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In this paper, we show that the multiplicative bias correction (MBC) techniques can be

applied for generalized Birnbaum–Saunders (GBS) kernel density estimators. First, some

properties of the MBC-GBS kernel density estimators (bias, variance and mean integrated

squared error) are shown. Second, the choice of bandwidth is investigated by adopting

the popular cross-validation technique. Finally, the performances of the MBC estimators

based on GBS kernels are illustrated by a simulation study, followed by a real application

for nonnegative heavy tailed (HT) data. In general, in terms of integrated squared bias (ISB)

and integrated squared error (ISE), the proposed estimators outperform the standard GBS

kernel estimators.
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1. Introduction

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) continuous random variables with an unknown prob-
ability density function (pdf) f on the support T (T = R or T = [0,∞)). A continuous symmetric or asymmetric kernel

estimator f̂h(x) of f (x) can be defined as follows:

f̂h(x) = 1

n

n∑
i=1

Kx,h(Xi) (1)

where h = h(n) > 0 is an arbitrary sequence of smoothing parameters (bandwidths) andKx,h is the continuous symmetric or
asymmetric kernel with the target x and the bandwidth h. Note that in symmetric case, we have Kx,h(·) = (1/h)K{(x−·)/h},
where K(·) is the kernel functionwhich is a symmetric pdf independent of x and h; see, e.g., Parzen (1962), Rosenblatt (1956)
and Silverman (1986). It is well known that the symmetric kernel estimator is inappropriate for estimating densities with
support T = [0,∞), because it causes boundary bias. Thus, the asymmetric kernels have been proposed as a good solution
for avoiding these boundary effects. This simple idea is due to Chen (2000) (gamma and modified gamma kernels), Scail-
let (2004) (inverse and reciprocal inverse Gaussian kernels), Jin and Kawczak (2003) (log-normal and Birnbaum–Saunders
(BS) kernels) and Marchant, Bertin, Leiva, and Saulo (2013) (generalized Birnbaum–Saunders (GBS) kernels); see also Chen
(1999) when the support is T = [0, 1] and Kokonendji and Senga Kiessé (2011) for discrete case (T = N).

Assuming that the true density f is twice continuously differentiable, then the bias of (1) is O(h2)with symmetric kernels
and O(h) with asymmetric kernels as h → 0. Jones, Linton, and Nielsen (1995) and Terrell and Scott (1980) proposed the
so-calledmultiplicative bias correction (MBC) techniques, which improve bias from O(h2) as the bandwidth h→ 0, to O(h4)
for kernel density using symmetric second-order kernels, see also Jones and Foster (1993) for the same context. Recently,
Hirukawa (2010) and Hirukawa and Sakudo (2014) have demonstrated that these two classes of MBC approaches can be
applied to kernel density estimation on the unit interval using beta and modified beta kernels and for density estimation
using asymmetric kernels (gamma, modified gamma, inverse Gaussian, reciprocal inverse Gaussian, log-normal and BS
kernels), respectively. The authors have shown that the order of magnitude in bias is improved from O(h) to O(h2).

The main goal of this paper is to extend the application of MBC approaches for GBS kernel density estimation as in
Hirukawa (2010) and Hirukawa and Sakudo (2014). These previous studies are motivations of this paper. Our study is also
motivated by several points. First, the family of GBS kernels introduced recently byMarchant et al. (2013) has a large number
of particular cases such as the BS-classical, BS-power-exponential (BS-PE) and BS-Student-t (BS-t) kernels. Second, the GBS
kernels aremore appropriate for estimating densities of nonnegative HT data, because of their flexibility and properties; see
Jin and Kawczak (2003) and Marchant et al. (2013). As third motivation, some applications of GBS kernel methods can be
found in various domains such as in economics, finance, reliability, actuarial and also environmental sciences.

This paper is organized as follows. Section 2 briefly recalls the GBS distribution and standard GBS kernel density
estimators. In Section 3 we develop asymptotic properties of MBC-GBS kernel density estimators and adopt the unbiased-
cross validation (UCV) procedure of choosing the bandwidth for proposed estimators. Section 4 conducts Monte Carlo
simulations to compare sample finite performance of standard GBS and proposed MBC-GBS kernel estimators. Section 5
provide an application on real environmental data and all proofs are given in Section 6. Finally, Section 7 concludes the paper.

2. A short review on GBS kernels

In this section, we present a brief recall on GBS distribution and GBS kernel density estimators.

2.1. GBS distribution

Consider a GBS random variable T ∼ GBS(α, β; g), where α > 0 is the shape parameter, β > 0 is the scale parameter
and g is a real function that generates the density of random variable Z = (√

T/β −√β/T) /α with standard symmetric
distributions; see Marchant et al. (2013) for more details. The probability density function (pdf) of T is given by

fT (t;α, β; g) = cg

(
1

α2

(
t

β
+ β

t
− 2

))
1

2α

(
1√
βt
+
√
β

t3

)
, t > 0;α > 0, β > 0, (2)
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Table 1
Constant c, cg2 and density generator g for the indicated distribution.

Distribution c cg2 g = g(u), u > 0

Normal 1√
2π

1√
π

exp
(− 1

2
u
)

PE ν

2
1
2ν Γ ( 1

2ν
)

ν

Γ

(
1
2ν

) exp
(− 1

2
uν
)
, ν > 0

t
Γ ( ν+1

2
)√

νπΓ ( νπ )

νΓ (ν)√
πΓ

(
1+2ν
ν

) (
1+ u

ν

)− (ν+1)
2 , ν > 0

Table 2
Values of u1(g) and u2(g) for the indicated distribution.

Distribution u1(g) u2(g)

Normal 1 3

PE
2
1
ν Γ

(
3
2ν

)
Γ

(
1
2ν

) 2
2
ν Γ

(
5
2ν

)
Γ

(
1
2ν

)
t ν

ν−2
, ν > 2 3ν2

(ν−2)((ν−4))
, ν > 4

Table 3
GBS kernels for the indicated distribution.

Distribution Kernel

Normal 1√
2π

exp

(
− 1

2h

(
y

x
+ x

y
− 2

))
1

2
√
h

(
1√
xy
+
√

x

y3

)
PE ν

2
1
2ν Γ ( 1

2ν
)

exp

(
− 1

2hν

(
y

x
+ x

y
− 2

))
1

2
√
h

(
1√
xy
+
√

x

y3

)
, ν > 0

t
Γ ( ν+1

2
)√

νπΓ ( νπ )

[
1+ 1

νh

(
y

x
+ x

y
− 2

)]−( ν+1
2

)
1

2
√
h

(
1√
xy
+
√

x

y3

)
, ν > 0

where c = 1/
∫∞
−∞ g(y2)dy is the normalization constant; see Table 1 for some examples of g and c. The kth moment of the

GBS distribution is given by

E(T k) = βk
k∑

i=0

(
2k
2i

) i∑
j=0

(
i
j

)
E(Uk+j−i)

(α
2

)2(k+j−i)

, k = 1, 2, . . . (3)

where U = Z2 follows a generalized chi-square (Gχ2) distribution with one degree of freedom, and denoted U ∼ Gχ2(g);
see Fang, Kotz, and Ng (1990) and Marchant et al. (2013).

2.2. GBS kernel estimator

Given a random sample X1, . . . , Xn, the GBS kernel estimator of an unknown pdf f with nonnegative support is given by
Marchant et al. (2013)

f̂GBS(x) = 1

n

n∑
i=1

KGBS(h1/2,x;g)(Xi)

= 1

n

n∑
i=1

cg

(
1

h

(
Xi

x
+ x

Xi

− 2

))
1

2
√
h

(
1√
xXi

+
√

x

X3
i

)
, x > 0, (4)

where x > 0 is the target (point where the density is estimated) and h > 0 is a bandwidth (or smoothing parameter). The
GBS kernel KGBS is obtainedwith parameters α = h1/2, β = x and generator g; see Table 3 for some examples of GBS Kernels.
Note that the GBS-Normal kernel reduces to the original Birnbaum–Saunders kernel proposed by Jin and Kawczak (2003).

The expressions of the bias and variance for f̂GBS(x) are derived by Marchant et al. (2013). The asymptotic bias when
h→ 0 is given by

bias(̂fGBS(x)) = hu1(g)

2

(
xf ′(x)+ x2f ′′(x)

)+ o(h), (5)

where u1(g) = E(U) is given in Table 2. Similarly, when n→∞ and h→ 0 the asymptotic variance for x/h→∞ (interior
x) is

Var(̂fGBS(x)) = c2

cg2nh
1/2x

f (x)+ o

(
1

nh1/2

)
, (6)
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where c = 1/
∫∞
−∞ g(y2)dy and cg2 = 1/

∫∞
−∞ g2(y2)dy are given in Table 1 for some generator g . Note that we can easily

show that the variance approximation for x/h → κ , where κ > 0 is a constant (boundary x) is (see, e.g., Chen, 2000,
Hirukawa & Sakudo, 2014 and Scaillet, 2004)

Var(̂fGBS(x)) = O
{
(nh3/2)−1

}
. (7)

The mean integrated squared error (MISE) is also given in Marchant et al. (2013) and is expressed as

MISE(̂fGBS) =
∫ ∞

0

bias2(̂fGBS(x))dx+
∫ ∞

0

Var(̂fGBS(x))dx

=
(
hu1(g)

2

)2 ∫ (
xf ′(x)+ x2f ′′(x)

)2
dx+

(
c2

cg2nh
1/2

)∫
1

x
f (x)dx+ o

(
h2 + 1

nh
1
2

)
. (8)

The bandwidth h that minimizes (8) is given by

h
opt

GBS =
[

c2
∫

1
x
f (x)dx

cg2u2
1
(g)

∫
(xf ′(x)+ x2f ′′)2dx

]2/5

n−2/5. (9)

It is clear that the bandwidth given by (9) cannot be used directly in practice. For this reason, Marchant et al. (2013)
and Ziane, Adjabi, and Zougab (2015) have adapted respectively the biased and unbiased cross-validation (BCV and UCV)
procedures to bandwidth selection for GBS kernel estimators (4).

3. MBC for GBS density estimators

In this section, we adapt two classes of MBC techniques for GBS kernel density estimator, originally proposed by Jones
et al. (1995) and Terrell and Scott (1980) for symmetric kernel density estimator. Note that these MBC techniques have also
extended recently by Hirukawa (2010) and Hirukawa and Sakudo (2014) for kernel density estimation on the unit interval
using beta and modified beta kernels and for density estimation using asymmetric kernels (gamma, modified gamma,
inverse Gaussian, reciprocal inverse Gaussian, log-Normal and Birnbaum–Saunders kernels), respectively.

3.1. Estimators

Based on the same idea of Hirukawa (2010) and Terrell and Scott (1980), the MBC kernel density estimator using the GBS
kernels, which we simply denote as TS-GBS kernel density estimators, can be adapted as follows:

f̂TS-GBS(x) =
{̂
fGBS,h(x)

} 1
1−a

{̂
fGBS,h/a(x)

}− a
1−a , (10)

where f̂GBS,h and f̂GBS,h/a denote the GBS kernel density estimators given by (4) with bandwidths h and h/a, respectively, with
a ∈ (0, 1) is a constant that does not depend on the target x; see, e.g., Hirukawa (2010).

The second class of MBC techniques for symmetric kernel density estimators is attributed to Jones et al. (1995) (see also
Hirukawa, 2010 and Hirukawa & Sakudo, 2014 for asymmetric kernel density estimators). The analogue of their estimators
using GBS kernels, which we denote as JLN-GBS kernel density estimators is given by

f̂JLN-GBS(x) = f̂GBS(x)

{
1

n

n∑
i=1

KGBS(h1/2,x;g)(Xi)

f̂GBS(Xi)

}
, (11)

where KGBS(h1/2,x;g) is the GBS kernel.

3.2. Asymptotic properties

The following theorems present the asymptotic bias and variance of the TS-GBS and JLN-GBS kernel estimators. We
assume that

A1. f has four continuous and bounded derivatives.

A2. The sequence of bandwidths h = h(n) satisfies limn→∞ h = 0 and limn→∞ nh7/2 = ∞.

Note that these assumptions have been discussed in Hirukawa (2010) and Hirukawa and Sakudo (2014).

Theorem 1. Let f̂TS-GBS be the TS-GBS kernel estimator defined by (10). For a given x > 0 and under assumptions A1 and A2,
then:
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(i) the bias of the TS-GBS kernel estimators admits the following expansion

bias(̂fTS-GBS) = 1

a

[
1

2

{
l21(x)

f (x)
− l2(x)

}]
h2 + o(h2),

where l1(x) = 1
2
xu1(g)f

′ + 1
2
x2u1(g)f

′′ and l2(x) = 1
4
x2u2(g)f

′′ + 1
4
x3u2(g)f

′′′ + 1
24
x4u2(g)f

′′′′ with uk(g) = E(Uk),
k ∈ {1, 2} given in Table 2.

(ii) the variance of the TS-GBS kernel estimators is given by

Var(̂fTS-GBS) =

⎧⎪⎨⎪⎩
ψ(a)c2

cg2nh
1/2x

f (x)+ o

(
1

nh1/2

)
for x/h→∞

O
{
(nh3/2)−1

}
for x/h→ κ,

where ψ(a) = (1+a5/2)(1+a)1/2−2
√
2a3/2

(1+a)1/2(1−a)2
, c = 1/

∫∞
−∞ g(y2)dy, cg2 = 1/

∫∞
−∞ g2(y2)dy and κ > 0 is a constant.

Proof. The proof is given in Section 6.

Theorem 2. Let f̂JLN-GBS be the JLN-GBS kernel estimator defined by (11). For a given x > 0 and under assumptions A1 and A2,
then:

(i) the bias of the JLN-GBS kernel estimator is given by

bias(̂fJLN-GBS) = −f (x)

[
1

2
xu1(g)q

′(x)+ 1

2
x2u1(g)q

′′(x)
]
h2 + o(h2),

where q(x) = l1(x)/f (x) and l1(x) is the same as given in Theorem 1.

(ii) the variance of the JLN-GBS kernel estimators has asymptotic form

Var(̂fTS-GBS) =

⎧⎪⎨⎪⎩
c2

cg2nh
1/2x

f (x)+ o

(
1

nh1/2

)
for x/h→∞

O
{
(nh3/2)−1

}
for x/h→ κ,

where c = 1/
∫∞
−∞ g(y2)dy, cg2 = 1/

∫∞
−∞ g2(y2)dy and κ > 0 is a constant.

Proof. The proof is given in Section 6.

3.3. Global property

The criterion to use for the global propriety is the mean integrated squared error (MISE) defined as

MISE(̂fMBC-GBS) =
∫ ∞

0

bias2(̂fMBC-GBS(x))dx+
∫ ∞

0

Var(̂fMBC-GBS(x))dx, (12)

where f̂MBC-GBS is the TS-GBS or the JLN-GBS kernel density estimators.

The mean integrated squared error (MISE) of the TS-GBS kernel estimators given in (10) is expressed as

MISE(̂fTS-GBS) = h4

4a2

∫ ∞

0

{
l21(x)

f (x)
− l2(x)

}2

dx+ ψ(a)c2

cg2nh
1/2

∫ ∞

0

f (x)

x
dx+ o

(
1

nh1/2
+ h4

)
. (13)

The optimal bandwidth minimizing the corresponding MISE (13) is such that

h
opt

TS-GBS =

⎧⎪⎨⎪⎩ c2a2ψ(a)
∫∞
0

f (x)

x
dx

2cg2
∫∞
0

{
l2
1
(x)

f (x)
− l2(x)

}2

dx

⎫⎪⎬⎪⎭
2/9

n−2/9. (14)

Similarly, the MISE of the JLN-GBS kernel estimators given in (11) is given by

MISE(̂fJLN-GBS) = h4

∫ ∞

0

f 2(x)

[
1

2
xu1(g)q

′(x)+ 1

2
x2u1(g)q

′′(x)
]2

dx

+ c2

cg2nh
1/2

∫ ∞

0

f (x)

x
dx+ o

(
1

nh1/2
+ h4

)
. (15)



56 N. Zougab, S. Adjabi / Journal of the Korean Statistical Society 45 (2016) 51–63

By minimizing (15) in the bandwidth h, we obtain the optimal value

h
opt

JLN-GBS =
{

c2
∫∞
0

f (x)

x
dx

8cg2
∫∞
0

f 2(x)
[
1
2
xu1(g)q′(x)+ 1

2
x2u1(g)q′′(x)

]2
dx

}2/9

n−2/9. (16)

Note that the bandwidths (14) and (16) cannot be employed in practice. Then, the next subsection presents a practical
procedure to bandwidth selection.

3.4. Choice of bandwidth for MBC-GBS kernel estimators

Because the optimal bandwidths given by (14) and (16) depend on the unknown density f and on its derivatives f ′, f ′′, f ′′′
and f ′′′′, then it cannot be exploited in practice. In this paper, we adopt the popular unbiased cross validation (UCV) method
(see Hagmann & Scaillet, 2007 for semi-parametric MBC technique). In the case of the UCV technique, for a given estimator

f̂MBC-GBS , which denotes the TS-GBS or JLN-GBS kernel estimators, the optimal bandwidth hucv of h is obtained by

hucv = argmin
h

UCV(h),

where

UCV(h) =
∫

f̂ 2MBC-GBS(x)dx−
2

n

n∑
i=1

f̂
(−i)
MBC-GBS(Xi),

where f̂
(−i)
MBC-GBS(y) is the leave-one-out estimator computed as f̂MBC-GBS(y) by excluding the observation Xi. For the TS-GBS

kernel estimators, the UCV function is given

UCVTS-GBS(h) =
∫ ∞

0

{̂
fGBS,h(x)

} 2
1−a

{̂
fGBS,h/a(x)

}− 2a
1−a dx− 2

n(n− 1)

×
∑

i

⎡⎣{∑
j�=i

KGBS(h1/2,Xi;g)(Xj)

} 1
1−a

{∑
j�=i

KGBS((h/a)1/2,Xi;g)(Xj)

}− a
1−a

⎤⎦ . (17)

In the case of JLN-GBS kernel estimators, the expression of UCV is

UCVJLN-GBS(h) = 1

n2

∫ ∞

0

f̂GBS(x)
2

{
n∑

i=1

KGBS(h1/2,x;g)(Xi)

f̂GBS(Xi)

}2

dx− 2

n(n− 1)

×
∑

i

∑
j�=i

KGBS(h1/2,Xi;g)(Xj)
f̂GBS(Xi)

f̂GBS(Xj)
. (18)

4. Simulation study

This section investigates the MBC-GBS kernel density estimators considered in the previous section and compares their
performances with the GBS kernel estimators. We consider three densities displayed in Fig. 1 and defined as follows (see
also Barros, Paula, & Leiva, 2009, Hirukawa & Sakudo, 2014, Jin & Kawczak, 2003 and Marchant et al., 2013):

(a) a Burr(1, 3, 1) density:

f (x) = 3x2

(1+ x3)2
, x > 0

(b) a Pareto(1, 1) density:

f (x) = 1

(1+ x)2
, x > 0

(c) a GBS(1/2, 3/2; tν=1) density:

2

3π

[
1+ 8

3
x+ 6

x
+ 7

]−1
[√

3

2x
+
√

9

8x3

]
, x > 0.

Note that these considered densities have heavy tails. The Burr(1, 3, 1) density has been already studied and analyzed
by Jin and Kawczak (2003) and Marchant et al. (2013) using standard BS and GBS kernel density estimators respectively.
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Fig. 1. Distributions in the simulation study. The black line represents the Burr distribution, the dashed line represents the Pareto distribution and the dot

line represents the GBS distribution.

For Burr(1, 3, 1), Pareto(1, 1) and GBS(1/2, 3/2; tν=1) distributions, 1000 replications of sizes n = 25, 50, 100 and 200
are generated. We apply the MBC-GBS (TS-GBS and JLN-GBS) kernel estimators using the BS-PE(ν = 2) and BS-t(ν = 5)
kernels for estimating the density of nonnegativeHT data generated fromBurr(1, 3, 1), Pareto(1, 1) andGBS(1/2, 3/2; tν=1)
distributions. Note that for the TS-GBS kernel estimator, the parameter a is fixed as a = 0.5. However, the optimal value can
be obtained in the sense of mean integrated squared error (MISE), see Hirukawa (2010). For comparison, we also use the
standard GBS kernel estimators based on BS-PE(ν = 2) and BS-t(ν = 5) kernels. For bandwidth choice, which is one of the
difficulties in nonparametric kernel methods, we used the UCV method developed in the previous section. We examine the
performances of the estimators via integrated squared error (ISE) and integrated squared bias (ISB) given respectively by

ISE :=
∫ [̂

f (x)− f (x)
]2

dx (19)

and

ISB :=
∫ [

E{̂f (x)} − f (x)
]2

dx, (20)

where f̂ is theMBC-GBS kernel estimator or the GBS kernel estimator with BS-PE(ν = 2) and BS-t(ν = 5) kernels. Note that
the integrated variance (IV) given by IV := ∫

Var{̂f (x)}dx is also computed.
From Tables 4–7, we can observe immediately that:

1. the means of ISE, ISB and IV based on 1000 replications decrease as sample size n increases for the all estimators;
2. the mean of the bandwidths obtained with UCV technique decreases as sample size n increases as for the ISE and ISB;
3. the TS-GBS and JLN-GBS kernel estimators outperform the standard GBS kernel estimators in the sense of ISE and ISB for

several combinations of sample size anddistribution. However,we can see that the TS-GBS and JLN-GBS kernel estimators
underperform the standard GBS kernel estimators in certain cases, in particular for ISE criteria (see for example the cases
of Burr (n = 50) with BS-t(ν = 5) kernel, Pareto (n = 25, 50) with BS-PE(ν = 2) kernel and GBS (n = 25, 50, 100 and
200) with BS-PE(ν = 2) kernel). This result can be caused by small sample size or by the values of bandwidth obtained
with UCV method.

4. in terms of ISE and ISB, the performances of JLN-GBS and TS-GBS kernel estimators are mixed depending on the
distribution. For example, in case of Burr, the JLN-GBS kernel estimator based on BS-t(ν = 5) kernel in general works
better than the other competitors in the sense of ISB.

The comparison is also given in Fig. 2 for Burr distribution. The best smoothing quality is obtained by using the MBC-GBS
kernel estimators. The standard GBS kernel estimators tend to underestimate the density.

5. Application to air pollution data

This section illustrates the performances of MBC-GBS kernel density estimators for O3 data. These data concern the study
of the daily tropospheric ozone concentrations (in ppb = ppm× 1000) observed inNewYork duringMay–September, 1973,
provided by the New York State Department of Conservation; see, e.g., Leiva, Vilca, Balakrishnan, and Sanhueza (2010) and
Nadarajah (2008). These data have been also analyzed recently by Saulo, Leiva, Ziegelmann, and Marchant (2013). Note
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Table 4
Some expected values of ISE and their standard errors between parentheses based on 1000 replications for the Burr, Pareto and GBS distributions.

Density Kernel Estimator n = 25 n = 50 n = 100 n = 200

f̂GBS 0.06118(0.03671) 0.02378(0.01947) 0.01445(0.00987) 0.00762(0.00304)

Burr BS-PE(ν = 2) f̂TS-GBS 0.05276(0.03913) 0.02170(0.01766) 0.01396(0.01062) 0.00680(0.00463)

f̂JLN-GBS 0.05375(0.04523) 0.01980(0.01526) 0.01558(0.01499) 0.00731(0.00562)

f̂GBS 0.07593(0.09846) 0.03714(0.04780) 0.01874(0.01771) 0.00721(0.00214)

Burr BS-t(ν = 5) f̂TS-GBS 0.06524(0.11635) 0.03759(0.05738) 0.01624(0.01303) 0.00603(0.00265)

f̂JLN-GBS 0.06976(0.12537) 0.03809(0.06616) 0.01779(0.02890) 0.00726(0.00558)

f̂GBS 0.04864(0.03882) 0.01612(0.01080) 0.01533(0.01303) 0.00694(0.00294)

Pareto BS-PE(ν = 2) f̂TS-GBS 0.05510(0.05889) 0.01905(0.01198) 0.01611(0.01492) 0.00717(0.00408)

f̂JLN-GBS 0.04665(0.04923) 0.01672(0.01110) 0.01560(0.01366) 0.00567(0.00568)

f̂GBS 0.07505(0.18984) 0.02071(0.01588) 0.01707(0.01235) 0.00705(0.00486)

Pareto BS-t(ν = 5) f̂TS-GBS 0.04623(0.03100) 0.01917(0.01513) 0.01656(0.01425) 0.00610(0.00259)

f̂JLN-GBS 0.04742(0.04179) 0.01890(0.02139) 0.01671(0.02004) 0.00557(0.00421)

f̂GBS 0.03453(0.02918) 0.02149(0.01203) 0.01388(0.00719) 0.01107(0.00913)

GBS BS-PE(ν = 2) f̂TS-GBS 0.03945(0.01830) 0.03363(0.01886) 0.02865(0.01996) 0.02688(0.01918)

f̂JLN-GBS 0.03546(0.03216) 0.02411(0.01300) 0.01272(0.00634) 0.00856(0.00501)

f̂GBS 0.03338(0.02712) 0.02324(0.01915) 0.01481(0.00854) 0.01165(0.00789)

GBS BS-t(ν = 5) f̂TS-GBS 0.03463(0.03027) 0.02158(0.01543) 0.01427(0.01048) 0.01085(0.00693)

f̂JLN-GBS 0.03729(0.03351) 0.02297(0.01427) 0.01377(0.00355) 0.00925(0.00521)

Table 5
Empirical ISB values for the Burr, Pareto and GBS distributions based on 1000 Monte Carlo replications.

Density Kernel Estimator n = 25 n = 50 n = 100 n = 200

f̂GBS 0.01799 0.00692 0.00155 0.00101

Burr BS-PE(ν = 2) f̂TS-GBS 0.01510 0.00491 0.00134 0.00088

f̂JLN-GBS 0.01448 0.00410 0.00131 0.00055

f̂GBS 0.01863 0.00600 0.00218 0.00158

Burr BS-t(ν = 5) f̂TS-GBS 0.01647 0.00488 0.00182 0.00149

f̂JLN-GBS 0.01554 0.00381 0.00118 0.00049

f̂GBS 0.00607 0.00228 0.00208 0.00118

Pareto BS-PE(ν = 2) f̂TS-GBS 0.00733 0.00153 0.00144 0.00092

f̂JLN-GBS 0.00371 0.00104 0.00125 0.00047

f̂GBS 0.01183 0.00384 0.00214 0.00141

Pareto BS-t(ν = 5) f̂TS-GBS 0.00877 0.00300 0.00179 0.00095

f̂JLN-GBS 0.00411 0.00220 0.00165 0.00074

f̂GBS 0.00817 0.00702 0.00534 0.00322

GBS BS-PE(ν = 2) f̂TS-GBS 0.01591 0.01486 0.01173 0.00915

f̂JLN-GBS 0.00608 0.00518 0.00320 0.00195

f̂GBS 0.00865 0.00681 0.00476 0.00315

GBS BS-t(ν = 5) f̂TS-GBS 0.00816 0.00629 0.00445 0.00282

f̂JLN-GBS 0.00554 0.00474 0.00228 0.00105

that in our study, we have divided these data by 10. Table 8 and Fig. 3 provide respectively the summary statistics and the
histogram of these real data. We can observe that the considered data are nonnegative and have heavy tails. Then, the GBS
kernels are appropriate for analyzing them.

Now, we apply the TS-GBS and JLN-GBS kernel estimators based on BS-PE(ν = 2) and BS-t(ν = 5) kernels to estimate
the density for O3 data. For TS-GBS kernel estimator, the value of a is fixed at 0.5. For comparison, the standard GBS kernel
estimators are also employed for estimating the density of considered real data. The corresponding bandwidths for the
estimators are chosenusing theUCVprocedure. The obtained values are: hBS-PE = 0.3784, hBS-t = 0.1577, hTS-BS-PE = 0.8327,
hTS-BS-t = 0.3179, hJLN-BS-PE = 0.4905 and hJLN-BS-t = 0.2948. The density estimates are plotted in Fig. 4. We can see that the
smoothing of the MBC-GBS kernel estimators is diffident, in comparison to corresponding standard GBS kernel estimators,
which tend to under smooth the density of these data.

6. Proofs

We present a sketch of proofs of Theorems 1 and 2.
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Table 6
Empirical IV values for the Burr, Pareto and GBS distributions based on 1000 Monte Carlo replications.

Density Kernel Estimator n = 25 n = 50 n = 100 n = 200

f̂GBS 0.04319 0.01686 0.01290 0.00661

Burr BS-PE(ν = 2) f̂TS-GBS 0.03766 0.01679 0.01262 0.00592

f̂JLN-GBS 0.03927 0.01570 0.01427 0.00676

f̂GBS 0.05730 0.03114 0.01656 0.00563

Burr BS-t(ν = 5) f̂TS-GBS 0.04877 0.03271 0.01442 0.00454

f̂JLN-GBS 0.05422 0.03428 0.01661 0.00677

f̂GBS 0.04257 0.01384 0.01325 0.00576

Pareto BS-PE(ν = 2) f̂TS-GBS 0.04777 0.01752 0.01467 0.00625

f̂JLN-GBS 0.04294 0.01568 0.01435 0.00520

f̂GBS 0.03681 0.01228 0.01319 0.00553

Pareto BS-t(ν = 5) f̂TS-GBS 0.03746 0.01617 0.01477 0.00515

f̂JLN-GBS 0.04331 0.01670 0.01506 0.00483

f̂GBS 0.02636 0.01447 0.00854 0.00785

GBS BS-PE(ν = 2) f̂TS-GBS 0.02354 0.01877 0.01692 0.01773

f̂JLN-GBS 0.02938 0.01893 0.00952 0.00661

f̂GBS 0.02473 0.01643 0.01005 0.00850

GBS BS-t(ν = 5) f̂TS-GBS 0.02647 0.01529 0.00982 0.00803

f̂JLN-GBS 0.03175 0.01823 0.01149 0.00820

Table 7
Means and standard errors in parentheses of UCV bandwidths given for the Burr, Pareto and GBS distributions over 1000 replications.

Density Kernel Estimator n = 25 n = 50 n = 100 n = 200

f̂GBS 0.27578(0.16701) 0.19034(0.09240) 0.15669(0.07617) 0.07491(0.03781)

Burr BS-PE(ν = 2) f̂TS-GBS 0.66476(0.45582) 0.40753(0.17100) 0.23097(0.12782) 0.14510(0.05771)

f̂JLN-GBS 0.67686(0.54311) 0.34932(0.16269) 0.19328(0.11334) 0.11135(0.05654)

f̂GBS 0.09839(0.07879) 0.05674(0.02768) 0.03269(0.01760) 0.02703(0.00895)

Burr BS-t(ν = 5) f̂TS-GBS 0.18455(0.14423) 0.11800(0.05472) 0.07854(0.04364) 0.05684(0.01966)

f̂JLN-GBS 0.15353(0.17251) 0.08235(0.05223) 0.05148(0.04071) 0.04363(0.02442)

f̂GBS 1.26630(0.67478) 1.19034(0.55240) 0.93594(0.45408) 0.70416(0.41845)

Pareto BS-PE(ν = 2) f̂TS-GBS 1.45951(0.67195) 1.09179(0.62568) 0.91679(0.58587) 0.75002(0.45915)

f̂JLN-GBS 1.48357(0.65951) 0.99164(0.70616) 0.84650(0.59540) 0.69467(0.44864)

f̂GBS 0.64304(0.55585) 0.36113(0.26078) 0.21475(0.15841) 0.18862(0.13022)

Pareto BS-t(ν = 5) f̂TS-GBS 1.07330(0.61883) 0.69961(0.49623) 0.42592(0.35834) 0.30844(0.26483)

f̂JLN-GBS 1.01468(0.74528) 0.73226(0.63601) 0.58796(0.59298) 0.41652(0.48706)

f̂GBS 0.55940(0.60370) 0.29015(0.25574) 0.24146(0.19317) 0.23237(0.18403)

GBS BS-PE(ν = 2) f̂TS-GBS 1.10607(0.73218) 1.01990(0.71810) 0.81509(0.64686) 0.69953(0.55975)

f̂JLN-GBS 0.73790(0.65399) 0.66146(0.57306) 0.34242(0.22470) 0.23790(0.34549)

f̂GBS 0.23645(0.31120) 0.18532(0.38464) 0.12673(0.07452) 0.09115(0.08124)

GBS BS-t(ν = 5) f̂TS-GBS 0.41466(0.49777) 0.27049(0.37872) 0.16982(0.11719) 0.12475(0.12537)

f̂JLN-GBS 0.36692(0.52347) 0.25431(0.41100) 0.18820(0.3474) 0.10692(0.24752)

6.1. Sketch of the proof of Theorem 1

6.1.1. Bias

We start with the bias of the TS-GBS kernel estimator. First, note that Ih(x) = E(̂fGBS,h) = E(f (Y )), where the random
variable Y ∼ GBS(h1/2, x; g). By using the four moments of the random variable Y and Assumption 1, the Taylor expansion
of Ih(x) around h = 0 is given by

Ih(x) = f (x)

{
1+ l1(x)

f (x)
h+ l2(x)

f (x)
h2 + o(h2)

}
, (21)

where l1(x) = 1
2
xu1(g)f

′ + 1
2
x2u1(g)f

′′ and l2(x) = 1
4
x2u2(g)f

′′ + 1
4
x3u2(g)f

′′′ + 1
24
x4u2(g)f

′′′′. Similarly Ih/a(x) = E(̂fGBS,h/a)
can be approximated by

Ih/a(x) = f (x)

{
1+ 1

a

l1(x)

f (x)
h+ 1

a2

l2(x)

f (x)
h2 + o(h2)

}
. (22)
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Fig. 2. The estimation of Burr data with n = 50 using the standard BS-PE(ν = 2), the standard BS-t(ν = 5), the BS-PE(ν = 2)-TS, the BS-t(ν = 5)-TS, the

BS-PE(ν = 2)-JLN and the BS-t(ν = 5)-JLN kernel density estimators.

Fig. 3. Histogram of O3 data.

Now, we define

f̂GBS,h(x) = Ih(x)+ Z,

and

f̂GBS,h/a(x) = Ih(x)+W .

The estimator f̂TS-GBS can be written as follows:

f̂TS-GBS = {Ih(x)} 1
1−a

{
1+ Z

Ih(x)

} 1
1−a {

Ih/a(x)
}− a

1−a

{
1+ W

Ih/a(x)

}− a
1−a

.

Using the expansion (1+ t)α = 1+ αt + o(t2), then we have

f̂TS-GBS(x) = {Ih(x)} 1
1−a

{
Ih/a(x)

}− a
1−a + 1

1− a
Z

{
Ih(x)

Ih/a(x)

}− a
1−a − a

1− a
W

{
Ih(x)

Ih/a(x)

} 1
1−a + O

{
(Z +W )2

}
. (23)
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Fig. 4. The estimation of O3 data with n = 116 using the standard BS-PE(ν = 2), the standard BS-t(ν = 5), the BS-PE(ν = 2)-TS, the BS-t(ν = 5)-TS, the

BS-PE(ν = 2)-JLN and the BS-t(ν = 5)-JLN kernel density estimators.

Table 8
Descriptive of the analyzed O3 data.

Data set n Max Min Median Mean SD

O3 116 16.80 0.10 3.15 4.21 3.29

Based on Assumption 2 and using the same calculations as in Hirukawa (2010) and Terrell and Scott (1980), we can show
easily that

E
(
f̂TS-GBS(x)

) = f (x)+ 1

a

[
1

2

{
l21(x)

f (x)
− l2(x)

}]
h2 + o(h2).

6.1.2. Variance

For the variance, from Eq. (23) we have

Var
(
f̂TS-GBS(x)

) = E

(
1

1− a
Z − a

1− a
W

)2

+ O(n−1)

= Var

(
1

1− a
f̂GBS,h(x)− a

1− a
f̂GBS,h/a(x)

)
+ O(n−1)

= 1

(1− a)2
Var

(
f̂GBS,h(x)

)+ a2

(1− a)2
Var

(
f̂GBS,h/a(x)

)− 2a

(1− a)2
cov

(
f̂GBS,h(x), f̂GBS,h/a(x)

)
.

The terms Var
(
f̂GBS,h(x)

)
and Var

(
f̂GBS,h/a(x)

)
are the same as in Marchant et al. (2013) and the term cov

(
f̂GBS,h(x),

f̂GBS,h/a(x)
)
can be obtained following the same steps as in Hirukawa (2010) (see also Hirukawa & Sakudo, 2014). The proof

is completed. �

6.2. Sketch of the proof of Theorem 2

6.2.1. Bias

First the estimator f̂JLN-GBS can be written as (see Hirukawa, 2010)

f̂JLN-GBS(x) = f (x)

{
1+ f̂GBS(x)− f (x)

f (x)

}
{1+ (ψ(x)− 1)}

where ψ(x) = n−1
∑n

i=1 KGBS(h1/2,x;g)(Xi)/̂fGBS(Xi). Then, we have

E
(
f̂JLN-GBS(x)

) = f (x)+ f (x)E

{
f̂GBS(x)− f (x)

f (x)

}
+ f (x)E {ψ(x)− 1} + f (x)E

{(
f̂GBS(x)− f (x)

f (x)

)
(ψ(x)− 1)

}
.
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By using Assumption 2 and property of GBS random variable, the terms E

{
f̂GBS (x)−f (x)

f (x)

}
, E {ψ(x)− 1} and E

{(
f̂GBS (x)−f (x)

f (x)

)
(ψ(x)−1)

}
can be approximated following the same procedures as in Hirukawa (2010). Thus,E(̂fJLN-GBS) is approximated by

E
(
f̂JLN-GBS(x)

) = f (x)− f (x)

[
1

2
xu1(g)q

′(x)+ 1

2
x2u1(g)q

′′(x)
]
h2 + o(h2),

where q(x) = l1(x)/f (x)with l1(x) given in the proof of Theorem 1.

6.2.2. Variance

Note that following Hirukawa (2010) and Jones et al. (1995), we can show that f̂JLN-GBS(x) is equivalent to

f JLN-GBS(x) = f (x)
1

n

n∑
i=1

KGBC(h1/2,x;g)(Xi)

f (Xi)
. (24)

It follows that

Var
(
f JLN-GBS(x)

) = f 2(x)
1

n
Var

{
KGBC(h1/2,x;g)(Xi)

f (Xi)

}
(25)

= f 2(x)
1

n
E

{
K 2

GBC(h1/2,x;g)(Xi)

f 2(Xi)
+ O(n−1)

}
. (26)

Now, observe that

E

{
K 2

GBC(h1/2,x;g)(Xi)

f 2(Xi)

}
= c2

cg22
√
hx

E

(
S−1/2

f (S)

)
+ c2

cg2
√
hx−1

E

(
S−3/2

f (S)

)
,

where S ∼ GBS(h1/2, x; g2). Finally, following the procedures as in Marchant et al. (2013), we obtain the approximation for
variance given in Theorem 2. �

7. Conclusion

This paper has extended the application of the multiplicative bias correction (MBC) approaches for generalized
Birnbaum–Saunders (GBS) kernels in the context of kernel density estimation for nonnegative heavy tailed (HT) data. As
in Hirukawa (2010) and Hirukawa and Sakudo (2014), we have shown that these two classes of MBC improve the order
of magnitude in bias from O(h) to O(h2). The performances of the MBC-GBS kernel estimators (TS-GBS and JLN-GBS kernel
estimators) with unbiased cross-validation (UCV) bandwidth selectors are investigated through simulation study and real
application for nonnegative HT data. In general, both MBC-GBS kernel estimators perform better than the standard GBS
kernel estimators in the sense of integrated squared error (ISE) and integrated squared bias (ISB). Finally, notice that the
MBC approaches can be easily extended to skew-GBS kernels of Saulo et al. (2013).
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