the estimation
problems, the basic role is played by the estimator(s) of power(s) of parameter. In this way, we have justified estimation
of power(s) of parameter.

(ii) We have established interrelationship between the two estimation problems.
(iii) In the present approaches of obtaining UMVUES and MLES, one does not need the expressions of R(t) and P .

(iv) It follows from Theorem 1 that V (λ̂II) = λ2(r−2)−1 → 0 as r→∞. Moreover, from (2.10), E (̃λII) = rλ(r−1)−1 → λ

as r →∞ and V (̃λII) = r2λ2(r − 1)−2(r − 2)−1 → 0 as r→∞. Thus, λ̂II and̃λII are consistent estimators of λ. Since

f̂II(x; λ), f̃II(x; λ), R̂II(t), R̃II(t), P̂II and P̃II are continuous functions of consistent estimators, they are also consistent
estimators.

(v) Similarly, it follows from Theorem 6 that V (λ̂I) = λ
(
n ln
{
1
2
(et0 + 1)

})−1 → 0 as n → ∞. Moreover, from (3.4),

E (̃λI) = λ and V (̃λI) = λ
(
n ln
{
1
2
(et0 + 1)

})−1 → 0 as n → ∞. Thus, λ̂I and λ̃I are also consistent estimators of λ.

Since, f̂I(x; λ), f̃I(x; λ), R̂I(t), R̃I(t), P̂I and P̃I are continuous functions of consistent estimators, they are also consistent
estimators.

4. Test procedures for various hypotheses

An important hypothesis in life-testing experiments is H0 : λ = λ0 against H1 : λ �= λ0. It follows from (2.4) that, the
likelihood function for observing λ is given by

L(λ|x) = n(n− 1) . . . (n− r + 1)λr

{ r∏
i=1

(
1

1+ e−x(i)

)}
exp(−λSr). (4.1)

Now, under H0

sup
Θ0

L(λ|x) = n(n− 1) . . . (n− r + 1)λr
0

{ r∏
i=1

(
1

1+ e−x(i)

)}
exp(−λ0Sr), Θ0 = {λ : λ = λ0}

and

sup
Θ

L(λ|x) = n(n− 1) . . . (n− r + 1)

{
r

Sr

}r{ r∏
i=1

(
1

1+ e−x(i)

)}
exp(−r), Θ = {λ : λ > 0}.

Therefore, the likelihood ratio (LR) is given by

φ(x) =
sup
Θ0

L(λ|x)
sup
Θ

L(λ|x)

= (λ0Sr)
r

rr
exp(−λ0Sr + r). (4.2)

We note that the first term on the right hand side of (4.2) is an increasing function of Sr . Denoting by χ2
(2r)(.), the Chi-square

statistic with 2r degrees of freedom and using the fact that 2λ0Sr ∼ χ2
2r the critical region is given by

{0 < Sr < k0} ∪ {k′0 < Sr <∞},
where, k0 and k′0 are obtained such that P

[
χ2
(2r) < 2λ0k0 or 2λ0k

′
0 < χ2

(2r)

] = α.
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Similarly, using Lemma 4, it can be shown that, under the sampling scheme of Bartholomew (1963), the critical region
for testing H0 : λ = λ0 against H1 : λ �= λ0 is given by

{r < k1 or r > k′1}, r ∼ Poisson

(
nλ ln

{
1

2

(
et0 + 1

)})
.

Another important hypothesis in life-testing experiments is H0 : λ ≤ λ0 against H1 : λ > λ0 It follows from (2.4) that,
for λ1 < λ2,

h(x(1), x(2), . . . , x(r); λ1)

h(x(1), x(2), . . . , x(r); λ2)
=
(
λ1

λ2

)r

exp
{
(λ2 − λ1)Sr

}
. (4.3)

It follows from (4.3) that h(x(1), x(2), . . . , x(r); λ) has monotone likelihood ratio in Sr Thus, the uniformly most powerful
critical region (UMPCR) for testing H0 against H1 is given by (see Lehmann, 1959, p. 88)

φ(x) =
{
1, if Sr ≤ k′′0
0, otherwise,

where, k′′0 is obtained such that P

[
χ2
(2r) ≤ 2λ0k

′′
0

]
= α.

Similarly, using Lemma 4, it can be shown that, under the sampling scheme of Bartholomew (1963), the UMPCR for
testing H0 : λ ≤ λ0 against H1 : λ ≥ λ0 is given by

φ(x) =
{
1, if r ≤ k′′1
0, otherwise,

where, k′′1 is obtained such that P

[
r ≤ k′′1

]
= α.

It can be shown that P = λ1(λ1 + λ2)
−1. Suppose, we want to test H0 : P = P0 against H1 : P �= P0. It follows that H0 is

equivalent to λ1 = Kλ2, where K = P0(1− P0)
−1. Thus, H0 : λ1 = Kλ2, and H1 : λ1 �= Kλ2. It can be shown that, under H0,

λ̃1 = (r1 + r2)
(
Sr1 + K−1Tr2

)−1

and

λ̃2 = (r1 + r2)
(
KSr1 + Tr2

)−1
.

For a generic constant k, the likelihood of observing x(1), x(2), . . . , x(r1) and y(1), y(2), . . . , y(r2) is

L
(
λ1, λ2|x(1), x(2), . . . , x(r1), y(1), y(2), . . . , y(r2)

) = kλ
r1
1 λ

r2
2 exp

(−λ1Sr1 − λ2Tr2
)
.

Thus,

sup
Θ0

L
(
λ1, λ2|x(1), x(2), . . . , x(r1), y(1), y(2), . . . , y(r2)

) = k
(
KSr1 + Tr2

)−(r1+r2) exp
{−(r1 + r2)

}
(4.4)

and

sup
Θ

L
(
λ1, λ2|x(1), x(2), . . . , x(r1), y(1), y(2), . . . , y(r2)

) = k(Sr1)
−r1(Tr2)

−r2 exp
{−(r1 + r2)

}
. (4.5)

From (4.4) and (4.5), the likelihood ratio criterion is

φ(x(1), x(2), . . . , x(r1), y(1), y(2), . . . , y(r2)) = k

(
Sr1

Tr2

)r1
(
1+ K

Sr1

Tr2

)−(r1+r2)

.

Denoting by F(a, b) the F-statistic with (a, b) degrees of freedom and using the fact that
Sr1
Tr2

∼ r1λ2
r2λ1

F(2r1, 2r2), the critical

region is given by{
Sr1

Tr2
< k2 or

Sr1

Tr2
> k′2

}
,

where, k2 and k′2 are obtained such that P

[
F(2r1, 2r2) <

Kr2
r1

k2 or
Kr2
r1

k′2 < F(2r1, 2r2)

]
= α.
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5. Simulation studies and real life data analysis

In order to investigate the performances of estimators obtained under Type II censoring, we have generated the following
sample of size n = 50 from (1.1) with (λ = 2, r = 35).

Sample 1.

0.03557, 0.04390, 0.05849, 0.07581, 0.08980, 0.09512, 0.15476, 0.15672, 0.15883, 0.18973,
0.19693, 0.19744, 0.25391, 0.29171, 0.29456, 0.29595, 0.30608, 0.35567, 0.35874, 0.40511,
0.51386, 0.53380, 0.53397, 0.53851, 0.54353, 0.64291, 0.69078, 0.74089, 0.77141, 0.78130,
0.85495, 0.88166, 0.88959, 0.93080, 0.96709, 0.99934, 1.01677, 1.04662, 1.14260, 1.16183,
1.31862, 1.40385, 1.67627, 1.68607, 1.73305, 1.80235, 1.96938, 2.31859, 2.60060, 3.16414.

Here, R(1.5) = 0.1331163 and for q = 2, we have λ2 = 4.0, λ̂2
II = 3.6706660 and λ̃2

II = 4.0076340. For the same sample

we also observe that S35 = 17.48332, R̂II(1.5) = 0.1327089 and R̃II(1.5) = 0.1328605.

In order to obtain the estimates of P , we have generated two samples of sizes n = 40 and m = 50 from X and Y
populations with (λ1 = 1.5, r1 = 30) and (λ2 = 2.5, r2 = 35) respectively.

Sample 2.

0.01390, 0.01999, 0.02407, 0.10932, 0.14757, 0.22437, 0.23892, 0.24690, 0.31548, 0.31598,
0.33807, 0.37595, 0.41559, 0.43652, 0.51984, 0.56983, 0.58488, 0.58512, 0.60319, 0.64334,
0.68058, 0.75704, 0.90135, 0.94744, 0.95669, 0.97402, 0.98917, 1.05542, 1.12621, 1.15212,
1.23539, 1.24687, 1.33331, 1.43316, 1.54729, 1.59163, 2.05774, 2.19345, 2.47098, 2.63974.

Sample 3.

0.00561, 0.01720, 0.03715, 0.05352, 0.06566, 0.07054, 0.07495, 0.14592, 0.18657, 0.18920,
0.25015, 0.26663, 0.27329, 0.27555, 0.27924, 0.28733, 0.34623, 0.34653, 0.35539, 0.36918,
0.38105, 0.38257, 0.41951, 0.44008, 0.44338, 0.44734, 0.45479, 0.45757, 0.47485, 0.48859,
0.49504, 0.52409, 0.60360, 0.63920, 0.65156, 0.68071, 0.71227, 0.72568, 0.82186, 0.86101,
0.91877 0.92865, 0.98415, 1.00283, 1.19383, 1.21007, 1.32116, 1.45646, 2.30930, 2.96547.

For these two samples, we have S30 = 16.96735, T35 = 11.85217, P = 0.6250000, P̂II = 0.6279613 and P̃II = 0.6254931.

In order to compare the performances of estimators obtained under the sampling scheme of Bartholomew (1963), first
we have generated the following sample of size n = 50 from (1.1) with (λ = 1.5, t0 = 0.5).

Sample 4.

0.01482, 0.01501, 0.02427, 0.03059, 0.04498, 0.04616, 0.04883, 0.07409, 0.12092, 0.12726,
0.14244, 0.20716, 0.22625, 0.26113, 0.26478, 0.26734, 0.28106, 0.30782, 0.32811, 0.38861,
0.39100, 0.45515, 0.51289, 0.59869, 0.69617, 0.71387, 0.76371, 0.79266, 0.8222, 0.84549

0.85455 0.92352, 0.93130, 0.99186, 1.01629, 1.16967, 1.17996, 1.18517, 1.25318, 1.52630,

1.52848 1.55159, 1.55272, 1.67781, 1.77616, 1.84483, 1.97855, 2.01709, 2.45541, 2.59038.

Here, we observe that r = 22. Again, for q = 2, we obtained λ2 = 2.2500000, λ̂2
I = 2.3415660 and λ̃2

I = 2.4530690. For

the same sample we have R(0.8) = 0.4882488, R̂I(0.8) = 0.4669112 and R̃I(0.8) = 0.5851892.

In order to obtain the estimates of P , we have generated samples of size n = 50 and m = 30 from X and Y populations,
respectively, for (λ1 = 1.5, t0 = 1.0) and (λ2 = 2.5, t00 = 1.0).

Sample 5.

0.04369, 0.05539, 0.06486, 0.06557, 0.17431, 0.20020, 0.20764, 0.21177, 0.29985, 0.30308,
0.37475, 0.38439, 0.40060, 0.43005, 0.44059, 0.47568, 0.51463, 0.56283, 0.60545, 0.61437,
0.62927, 0.70739, 0.79281, 0.85155, 0.85884, 0.90207, 0.97803, 0.99725, 1.12290, 1.13807,
1.15342, 1.20459, 1.22793, 1.29950, 1.38227, 1.43545, 1.64240, 1.64661, 1.75696, 1.79753,

1.85814, 1.97025, 2.04686, 2.26356, 2.28556, 2.28863, 2.42240, 2.55530, 2.93035, 3.11324.

Sample 6.
0.05832, 0.06896, 0.6935, 0.09352, 0.10416, 0.10787, 0.12729, 0.15383, 0.16423, 0.18712,
0.27414, 0.31500, 0.34236, 0.35265, 0.39001, 0.39691, 0.43116, 0.45483, 0.53379, 0.56427,
0.66435, 0.67791, 0.79948, 0.82972, 0.83108, 0.92230, 0.95735, 0.98113, 1.43755, 1.52208.
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Table 1
Failure log times to breakdown of an insulating fluid testing experiment.

0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.8718 1.9947

2.08069 2.11263 2.48989 3.45789 3.48186 3.52371 3.60305 4.28895

Table 2
Estimates of powers of λ based on Type II censoring.

r 4 8 12 16

λ̂II 0.21725 0.37317 0.41954 0.55071

λ̂2
II 0.03146 0.11936 0.16001 0.28306

λ̃II 0.28966 0.42648 0.45768 0.58742

λ̃2
II 0.08391 0.18189 0.20947 0.34506

Table 3
Estimates of R(t) based on Type II censoring.

t r

4 8 12 16

0.5 R̂II(t) 0.9402 0.89976 0.88825 0.85598

R̃II(t) 0.92185 0.88709 0.87935 0.84787

0.8 R̂II(t) 0.89972 0.83471 0.81679 0.76678

R̃II(t) 0.87071 0.81559 0.80352 0.75521

1 R̂II(t) 0.87124 0.79032 0.76852 0.7079

R̃II(t) 0.83558 0.76761 0.75291 0.6947

1.2 R̂II(t) 0.84185 0.74568 0.7204 0.65036

R̃II(t) 0.80005 0.72004 0.70294 0.6361

1.5 R̂II(t) 0.79656 0.67926 0.64963 0.56791

R̃II(t) 0.74672 0.6505 0.63036 0.55307

Table 4
Estimates of powers of λ based on the sampling

scheme of Bartholomew (1963).

t0 1.5 2 3 4.3

r 4 8 11 16

λ̂I 0.24795 0.34873 0.29188 0.27622

λ̂2
I 0.04611 0.10641 0.07745 0.07153

λ̃I 0.24795 0.34873 0.29188 0.27622

λ̃2
I 0.06148 0.12161 0.08519 0.0763

Here, we observe that r1 = 28, r2 = 28, P = 0.6250000, P̂I = 0.6271232 and P̃I = 0.6250000.

For the theory developed in Section 4, for testing the hypothesis H0 : λ = λ0 against H1 : λ �= λ0 under Type II sampling
scheme, we have considered Sample 1. Now with the help of chi-square table at α = 5% level of significance (LOS), we
obtained k0 = 12.18939 and k′0 = 23.7558. Hence, in this case we may accept H0 at 5% LOS as S35 = 17.48332.

Again, for testing H0 : λ ≤ λ0 against H1 : λ > λ0 we have considered Sample 1. Now at 5% LOS, we obtained
k′′0 = 12.93482 and hence in this case we may accept H0 as S35 = 17.48332.

In order to test H0 : P = P0 against H1 : P �= P0 under Type II sampling scheme, we have considered Samples 2 and 3.
For these two samples, we obtain S30/T35 = 1.431582. Now, with the help of F-table at 5% LOS, we obtain k2 = 0.869331
and k′2 = 2.325576. Hence, in this case we may accept H0 at 5% LOS.

For testing the hypothesis H0 : λ = λ0 against H1 : λ �= λ0 under the sampling scheme of Bartholomew (1963), we have

considered Sample 4. Using the fact that r ∼ Poisson

(
nλ ln

{
1
2
(et0 + 1)

})
, with help of Poisson table at 5% LOS, we obtain

k1 = 11 and k′1 = 28. Hence, in this case we may accept H0 at 5% LOS as r = 22.

Again, for testing H0 : λ ≤ λ0 against H1 : λ > λ0 at 5% LOS, we obtained k′′1 = 12. Hence in this case we may accept H0

at 5% LOS as r = 22 (corresponding to Sample 4).

Table 1 gives the failure log times to breakdown of an insulating fluid experiment (see Nelson, 1982). Seo, Kim, and Kang
(2013), applying Kolmogorov test, showed that the data follow GHLD.

In what follows, we compute estimators of powers of λ and R(t) based on different types of censorings (see Tables 2–5).
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Table 5
Estimates of R(t) based on the sampling scheme of Bartholomew

(1963).

t t0 1.5 2 3 4.3

r 4 8 11 16

0.5 R̂I(t) 0.93214 0.90613 0.92099 0.92516

R̃I(t) 0.88621 0.85396 0.91726 0.96516

0.8 R̂I(t) 0.88665 0.84498 0.86901 0.87584

R̃I(t) 0.8632 0.8251 0.90017 0.95774

1 R̂I(t) 0.85488 0.80314 0.83318 0.8418

R̃I(t) 0.84402 0.80122 0.88583 0.95144

1.2 R̂I(t) 0.82229 0.76096 0.79683 0.80723

R̃I(t) 0.82117 0.77299 0.86861 0.94381

1.5 R̂I(t) 0.77248 0.69798 0.74208 0.75506

R̃I(t) 0.7788 0.72129 0.83633 0.92924

6. Discussions and conclusions

If we look at the simulation results under Type II censoring scheme, it is clear that estimated values of MLES are better
than estimated values of UMVUES. It is also clear that, under the sampling scheme of Bartholomew (1963), estimated values
of UMVUEs of λ and R(t) are better than their corresponding estimated values of MLEs. But, under the sampling scheme of
Bartholomew (1963), estimated value of MLE of P is more efficient than estimated value of UMVUE of P .

Thus, the problems of estimating R(t) and P are considered. UMVUES and MLES are derived. A comparative study of the
twomethods of estimation is done. By estimating the sampled pdf to obtain the estimators of R(t) and P , an interrelationship
between the two estimation problems is established. Simulation study is performed.
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