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a b s t r a c t

We study nonparametric estimation of the distribution function (DF) of a continuous

random variable based on a ranked set sampling design using the exponentially tilted

(ET) empirical likelihood method. We propose ET estimators of the DF and use them to

construct new resampling algorithms for unbalanced ranked set samples. We explore

the properties of the proposed algorithms. For a hypothesis testing problem about the

underlying population mean, we show that the bootstrap tests based on the ET estimators

of the DF are asymptotically normal and exhibit a small bias of order O(n−1). We illustrate

the methods and evaluate the finite sample performance of the algorithms under both

perfect and imperfect ranking schemes using a real data set and several Monte Carlo

simulation studies. We compare the performance of the test statistics based on the ET

estimators with those based on the empirical likelihood estimators.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Ranked set sampling (RSS) is a powerful and cost-effective data collection technique that is often used to collect more
representative samples from the underlying population when a small number of sampling units can be fairly accurately
ordered without taking actual measurements on the variable of interest. RSS is most effective when obtaining exact
measurement on the variable of interest is very costly, but ranking the sampling units is relatively inexpensive. RSS finds
applications in industrial statistics, environmental and ecological studies as well as medical sciences. For recent overviews
of the theory and applications of RSS and its variations see Wolfe (2012) and Chen, Bai, and Sinha (2004).

Ranked set samples can be either balanced or unbalanced. An unbalanced ranked set sample (URSS) is one in which
the ranked order statistics are not quantified the same number of times. To obtain an URSS of size n from the underlying
population we proceed as follows. Let n sets of sampling units, each of size k, be randomly chosen from the population
using a simple random sampling (SRS) technique. The units of each set are ranked by any means other than the actual
quantification of the variable of interest. Finally, one and only one unit in each ordered set with a pre-specified rank is

measured. Let mr be the number of measurements on units with rank r , r ∈ {1, . . . , k} such that n = ∑k
r=1 mr . Suppose

X(r)j denotes the measurement on the jth unit with rank r . The resulting URSS of size n from the underlying population is
denoted by XURSS = {X1, . . . ,Xn}, where the elements of the rth row Xr = (X(r)1, X(r)2, . . . , X(r)mr ) are independently
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and identically distributed (i.i.d.) from F(r), r = 1, . . . , k and F(r) is the DF of the rth order statistic. Moreover, X(r)js are
independent for r = 1, . . . , k and j = 1, . . . ,mr . Note that ifmr = m, r = 1, . . . , k, then URSS reduces to the balanced RSS.
The DF of URSS is

F̂qn(t) =
1

n

k∑
r=1

mr∑
j=1

I(X(r)j ≤ t) =
k∑

r=1

qmr F̂(r)(t), (1)

where n = ∑mr and qmr = mr/n. As it is shown in Chen et al. (2004), when n −→ ∞, and qmr −→ qr , for r = 1, . . . , k,

we have F̂qn(t) −→ Fq(t), where

Fq(t) =
k∑

r=1

qrF(r)(t). (2)

One can easily see that Fq(t) is not equal to the underlying DF F(t), unless qr = 1/k, r = 1, . . . , k, showing that the EDF
based on the URSS data does not provide a good estimate of the underlying distribution F . The properties of the EDF of the
balanced and unbalanced RSS are studied in Stokes and Sager (1988) as well as Chen et al. (2004).

In this paper, we use the empirical likelihood method as a nonparametric approach for estimating F . To this end, we
propose two methods to estimate F using the exponentially tilted (ET) technique. The proposed estimators can be used
as standard tools for practitioners to estimate the standard error of any well-defined statistic based on RSS or URSS data
and to make inferences about the characteristics of interest of the underlying population. Another interesting problem in
this direction is to develop efficient resampling techniques for URSS data, as in many cases the exact or the asymptotic
distribution of the statistics based on URSS data are not available or they are very difficult to obtain (e.g. Chen et al.,
2004). Akin to the methods of Modarres, Hui, and Zhang (2006) and Amiri, Jafari Jozani, and Modarres (2014), the new
ET estimators of F are used to construct new resampling techniques for URSS data. We study different properties of the
proposed algorithms. For a hypothesis testing problem, about the underlying population mean, we show that the bootstrap
tests based on the ET estimators are asymptotically normal and exhibit a small bias of order O(n−1) which are desirable
properties.

The outline of the paper is as follows. In Section 2, we present ET estimators of F based on the URSS data. Section 3
considers two methods for resampling RSS and URSS data based on the ET estimators of F . We provide justifications for
validity of these methods for a hypothesis testing problem about the population mean. Section 4 describes a simulation
study to compare the finite sampling properties of the proposed methods with parametric bootstrap and some existing
resampling techniques for testing a hypothesis about the populationmean.We consider both perfect and imperfect ranking
scenarios, three different distributions and five RSS designs. We compare the performance of our proposed methods with
the one based on the empirical likelihoodmethod studied in Liu, Lin, and Zhang (2009) as well as Baklizi (2009). In Section 5,
we apply ourmethods for a testing hypothesis problem using a real data set consisting of the birth weight and seven-month
weight of 224 lambs along with the mother’s weight at time of mating. Section 6 provides some concluding remarks.

2. Exponential tilting of DF

Exponential tilting of an empirical likelihood is a powerful technique in nonparametric statistical inference. The impetus
of this approach is the use of the estimated DF subject to some constraints rather than the EDF. ETmethods find applications
in computation of bootstrap tail probabilities (Efron & Tibshirani, 1993), point estimation (Schennach, 2007), estimation
of the spatial quantile regression (Kostov, 2012), Bayesian treatment of quantile regression (Schennach, 2005), small area
estimation (Chaudhuri & Ghosh, 2011) and Calibration estimation (Kim, 2010), among others.

Let X = {X1, . . . , Xn} be a generic sample of size n from F and suppose Fn(x) = ∑n
i=1

1
n
I(Xi ≤ x) is the EDF of X

which places empirical frequencies (weights) 1/n on each Xi. Consider an estimator F̃p(x) = ∑n
i=1 piI(Xi ≤ x) of F which

assigns weights pi instead of 1/n to each Xi. To obtain the ET estimator of F , we minimize an aggregated distance be-
tween the empirical weights 1/n and pi subject to some constraints on the pi’s. More specifically, one chooses a distance
d(̃Fp, Fn) = ∑n

i=1 d(pi,
1
n
) and minimizes d(̃Fp, Fn) subject to

∑n
i=1 pi = 1 and some other constrains such as g(X, θ0) =∑n

i=1 pig(Xi, θ0) = 0, using the following Lagrangian multiplier method

d(̃Fp, Fn)− λg(X, θ0)− α

( n∑
i=1

pi − 1

)
, (3)

where g(X, θ0) is often imposed under the null hypothesis in a testing problem or any other conditions that one needs to
account for in practice. Note that the minimization in (3) can also be done by minimizing the distance between F̃p(x) and
any target estimator F̂p(x) =∑n

i=1 p̂iI(Xi ≤ x) other than the EDF Fn(t).

The choice of the discrepancy function d(·, ·) for the aggregated loss d(̃Fp, Fn) in (3) leads to different ET estimators of
F . Since Fn(x) is the nonparametric maximum likelihood estimator of F under the Kullback–Leibler distance subject to the
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restriction
∑n

i=1 pi = 1, one often uses

d(̃Fp, F̂p) =
n∑

i=1

pi log

(
pi

p̂i

)
.

We propose two ET estimators of F based on URSS data with sample size n = ∑k
r=1 mr where k is the set size. The ET

estimators are then used to propose new bootstrapping algorithms from URSS data.

2.1. Exponential tilting of all observations (EAT)

In this section, we propose our first ET estimator of F which is later used to resample from within each row of XURSS =
{X(r)j, r = 1, . . . , k; j = 1, . . . ,mr}. The idea behind the first ET estimator of F , for bootstrappingXURSS, is to find an estimator

F̃p(x) =
k∑

r=1

mr∑
j=1

p(r)jI(X(r)j ≤ x), (4)

subject to the constraints

k∑
r=1

mr∑
j=1

p(r)j = 1 and

k∑
r=1

mr∑
j=1

p(r)jX(r)j = XURSS, (5)

where XURSS = 1
n

∑k
r=1

∑mr
j=1 X(r)j.

Lemma 1. Let XURSS = {X(r)j, r = 1, . . . , k; j = 1, . . . ,mr} be a URSS sample of size n from the underlying population F when
the set size is k and X(r)j ∈ R is the rth order statistic in a simple random sample of size k from F . The optimum values of p(r)j
in (4) under the constraints (5) are given by

p̃(r)j = exp(λX(r)j)

k∑
r=1

mr∑
j=1

exp(λX(r)j)

, r = 1, . . . , k; j = 1, . . . ,mr , (6)

where λ is obtained from
∑k

r=1

∑mr
j=1 p(r)jX(r)j = XURSS.

Proof. Using the Lagrange multipliers method, and by minimizing

k∑
r=1

mr∑
j=1

p(r)j ln

(
p(r)j

1/n

)
+ λ

(
k∑

r=1

mr∑
j=1

p(r)jX(r)j − XURSS

)
+ α

(
k∑

r=1

mr∑
j=1

p(r)j − 1

)
, (7)

with respect to p(r)j’s, one can easily obtain the optimum values in (6). �

In Section 3, we use F̃p(x) =∑k
r=1

∑mr
j=1 p̃(r)jI(X(r)j ≤ x) for bootstrapping XURSS instead of the commonly used empirical

DF. It is worth noting that for hypothesis testing problems about the underlying population mean μ involving the null

hypothesis H0 : μ = μ0, minimization in (7) is done subject to the condition
∑k

r=1

∑mk
j=1 p(r)jX(r)j = μ0. Using the optimum

weights p̃(r)j from the ET estimate of F , we also propose S2 = ∑k
r=1

∑mr
j=1 p̃(r)j(X(r)j − XURSS)

2 to estimate the population

variance σ 2.

2.2. Exponential tilting of rows (EAR)

By the structure of the URSS data, XURSS, we observe that X(r)1, . . . , X(r)mr are i.i.d. samples from F(r)(·), which is the
distribution of the rth order statistic in a simple random sample of size k from F . Since

F(t) = 1

k

k∑
r=1

F(r)(t),

the idea behind our next proposed ET estimator of F is to estimate each F(r) using X(r)1, . . . , X(r)mr , and construct an estimator
of F by averaging over these estimators using suitable weights obtained from the Lagrange multipliers method under some
constraints. To this end, we work with an estimator of F of the form

F̃p(t) =
k∑

r=1

p(r )̂F(r)(t), (8)

where F̂(r)(t) = 1
mr

∑mr
j=1 I(X(r)j ≤ t) is the EDF of X(r)1, . . . , X(r)mr .
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Lemma 2. Let XURSS = {X(r)j, r = 1, . . . , k; j = 1, . . . ,mr} be a URSS sample of size n from F where the set size is k and
{X(r)j, j = 1, . . . ,mr} are i.i.d. samples from F(r) the DF of the rth order statistic of a simple random sample of size k from F .

Then, an optimum estimator of F in the form of (8) under the constraints
∑k

r=1 p(r) = 1 and
∑k

r=1 p(r)X̄(r) = XURSS, where

X (r) = 1
mr

∑mr
j=1 X(r)j, r = 1, . . . , k, is given by

F̃p(x) =
k∑

r=1

p̃(r)

mr

mr∑
j=1

I(X(r)j ≤ x) with p̃(r) = exp(λX (r))

k∑
r=1

exp(λX (r))

, (9)

where λ is obtained from
∑k

r=1 p(r)X (r) = XURSS.

Proof. The results easily follow using the Lagrange multipliers method and minimizing

k∑
r=1

p(r) ln

(
p(r)

1/k

)
+ λ

(
k∑

r=1

p(r)X (r) − XURSS

)
+ α

(
k∑

r=1

p(r) − 1

)
. (10)

with respect to p(r). �

In Section 3, we use F̃p(x) = ∑k
r=1

p̃(r)

mr

∑mr
j=1 I(X(r)j ≤ x) and propose a new bootstrapping algorithm to resample from

XURSS instead of the commonly used empirical DF. Here again for hypothesis testing problems involving H0 : μ = μ0 where

μ is the population mean, minimization in (10) is done subject to the condition
∑k

r=1 p(r)X (r) = μ0.

Remark 1. If for the observed URSS data all the mrs are large enough, then one can use ET estimators of F(r) by simply

treating X(r)j’s as a SRS of size mr from F(r) and constructing the estimator F̃(t) = 1
k

∑k
r=1 F̃(r)(t) for F . Here, F̃(r)(t) =∑mr

j=1 wj(r)I(X(r)j ≤ t) and wj(r)s are obtained subject to constraints
∑mr

j=1 wj(r) = 1 and
∑mr

j=1 wj(r)X(r)j = X (r), for
r = 1, . . . , k, using the following Lagrange multipliers problems:

mr∑
j=1

wj(r) ln

(
wj(r)

1/mr

)
+ λr

(
mr∑
j=1

wj(r)X (r)j − X (r)

)
+ αr

(
mr∑
j=1

wj(r)− 1

)
, r = 1, . . . , k.

3. Bootstrapping URSS and RSS

In this section, we propose two new bootstrapping techniques to resample from a balanced or unbalanced ranked set
sample of size n. The first algorithm is based on the ET estimator of F in Lemma 1 to resample the entire URSS while the
second one uses the ET estimator of F in Lemma 2 to resample from within each row separately. We note that most of the
bootstrap methods developed for RSS are based on the EDF and one can easily modify them using ET estimators of F . Monte
Carlo simulation studies indicate that bootstrapping methods based on the ET estimators of F perform better than their
counterparts using the EDF.

3.1. Bootstrapping algorithm: EAT

To resample from the ET estimator of F given by

F̃p(x) =
k∑

r=1

mr∑
j=1

p̃(r)jI(X(r)j ≤ x),

where p̃(r)j is defined in (6) we proceed as follows:

1. Assign probability p̃(r)j to each element X(r)j of XURSS.

2. Randomly draw X
1 , . . . , X


k from XURSS according to probabilities {p̃(r)j}, order them as X
(1) ≤ · · · ≤ X
(k) and retain

X∗(r)1 = X
(r).

3. Repeat Step 2, for r = 1, . . . , k and j = 1, . . . ,mr to generate a bootstrap URSS

{
X∗(r)j
}
.

4. Repeat Steps 2–3, B times to obtain the bootstrap samples.

One can easily validate the use of the ET estimator of F for different bootstrapping purposes. For example, suppose we
want to carry out a bootstrap test for testing H0 : μ = μ0 against Ha : μ > μ0, where μ is the unknown parameter of
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interest. Using Hall (1992), the Edgeworth expansion of the p-value for testing H0 against Ha based on a SRS of sizemk from

the underlying population with the test statistic T = X̄−μ0

S/
√
mk

, is given by

P = P(T ≥ t) = 1− Φ(t)− (mk)−1/2q(t)φ(t)+ O

(
1

mk

)
, (11)

where q(·) is a quadratic function andΦ(·) andφ(·) are the standard normal distribution and density functions, respectively.
We consider the problem for a balanced RSS case, as the following argument can also be applied to URSS data with some
modifications. Let {X(r)j, r = 1, . . . , k; j = 1, . . . ,m} be a balanced ranked set sample of size mk from the underlying
population with meanμ. We show that the ET bootstrap approximation of the sampling distribution of T is in error by only
1/mk and the p-value obtained through the EAT method has the desirable second order accuracy This is similar to results
obtained in DiCiccio and Romano (1990). For more details see Efron (1981) and Feuerveger, Robinson, and Wong (1999).

Proposition 1. Suppose {X∗(r)j, r = 1, . . . , k; j = 1, . . . ,m} is a bootstrap sample generated from the EAT algorithm. Let T ∗ =
(X̄∗−X̄)

S∗/
√
mk

be the bootstrap test for testing H0 : μ = μ0 with p-value P∗, where X̄∗ is the mean of the bootstrap sample obtained

form the ET estimator of F and S2∗ = 1
k

∑k
r=1 S

2∗
(r) with S2∗(r) = 1

m−1

∑m
j=1(X

∗
(r)j − X̄∗(r))

2. Then,

P − P∗ = O

(
1

mk

)
, (12)

where P, given by (11), is the p-value of the usual T -test based on a simple random sample of comparable size mk from the
underlying population.

Proof. For simplicity, wewrite the resampled data as {X∗1 , . . . , X∗km}. In order to testH0 : μ = μ0, and to ensure that the null

hypothesis is incorporated into the ET estimator of F , we introduce the Lagrangemultipliers for the constraints
∑n

i=1 p̃i = 1

and
∑n

i=1 p̃iX
∗
i = μ0, where the weights p̃i are obtained as

p̃i(μ0) = exp(λ(μ0)X
∗
i )

mk∑
j=1

exp(λ(μ0)X
∗
j )

, i = 1, . . . , km, (13)

and λ(μ0) is the coefficient calculated from
∑n

i=1 p̃i(μ0)X
∗
i = μ0. One can easily show that X∗i s are generated from

dFp(x) = e{A(λ(μ))−λ(μ)x}dFn(x), (14)

where A(λ(μ)) = log( 1
mk

∑k
i=1 exp(λ(μ)Xi)). To obtain the ET estimator of F under the null hypothesis we must have

μ0 = A′(λ(μ0)) =

mk∑
i=1

Xi exp(λ(μ0)Xi)

mk∑
i=1

exp(λ(μ0)Xi)

.

Therefore, one can use the bootstrap test statistic T ∗ = (X̄∗−X̄)

S∗/
√
mk

for testing H0 : μ = μ0 where X̄∗ is the mean of the

bootstrap sample obtained form the ET estimator of F and S2∗ = 1
k

∑k
r=1 S

2∗
(r) with S2∗(r) = 1

m−1

∑m
j=1(X

∗
(r)j − X̄∗(r))

2. Following
Hall (1992) and using the Edgeworth expansion, the p-value for testingH0 : μ = μ0 againstH0 : μ > μ0 using the bootstrap
test statistic T ∗ is given by

P∗ = P(T ∗ ≥ t|Fp) = 1− Φ(t)− (mk)−1/2q̂(t)φ(t)+ O

(
1

mk

)
,

where q̂ is a quadratic function. Now, the results follows from (11). �

3.2. Bootstrapping algorithm EAR

The idea behind this method is to use the ET estimator of F given by

F̃p(x) =
k∑

r=1

p̃(r)

mr

mr∑
j=1

I(X(r)j ≤ x),

where p̃(r) is defined in (9). To this end we proceed as follows:
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1. Assign probabilities p̃(r) to each row Xr of XURSS, r = 1, . . . , k.
2. Select a row randomly using p̃(r) and select an observation randomly from that row.
3. Continue Step 2 for k times to obtain k observations.
4. Order them as X
(1) ≤ · · · ≤ X
(k) and retain X∗(r)1 = X
(r)
5. Perform Steps 2–4 for mr and obtain {X∗(r)1, . . . , X∗(r)mr

}.
6. Perform Steps 2–5 for r = 1, . . . , k.
7. Repeat Steps 2–6, B times to obtain the bootstrap samples.

4. Monte Carlo study

In this section, we compare the finite sample performance of out nonparametric EAT and EAR resampling methods with
a parametric bootstrap (PB) procedure. The PBmethod uses a parametric test (PT) with an asymptotic normal distribution to
test the hypothesisH0 : μ = μ0, whereμ is the unknown parameter of interest andμ0 is a known constant. The resampling
is performed using B = 500 resamples and the entire experiment is then replicated 2000 times. We use several RSS and
URSS designs with different sample sizes when the set size is chosen to be k = 5. We also conducted unreported simulation
studies for other values of k and we observed similar performance that we summarize below.

The RSS designs that we consider are written as D = (m1,m2, . . . ,m5)with nD =∑k
r=1 mr . For example, the first design

is balanced with k = 5 andmr = 5 observations per stratum, which is denoted by

D1 = (5, 5, 5, 5, 5) with nD1
= 25.

Similarly, we define the following designs,

D2 = (8, 3, 3, 2, 4) with nD2
= 25,

D3 = (3, 2, 5, 8, 3) with nD3
= 21,

D4 = (3, 10, 3, 3, 3) with nD4
= 22,

D5 = (4, 2, 3, 3, 8) with nD5
= 24.

We obtain samples from the Normal(0,1), Logistic(1,1) and Exponential(1) distributions.

4.1. Testing a hypothesis about the population mean

We first proceed with the following proposition.

Proposition 2. Suppose F is the DF of the variable of interest in the underlying population with
∫
x2dF(x) < ∞. Let F̂(r) be the

EDF of the rth row of a balanced RSS data and μ represent the population mean. Then (ϑ1, . . . , ϑk), with ϑi = μ(̂F(i))−μ(F(i)),
converges in distribution to a multivariate normal distribution with the mean vector zero and the covariance matrix Σ =
diag(σ 2(F(1))/m, . . . , σ

2(F(k))/m) where σ 2(F(i)) =
∫
(X − μ(i))

2dF(i) and μ(i) =
∫
xdF(i)(x).

This proposition suggests to use the following test statistic for testing the hypothesis H0 : μ = μ0

T (X, μ0) = 1

k

k∑
r=1

(
X̄(r) − μ0

S

)
d→N(0, 1), (15)

where

S2 = 1

k2

k∑
r=1

S2(X(r))

mr

. (16)

The test statistic T (X, μ0), which is approximately Normal(0, 1) for large k, is referred to as the PT in the rest of the work.
Ahn, Lim, andWang (2014) consider the Welch-type (WT) approximation to the distribution T (X, μ0), where the degree of
freedom of the test can be approximated using

S2 =
( k∑

r=1

S2(X(r))

mr

)2/( k∑
r=1

S4(X(r))

m2
r (mr − 1)

)
. (17)

The nonparametric bootstrap tests using the EAT and EAR methods are conducted based on the following steps:

1. Let X be an URSS/RSS sample from F .
2. Calculate T = T (X, μ0), given in (15), under the null hypothesis H0 : μ = μ0.
4. Apply each of the resampling procedures on X to obtain X∗b = {X∗(r)j}b.
5. Calculate T ∗b = T (X∗b , μ0), b = 1, . . . , B.

6. Obtain the proportion of rejections via
#{T∗

b
>T }
B

to estimate the p-value.
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Table 1
Observed α-levels of the proposed tests for testing H0 : μ = 0 under the normal distribution

and H0 : μ = 1 for the exponential and logistic distributions.

PT WT EAT EAR PB

D1 0.062 0.041 0.056 0.052 0.050

D2 0.078 0.039 0.054 0.056 0.054

N(0, 1) D3 0.072 0.038 0.046 0.047 0.049

D4 0.071 0.033 0.057 0.058 0.054

D5 0.064 0.039 0.043 0.045 0.047

D1 0.107 0.071 0.081 0.080 0.051

D2 0.133 0.072 0.076 0.079 0.049

Exponential(1) D3 0.132 0.081 0.089 0.090 0.054

D4 0.131 0.073 0.098 0.094 0.050

D5 0.098 0.074 0.058 0.055 0.053

D1 0.052 0.042 0.05 0.051 0.047

D2 0.076 0.041 0.058 0.059 0.050

Logistic(1, 1) D3 0.065 0.033 0.048 0.050 0.046

D4 0.068 0.034 0.059 0.057 0.051

D5 0.059 0.034 0.043 0.044 0.041

We also performed the desired testing hypothesis using PB by generating URSS samples from Normal(0,1), Logistic(1,1)
and exponential(1) distributions. To perform PB test we use the following steps (for more details on PB method see Efron
and Tibshirani (1993)):

1. Let X be a URSS sample from a distribution Fθ where θ is the unknown parameter and let μ = Eθ (X).
2. Calculate T = T (X, μ0), under the null hypothesis H0 : μ = μ0.
3. Estimate θ from X and take a URSS from F̂θ , X

∗
b = {X∗(r)j}b.

4. Calculate T ∗b = T ∗b (X
∗
b , μ0).

5. Obtain the proportion of rejections via
#{T∗

b
>T }
B

to estimate the p-value.

To conduct the parametric bootstrap we estimated the population mean using the sample mean and used σ = 1.
Subsequently, we generated samples from the N(x̄, 1), Logistic(x̄, 1) and Exponential(x̄) distributions.

Table 1 displays the observed α levels. The parametric bootstrap (PB) method is accurate and the estimated α levels are
close to the nominal level 0.05. The PT test is liberal and its approximated p-value is higher than the nominal level, specially
under exponential distribution.We observe that theWT test is a bit conservative under the normal and logistic distributions,
i.e., the approximated p-values are lower than the nominal level. The observed α levels for EAR follow the PBmethod closely
and they are less liberal than the PT under the exponential distribution.

Table 2 displays the estimated power values under shift alternativesHa : μ = μ0+δwith δ �= 0.We used 95% percentile
bootstrap confidence intervals forμ, using EAT and EAR to obtain the power of the test statistics at α = 0.05. The entries of
these tables are the proportion of times that the bootstrap confidence intervals do not cover zero. Compared with PT, both
the EAT and EAR methods lead to high powers, hence they can be nominated to conduct appropriate tests. The results of
other simulation studies (not presented here) show similar behavior for other values of k such as k = 2, 3, 8, 10. We also
considered different sample sizes. The better performance of the proposed methods are apparent for small and relatively
small sample sizes (which often happens in practice for RSS) and they perform similarly when the sample size gets very
large for a fixed set size.

4.2. Imperfect ranking

In this section, we compare the finite sample performance of our proposed bootstrapping techniques with the PB under
imperfect ranking cases. In order to produce the imperfect URSS/RSS samples, we use themodel proposed byDell and Clutter
(1972). Let X[i]j and X(i)j denote the judgment and true order statistics, respectively. Suppose

X[i]j = X(i)j + εij, εij ∼ N(0, σε),

where X(i)j and εij are independent.
Using imperfect URSS with σε = 0.5 and 1, we report the observed significance levels for testing H0 : μ = μ0 against

Ha : μ > μ0 for different methods in Table 3. These choices of σε resulted in the observed correlation coefficients of 0.89
and 0.70 between the ranking variable and the variable of interest, respectively. As compared with the results under the
perfect ranking assumption, the proposed methods seem to be robust with respect to imperfect ranking. It was shown
that the test under exponential distribution for the imperfect sampling is a bit liberal. We also observe that imperfect
ranking affects the power of the tests since, as it is shown in Table 4, by adding errors in ranking, the power of the
proposed tests decreases. The importance of accurate ranking in RSS designs has been mentioned in several works. Frey,
Ozturk, and Deshpande (2007) considered nonparametric tests for the perfect judgment ranking. Li and Balakrishnan (2008)
proposed several nonparametric tests to investigate perfect ranking assumption. Vock and Balakrishnan (2011) suggested a
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Table 2
Power comparison for the proposed tests under location shift.

δ D Normal dist. Exponential dist. Logistic dist.

PT WT ETA ETR PB PT WT ETA ETR PB PT WT ETA ETR PB

0.1 D1 0.148 0.097 0.152 0.145 0.138 0.229 0.148 0.222 0.208 0.209 0.076 0.049 0.088 0.088 0.077

D2 0.143 0.069 0.140 0.142 0.139 0.227 0.093 0.216 0.212 0.208 0.116 0.052 0.118 0.125 0.112

D3 0.145 0.061 0.147 0.150 0.142 0.255 0.130 0.255 0.241 0.242 0.122 0.037 0.130 0.128 0.120

D4 0.155 0.057 0.156 0.164 0.149 0.216 0.096 0.216 0.204 0.205 0.112 0.032 0.118 0.120 0.116

D5 0.141 0.064 0.142 0.141 0.142 0.190 0.143 0.187 0.176 0.164 0.108 0.034 0.106 0.102 0.104

0.2 D1 0.389 0.297 0.384 0.388 0.382 0.416 0.304 0.412 0.388 0.380 0.162 0.102 0.177 0.184 0.157

D2 0.340 0.185 0.337 0.344 0.333 0.375 0.180 0.375 0.359 0.347 0.175 0.085 0.183 0.191 0.176

D3 0.333 0.143 0.339 0.335 0.327 0.405 0.235 0.399 0.385 0.386 0.159 0.057 0.174 0.175 0.158

D4 0.336 0.144 0.336 0.337 0.336 0.381 0.172 0.379 0.363 0.360 0.147 0.058 0.155 0.158 0.147

D5 0.308 0.168 0.310 0.315 0.312 0.190 0.286 0.187 0.176 0.164 0.137 0.064 0.141 0.134 0.139

0.3 D1 0.696 0.600 0.698 0.684 0.694 0.644 0.500 0.650 0.618 0.603 0.294 0.215 0.291 0.302 0.282

D2 0.571 0.351 0.571 0.569 0.559 0.553 0.292 0.563 0.538 0.517 0.258 0.145 0.261 0.261 0.252

D3 0.561 0.284 0.564 0.566 0.549 0.604 0.347 0.598 0.581 0.568 0.252 0.093 0.264 0.264 0.249

D4 0.569 0.302 0.566 0.565 0.559 0.524 0.281 0.518 0.520 0.501 0.223 0.102 0.229 0.232 0.227

D5 0.557 0.355 0.549 0.556 0.541 0.640 0.476 0.621 0.592 0.573 0.250 0.129 0.251 0.252 0.243

Table 3
Observed α-levels for the proposed tests for testing H0 : μ = 0 for normal distribution and H0 : μ = 1 for the exponential

and logistic distributions, under imperfect ranking.

D σε = 0.5 σε = 1

PT ETA ETR IETA IETR PT ETA ETR IETA IETR

Normal distribution

D1 0.056 0.054 0.054 0.053 0.056 0.069 0.068 0.066 0.066 0.068

D2 0.072 0.072 0.070 0.070 0.073 0.074 0.077 0.081 0.071 0.077

D3 0.067 0.066 0.069 0.067 0.067 0.087 0.081 0.079 0.081 0.077

D4 0.058 0.057 0.057 0.060 0.056 0.068 0.070 0.066 0.060 0.066

D5 0.067 0.063 0.067 0.066 0.065 0.067 0.070 0.069 0.069 0.066

Exponential distribution

D1 0.073 0.065 0.068 0.068 0.068 0.067 0.059 0.060 0.059 0.056

D2 0.084 0.076 0.079 0.077 0.078 0.083 0.078 0.075 0.078 0.074

D3 0.099 0.094 0.094 0.093 0.092 0.063 0.058 0.063 0.053 0.051

D4 0.103 0.100 0.099 0.096 0.097 0.076 0.082 0.076 0.068 0.070

D5 0.078 0.069 0.070 0.069 0.069 0.071 0.067 0.066 0.059 0.065

Logistic distribution

D1 0.060 0.061 0.061 0.062 0.064 0.058 0.061 0.061 0.056 0.061

D2 0.071 0.074 0.074 0.070 0.073 0.075 0.076 0.079 0.076 0.079

D3 0.077 0.078 0.079 0.081 0.079 0.071 0.072 0.072 0.067 0.071

D4 0.078 0.080 0.080 0.080 0.078 0.075 0.079 0.075 0.075 0.076

D5 0.068 0.069 0.065 0.067 0.067 0.064 0.060 0.063 0.064 0.063

Table 4
Power comparison for the proposed tests under location shift and imperfect ranking with σε = 0.5.

δ D Normal dist. Exponential dist. Logistic dist.

PT EAT EAR IEAT IEAR PT EAT EAR IEAT IEAR PT EAT EAR IEAT IEAR

0.1 D1 0.162 0.162 0.163 0.168 0.162 0.218 0.212 0.203 0.208 0.202 0.090 0.099 0.101 0.100 0.105

D2 0.163 0.161 0.168 0.170 0.174 0.211 0.208 0.201 0.199 0.195 0.105 0.114 0.110 0.112 0.109

D3 0.143 0.146 0.152 0.143 0.150 0.230 0.223 0.221 0.225 0.225 0.105 0.116 0.116 0.113 0.119

D4 0.149 0.155 0.154 0.154 0.161 0.222 0.215 0.212 0.210 0.208 0.105 0.111 0.116 0.112 0.114

D5 0.158 0.158 0.159 0.155 0.155 0.212 0.190 0.189 0.193 0.190 0.088 0.090 0.093 0.094 0.094

0.2 D1 0.394 0.397 0.399 0.404 0.40 0.413 0.382 0.381 0.388 0.381 0.160 0.171 0.169 0.171 0.166

D2 0.349 0.353 0.355 0.357 0.358 0.379 0.362 0.364 0.355 0.350 0.159 0.171 0.172 0.169 0.172

D3 0.325 0.340 0.337 0.333 0.340 0.394 0.373 0.378 0.374 0.375 0.152 0.157 0.161 0.156 0.162

D4 0.332 0.327 0.333 0.328 0.338 0.373 0.354 0.358 0.352 0.351 0.169 0.171 0.176 0.179 0.181

D5 0.326 0.322 0.328 0.328 0.334 0.412 0.374 0.374 0.372 0.367 0.148 0.156 0.151 0.152 0.153

0.3 D1 0.709 0.708 0.704 0.709 0.706 0.643 0.615 0.609 0.607 0.607 0.303 0.310 0.309 0.309 0.312

D2 0.584 0.588 0.586 0.584 0.588 0.517 0.498 0.498 0.493 0.482 0.259 0.269 0.273 0.277 0.275

D3 0.556 0.563 0.561 0.557 0.556 0.594 0.571 0.570 0.569 0.566 0.238 0.249 0.254 0.250 0.255

D4 0.571 0.570 0.565 0.565 0.569 0.530 0.516 0.518 0.508 0.507 0.247 0.249 0.249 0.248 0.257

D5 0.558 0.563 0.555 0.556 0.561 0.619 0.572 0.574 0.568 0.563 0.247 0.255 0.252 0.255 0.251
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Jonckheere–Terpstra type test statistic for perfect ranking in balanced RSS. These tests are further studied by Frey andWang
(2013) and compared with the most powerful test.

In order to derive the theoretical results under the imperfect ranking assumption, one can proceed as follow. First, note
that under the imperfect ranking the density function of characteristic of interest for the unit judged to be ranked r is no
longer f(r). We denote this density with f[r]. One approach to derive the CDF F[r] of the rth judgmental order statistic is to use
the following model

F[r] =
k∑

s=1

psrF(s)(x), (18)

where psr is the probability that the sth order statistic is judged to have rank r , with
∑k

s=1 psr =
∑k

k=1 psr = 1.

Lemma 3. Suppose the imperfect ranking in the RSS design is such that

F[r](x) =
k∑

s=1

psrF(s)(x), ∀x ∈ R.

For the resampling technique EAT (or EAR) under the imperfect ranking assumption, which is denoted by IEAR (or IEAR), we have

sup
t∈R

|̂F∗〈n〉(t)− F(t)| = 0,

where F̂∗〈n〉(t) is the EDF of the resulting bootstrap sample.

Proof. We first note that using the IEAT (or IEAR), we have

F∗[r](t) =
k∑

s=1

psrF
∗
(s)(t),

where F̃∗[r](.) and F̃∗(r)(t) are the EDF of the resulting bootstrap samples under the IEAT (or IEAR) and EAT (or EAR),
respectively. One can easily show that

˜̂F∗〈n〉(t) =
1

k

k∑
r=1

F̃∗[r](t) =
1

k

k∑
r=1

k∑
s=1

psr F̃
∗
(s) =

1

k

k∑
s=1

k∑
r=1

(psr)F̃
∗
(s)(t) =

1

k

k∑
s=1

F̃∗(s)(t) = ˜̂F∗n(t).

Hence, we have

˜̂F∗〈n〉(t)− F(t) = ( ˜̂F∗〈n〉(t)− ˜̂F(t))+ ( ˜̂F∗n(t)− F(t)) = O

(
1

mk

)
,

and this completes the proof. �

4.3. Comparison with the empirical likelihood method

In this section, we compare the performance of the bootstrap tests based on ET estimators of F with the one based
on the empirical likelihood estimator of F which is already studied in the literature by Baklizi (2009) and Liu et al. (2009).
Empirical likelihood is an estimationmethod based on likelihood functionswithout having to specify a parametric family for
the observed data. Empirical likelihood methodology has become a powerful and widely applicable tool for non-parametric
statistical inference and it has been used under different sampling designs. For a comprehensive review of the empirical
likelihood method and some of its variations see Owen (2001). For testing the null hypothesis H0 : μ = μ0 using the
empirical likelihood estimator of F based on a balanced RSS sample, Baklizi (2009) showed that under the finite variance
assumption

C0 l(μ0)
L→χ2

1 , (19)

where

C0 =

k∑
r=1

σ 2
r +
∑

(X̄[r] − μ0)
2

k∑
r=1

σ 2
r

and l(μ0) =

{
k∑

r=1

m∑
j=1

(X[r]j − μ0)

}2

k∑
r=1

m∑
j=1

(X[r]j − μ0)2

. (20)
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Fig. 1. The Q–Q plot for the p-values of the proposed test statistic based on the EAR algorithm (first column), and those proposed by Baklizi (2009) (second

column) and Liu et al. (2009) (the third column), respectively for the normal distribution when H0 : μ = 0 and the exponential and logistic distributions

for H0 : μ = 1.

However, this is a liberal test for small samples and it does not work for URSS case. Liu et al. (2009) proposed to use the
empirical likelihood method for RSS data by first averaging the observations of each cycle to construct

X̄j = 1

m

k∑
r=1

X(r)j, j = 1, . . . ,m.

Then, by observing that X̄j are i.i.d. samples from F , Liu et al. (2009) constructed the usual empirical likelihood estimator
of F and used it for a testing hypothesis problem. As we show below this method does not perform well, especially for RSS
samples when the number of cycles is small.

The following simulation study shows that using EAR based on the ET estimator of F can be used to overcome these
difficulties. To this end, we consider a balanced RSS with small sample, i.e., D6 = (2, 2, 2, 2, 2). Fig. 1, shows the Q–Q plots
of the p-values based on the EAR algorithm (first column), and those proposed by Baklizi (2009) (second column) and Liu
et al. (2009) (the third column), respectively for the normal distribution when H0 : μ = 0 and the exponential and logistic
distributions for H0 : μ = 1.

5. Real data application

In this section, we use a data set containing the birth weight and seven-month weight of 224 lambs along with the
mother’s weight at time of mating, collected at the Research Farm of Ataturk University, Erzurum, Turkey. Jafari Jozani and
Johnson (2012) as well as Ozturk and Jafari Jozani (2014) used this data set to study the performance of ranked set sampling
in estimating the mean, the total values and quantiles of the seven-month weight of these lambs. The measurement of the
weight of young sheep is usually labor intensive due to their active nature, and measurement errors can be inflated due to
this activity. However, one can easily rank a small number of lambs based on their birthweights or their mother’s weights to
perform a ranked set sampling design hoping that the RSS sample results in a more representative sample from the whole
population. Here, we treat these 224 records as our population, with the goal of a testing hypothesis problem about the
mean of the weight distribution of these 224 lambs at seven-month. We consider both perfect and imperfect ranking cases.
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Table 5
Summary statistics for the values of the birth weight and seven-month weight of 224 lambs along with the

mother’s weight at time of mating, collected at the Research Farm of Ataturk University, Erzurum, Turkey.

Variable Min Q1 Median Mean Q3 Max σ 2

Seven-month weight 20.30 25.50 27.90 28.11 31.00 40.50 15.21

Birth weight 2.50 3.87 4.40 4.36 4.80 6.70 0.63

Mother’s weight 42.20 49.68 52.30 52.26 55.10 63.70 19.22

Table 6
The values of the observed α-levels for testing H0 : μ = 28.11 for the weight distribution of

a population of 224 lambs based on different perfect and imperfect RSS design using the PT

and EAR algorithm.

Method D1 D2 D3 D4 D5

Perfect Ranking PT 0.062 0.094 0.085 0.076 0.083

EAR 0.055 0.052 0.044 0.046 0.047

Imperfect 1 PT 0.064 0.082 0.091 0.087 0.094

EAR 0.048 0.047 0.052 0.047 0.045

Imperfect 2 PT 0.065 0.090 0.086 0.086 0.091

EAR 0.048 0.042 0.051 0.043 0.046

Fig. 2. The histogram of the values of seven-month weight of 224 lambs with a kernel density estimator of their weight distribution as well as the scatter

plots of the birth weight and mother’s weight of these lambs against their weight at seven-months.

For the perfect ranking scenario, ranking is done based on the weight of lambs at seven-month. For the imperfect ranking,
we consider two cases. In the first case (Imperfect 1), ranking is done based on the birth weight of the lambs. The Kendall’s
τ between the seven-month weight and the birth weight is 0.64. In the second case (Imperfect 2), we perform the ranking
process based on the mother’s weight at time of mating which results in a small Kendal’s τ of 0.41 between the lambs
weight at seven-month andmother’s weight at the time of mating. Summary statistics for these variables for the underlying
population are presented in Table 5. Fig. 2 shows the histogram of the seven-month weight of these lambs with a kernel
density estimator of their weight distribution. We also present the scatter plots of the birth weight and mother’s weight of
these lambs against theirweight at seven-months.We observe that there is a stronger association between the seven-month
weight and the birth weight of these lambs. So, we expect to observe a better results under the Imperfect 1 scenario.

Table 6 presents the results of the analysis for a testing hypothesis problem to testH0 : μ = 28.11 based on different RSS
sampling designs as in Section 4. Based on the obtained α-level for each sampling design under the PT and EAR algorithm
we observe that our proposed bootstrap test using the ET estimator of the DF shows a satisfactory performance compared
with the PT method in both perfect and imperfect ranking scenarios.

6. Concluding remarks

We propose nonparametric estimators of the cumulative distribution of a continuous random variable using the ET
empirical likelihood method based on ranked set sampling designs. The ET DF estimators are used to construct new
resampling techniques for URSS data. We study different properties of the proposed algorithms. For a hypothesis testing
problem, we show that the bootstrap test based on exponential tilted estimators exhibit a small bias of order O(n−1), which
is a very desirable property. We compared the performance of our proposed techniques with those based on empirical
likelihood. The latter are developed under the balanced RSS assumption and they are not applicable for URSS situation. The
results of the simulation studies as well as a real data application show that the method based on ET estimators of the DF
perform very well even for moderate or small sample sizes.
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