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a b s t r a c t

A continuous time risk model with dividends and reinvestments is considered. We ob-
tain an explicit formula of the stationary distribution of the surplus and the expected time
to ruin after a reinvestment by adopting the level crossing argument. We also propose a
scheme to approximate the stationary distribution of the surplus. As an example, we con-
sider the case when the claims are exponentially distributed, Erlang distributed, and gen-
eralized hyperexponentially distributed.
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1. Introduction

In this paper, we consider a modified Cramér–Lundberg risk model with constant barrier and reinvestments. Whenever
the surplus in the risk model reaches barrier M > 0, a fraction of the surplus, M − a, is immediately paid out as dividend.
Meanwhile, if the surplus goes below 0, that is, if there occurs a ruin, an amount of money is immediately reinvested so that
the level of the surplus after the ruin becomes b (0 ≤ b < a).

The modified risk model has been introduced and studied by Brill and Yu (2011) and Jeong, Lim, and Lee (2009). Brill
and Yu (2011) derived a renewal type equation for the stationary distribution of the surplus process and obtain the exact
form of the stationary distribution when the claim sizes are exponentially distributed. Under a certain cost structure, Jeong
et al. (2009) obtained the long-run average cost as a function ofM and a, and illustrated an example how to find the optimal
values ofM and awhich minimize the long-run average cost.

The risk model has been studied by many researchers. For examples, the ruin probability of the classical risk model is
well summarized in Klugman, Panjer, andWillmot (2004). Gerber and Shiu (1997) obtained the joint distribution of the time
of ruin, the surplus immediately before ruin and the deficit at ruin. Dufresne and Gerber (1991) generalized the classical risk
model by assuming that the risk process is perturbed by diffusion and obtained the ruin probabilities. Zhang and Wang
(2003) obtained the Gerber–Shiu function in the same model. Li and Lu (2005) studied the Gerber–Shiu function in the risk
model with two classes of risk processes. However, most works on the risk model have been focused on the ruin probability
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and related characteristics such as the first passage time to the ruin and the levels of the surplus immediately before and/or
after the ruin.

In the classical risk model, the surplus process stops if a ruin occurs. However, as pointed by Borch (1969), in practice,
though a ruin occurs in an insurance policy, the insurance company keeps the policy operating by a reinvestment or
borrowing money from other business. In this case, the surplus process continues even though a ruin occurs. Dickson and
Waters (2004) considered the Cramér–Lundberg risk model, in which the amount of deficit is reinvested if the surplus ever
becomes negative. Under the barrier policy, i.e. the surplus over a barrier is paid continuously as dividend, they obtained a
form of the discounted value function of the coming dividends. For the same model, Kulenko and Schmidli (2008) showed
that it is optimal to reinvest the amount of deficit at ruin and to pay the dividends according to the barrier policy.

However, when the payment of each dividend incurs a fixed transaction cost, the payment of the dividend at a constant
rate is impossible. In this case, for the Cramér–Lundberg risk model where the reinvestment is not considered, Bai and Guo
(2010) studied the impulse control and showed that if the claim sizes are exponentially distributed, it is optimal to pay
immediately a constant amount of dividend whenever the surplus surpasses the barrier. Thonhauser and Albrecher (2011)
also considered the same model as that of Bai and Guo (2010) and for more general utility function, they obtained the same
conclusion as Bai and Gou’s, and proposed a numerical scheme to obtain the optimal dividend policy.

To the authors’ best knowledge, there is no result on the Cramér–Lundberg risk model where both the payment of the
dividends and reinvestment incur fixed transaction costs, while, for the diffusion risk model with the transaction costs,
He and Liang (2009) showed that it is optimal to pay immediately a constant amount of dividend whenever the surplus
surpasses a barrier and to reinvest up to a prescribed level whenever the surplus becomes negative, which is the same
control strategy of surplus as in our model. Hence, for the Cramér–Lundberg risk model with the fixed transaction costs, the
control strategy of the surplus considered in our model may be a reasonable choice.

The surplus process goes on after ruins in our model. Hence, it is worth to study the stationary behavior of the surplus
process such as the average level of the surplus or the proportion of time where the surplus is in a certain level in the long-
run, which is the main result of the paper. The paper is organized as follows. In Section 2, we introduce how to decompose
the surplus process into two right continuous Markovian regenerative processes and we give a formula representing the
stationary distribution of the surplus process as the weighted sum of those of the two decomposed processes. In Section 3,
we introduce how to obtain the stationary distributions of the decomposed processes by the level crossing argument. In
Sections 4 and 5, we derive the expected up-crossings of a given level during a cycle in the decomposed processes, and also
the expected cycle lengths. By applying the level crossing argument to these values, we obtain the stationary distribution of
the decomposed processes. Then, the explicit form of the stationary distribution of the surplus process follows immediately
as a result of Section 2. In Section 6, when the claim size distribution is approximated by the generalized hyperexponential
(GH) distribution, we show that the stationary distribution of the surplus process can be approximated as a sum of simple
functions. In Section 7, we apply the obtained results to the special cases where the claim size is exponentially distributed,
Erlang distributed, and GH distributed. Some numerical results are also given.

2. Decomposition of the surplus process

The explicit form of the surplus process analyzed in this paper is as follows. Let S(t),D(t), and R(t) be the accumulated
amount of claims, the dividends, and the reinvestments until time t , respectively, and let {NS(t), t ≥ 0}, {ND(t), t ≥ 0},
and {NR(t), t ≥ 0} be the counting processes of the occurrence of the claims, the payment of the dividends, and the
reinvestments, respectively. Then, it follows for t ≥ 0,

S(t) =
NS (t)∑
i=1

Si,

D(t) = (M − a)ND(t),

R(t) =
NR(t)∑
i=1

Ri,

where Si and Ri are the amount of the ith claim and reinvestment, respectively, for i = 1, 2, . . . . In this paper, we assume that
the process {NS(t), t ≥ 0} is a Poisson process with rate λ, and that the claim size Si, i = 1, 2, . . . , is identically distributed
with distribution B(·) and independent with any other variables. We also assume that the premium rate is a constant c. Let
m be the mean of a claim size. If we define {X(t), t ≥ 0} as the surplus process, then we have, for t ≥ 0,

X(t) = X(0)+ ct − S(t)− D(t)+ R(t). (1)

The surplus process {X(t), t ≥ 0} is a Markovian regenerative process. The time epochs of ruins form the regeneration
points, i.e. a cycle of {X(t), t ≥ 0} starts just after a ruin and ends at the next ruin. We assume that the process {X(t), t ≥ 0}
is right continuous except at the time epochs of ruins. If a ruin occurs by a claim of size Y at a time t , then X(t) = X(t−)−Y
and the reinvestment makes X(t+) = b. Since the process {X(t), t ≥ 0} is right continuous except the epochs of ruins,
X(t) = a if the surplus reaches the barrier M at time t , i.e. X(t−) = M . Fig. 1 shows a sample path of the surplus process.
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Fig. 1. A sample path of the surplus process {X(t), t ≥ 0}.

(a) A sample path of the connected type I
processes.

(b) A sample path of the connected type II
processes.

Fig. 2. The decomposition of the process {X(t), t ≥ 0} into the processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0}.

We define that the surplus process exits from [0,M) at a time t if and only if X(t) < 0 or X(t−) = M . In this case, there
occurs a ruin or it reaches the barrier M at the time t . Suppose that a cycle of the surplus process starts at time 0 and that
the surplus process exits from [0,M) at a time τ1. If a ruin occurs at the time τ1, then the cycle ends. Otherwise, the cycle
continues with the starting level of a. At the next exit time after the time τ1, the cycle will end or continue depending on the
value of the surplus at the time, and so on.

We denote by the type I process as the part of the surplus process from a ruin to the next exit of the process from [0,M),
and denote by the type II process as the part of the surplus process from reaching the barrier M to the next exit of the
process from [0,M). Then, a cycle of the surplus process can be decomposed into one type I process and a number of type II
processes. Let τ (i)

2 , i = 1, 2, . . . , be the length of the ith type II process in a cycle of the surplus process, i.e. for i = 1, 2, . . . ,

τ
(i)
2 = inf{t > si−1; X(t) < 0 or X(t−) = M|X(si−1) = a} − si−1,

where s0 = τ1 and si = τ1 + ∑i
j=1 τ

(j)
2 for i = 1, 2, . . .. Since {X(t), t ≥ 0} is a Markovian process and the value of

τ
(i)
2 is determined only by the behavior of {X(t), t ≥ 0} after time si−1, we can see that τ (1)

2 , τ
(2)
2 , . . . are independent and

identically distributed.
Let {X1(t), t ≥ 0} be formed by separating the type I processes from {X(t), t ≥ 0} and connecting them together. Process

{X2(t), t ≥ 0} is similarly formed using the type II processes. At the time epochs of ruins, we let the values of {X1(t), t ≥ 0}
be b so that {X1(t), t ≥ 0} and {X2(t), t ≥ 0} are right continuous and Markovian regenerative processes. As shown in
Fig. 1, a sample path is decomposed into type I and type II processes. Fig. 2 shows the sample paths of {X1(t), t ≥ 0} and
{X2(t), t ≥ 0} formed by decomposing the sample path in Fig. 1. A separated part of {X(t), t ≥ 0} from a ruin to the next
exit from [0,M) forms a cycle of the {X1(t), t ≥ 0}, and the other separated part of {X(t), t ≥ 0} from reaching the barrier
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M to the next exit from [0,M) forms a cycle of the {X2(t), t ≥ 0}. The cycle length of the process {Xi(t), t ≥ 0}, i = 1, 2, is
denoted by τi.

If we let τ be the cycle length of the surplus process, then

τ = τ1 +
N2∑
i=1

τ
(i)
2 ,

where N2 is the number of the type II processes in a cycle of the surplus process. Since N2 is a stopping time with respect to
the sequence of τ (1)

2 , τ (2)
2 , . . ., it follows that

E[τ ] = E[τ1] + E[N2]E[τ2]. (2)

Applying the renewal reward theorem in Ross (1996), the stationary distribution of the surplus process can be
represented as theweighted sum of the stationary distributions of the processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0} as follows.

Theorem 1. Let F(x) be the stationary distribution of {X(t), t ≥ 0}, and for i = 1, 2, let Fi(x) be the stationary distribution of
{Xi(t), t ≥ 0}. Then,

F(x) = E[τ1]
E[τ ] F1(x)+

E[N2]E[τ2]
E[τ ] F2(x). (3)

In the following sections, we obtain the explicit forms of E[N2], E[τi] and fi(x), the p.d.f. of Fi(x) for i = 1, 2.

3. Level crossing approach for obtaining the stationary distributions of the decomposed processes

We define that the process {X(t), t ≥ 0} up-crosses the level x at time t if and only if X(t) = x. In the same manner, we
also define that the process {Xi(t), t ≥ 0}, i = 1, 2, up-crosses the level x at time t if and only if Xi(t) = x. Let Ui(x), i = 1, 2,
be the number of up-crossings of the level x during a cycle of length τi in the process {Xi(t), t ≥ 0}, respectively. The level
crossing argument in Brill (2008), Cohen (1977) says that the p.d.f. of Fi(x), i = 1, 2, is given by

fi(x) = E[Ui(x)]
cE[τi] , 0 ≤ x < M. (4)

Since the range of {X1(t), t ≥ 0} and {X2(t), t ≥ 0} is [0,M), integrating fi(x), i = 1, 2, over the interval [0,M) gives the
value 1, which implies

E[τi] = 1
c

∫ M

0
E[Ui(x)] dx, i = 1, 2. (5)

Now, we can see that the explicit form of Fi(·), i = 1, 2, can be derived directly from the above equations if we obtain the
explicit form of E[Ui(x)], i = 1, 2, for x ∈ [0,M).

Let Ty, 0 ≤ y < M , be the first exit time from the interval [0,M) of the surplus process {X(t), t ≥ 0} when the initial
surplus is y, i.e.

Ty = inf{t > 0; X(t) < 0 or X(t−) = M|X(0) = y}.
For 0 ≤ x, y < M , let Uy,x be the number of up-crossings of the level x during (0, Ty) in the process {X(t), t ≥ 0} under the
condition of X(0) = y.

Suppose that {X(t), t ≥ 0} and {X1(t), t ≥ 0} have the same initial level of b, i.e. X(0) = X1(0) = b. Then, during
(0, Tb), the behavior of the process {X(t), t ≥ 0} is stochastically the same as that of {X1(t), t ≥ 0}, which implies that the
number of up-crossings of the level x (x �= b) in the process {X(t), t ≥ 0} has the same distribution as that of the process
{X1(t), t ≥ 0} during (0, Tb). For x = b, there occurs an up-crossing of the level b at time 0, which is not counted in the value
of Ub,x. Since a cycle of the process {X1(t), t ≥ 0} is the time period [0, Tb), we have

U1(x)=D

{
Ub,x, b �= x
Ub,x + 1, b = x, (6)

where=D means the sameness in distribution. In the same manner, we also have

U2(x)=D

{
Ua,x, a �= x
Ua,x + 1, a = x. (7)
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4. Distribution of the number of up-crossings of the level x

In the previous section, we can see that the stationary distributions of the processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0}
can be obtained if for x ∈ [0,M), the expected values of Ub,x and Ua,x are derived, respectively. To this end, we obtain the
following theorem.

Theorem 2. Let Py,x, 0 ≤ x, y < M, be the probability that there is an up-crossing of the level x in the process {X(t), t ≥ 0}
during (0, Ty)when {X(t), t ≥ 0} starts at the level y, and let Py,M = Pr{X(Ty−) = M}, 0 ≤ y < M, i.e. the probability that the
surplus process reaches the barrier M at time Ty. Then, we have

Py,x = H(y)
H(x)

, 0 ≤ y < x ≤ M

Py,x = H(y)
H(x)

− H(M)H(y− x)
H(x)H(M − x)

, 0 ≤ x ≤ y < M,

where

H(x) = 1+
∞∑
n=1

(
λm
c

)n

B∗(n)e (x), x ≥ 0, (8)

and B∗(n)e (·) is the n-fold recursive Stieltjes convolution of Be(·), the equilibrium distribution of B(·).
Proof. Let

W (t) = M − X
(
t
c

)
. (9)

Since there is no dividend and reinvestment during (0, Ty), it follows from Eqs. (1) and (9) that for 0 ≤ t < Ty,

W (t) = M − y+
NS (t/c)∑
i=1

Si − t.

Then we can see that until the time Ty, {W (t), t ≥ 0} is the same as the workload process of the M/G/1 queue of which
arrival rate is λ/c, the service requirement distribution is B(·), and the initial workload isM − y. We define that the process
{W (t), t ≥ 0} down-crosses the level x at time t if and only ifW (t) = x, and denote by P̃y,x, for 0 < x, y ≤ M , the probability
that there is a down-crossing of the level x until the workload process {W (t), t ≥ 0} exits from (0,M] after starting at the
level y. Then, Eq. (9) says

Py,x = P̃M−y,M−x. (10)

Takács (1967) has shown that

P̃y,x = H(M − y)
H(M − x)

, 0 < x < y ≤ M.

Bae, Kim, and Lee (2002) also have shown that

P̃y,x = H(M − y)
H(M − x)

− H(M)H(x− y)
H(M − x)H(x)

, 0 < y ≤ x ≤ M.

Applying the above results to Eq. (10), we have

Py,x =H(y)
H(x)

, 0 ≤ y < x < M,

Py,x =H(y)
H(x)

− H(M)H(y− x)
H(x)H(M − x)

, 0 ≤ x ≤ y < M.

(11)

Since the claims occur according to a Poisson process, it can be easily shown that

Py,M = lim
x→M

Py,x, (12)

which completes the proof. �

Using Theorem 2 and the Markov property of the surplus process, we derive the expected values of Uy,x as follows.
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Theorem 3. The expected value of Uy,x, 0 ≤ x, y < M, is given by

E[Uy,x] = H(M − x)H(y)
H(M)

, 0 ≤ y < x < M,

E[Uy,x] = H(M − x)H(y)
H(M)

− H(y− x), 0 ≤ x ≤ y < M.

(13)

Proof. For 0 ≤ x < M , 1 − Py,x is the probability that there is no up-crossings of the level x during (0, Ty) in the surplus
process {X(t), t ≥ 0} starting at the level of y. Thus,

Pr{Uy,x = 0} = 1− Py,x, 0 ≤ x < M.

The surplus process {X(t), t ≥ 0} is Markovian, which implies that for 0 ≤ x < M , Px,x is the probability that after an
up-crossing of the level x, there is another up-crossing of the level x during (0, Ty) in the process {X(t), t ≥ 0}. Thus, for
k = 0, 1, 2. . . . ,

Pr{Uy,x = k} = Py,xPk−1
x,x (1− Px,x), 0 ≤ x < M.

From the above results, the expected value of Uy,x is derived as follows, for 0 ≤ y < M ,

E[Uy,x] = Py,x
1− Px,x

, 0 ≤ x < M. (14)

Applying Theorem 2 to the above equation, we obtain the desired result. �

5. Stationary distribution of the surplus process

We are ready to obtain the stationary distribution of the processes {X1(t), t ≥ 0} and {X2(t), t ≥ 0} via the level crossing
argument. Eq. (6) and Theorem 3 give the explicit form of E[U1(x)] as follows,

E[U1(x)] = H(M − x)H(b)
H(M)

− H(b− x), 0 ≤ x < b,

E[U1(x)] = H(M − x)H(b)
H(M)

, b ≤ x < M.

(15)

Eq. (7) and Theorem 3 also give the explicit form of E[U2(x)] as follows,

E[U2(x)] =H(M − x)H(a)
H(M)

− H(a− x), 0 ≤ x < a,

E[U2(x)] =H(M − x)H(a)
H(M)

, a ≤ x < M.

(16)

Applying the above equations to Eq. (5), we derive the explicit forms of the expected values of the cycle lengths τ1 and τ2
given by

E[τ1] = 1
c

(
H(b)
H(M)

∫ M

0
H(x) dx−

∫ b

0
H(x) dx

)
, (17)

and

E[τ2] = 1
c

(
H(a)
H(M)

∫ M

0
H(x) dx−

∫ a

0
H(x) dx

)
. (18)

The stationary distribution of the process {X1(t), t ≥ 0} is obtained by applying Eqs. (15) and (17) to Eq. (4), and also the
stationary distribution of the process {X2(t), t ≥ 0} by applying Eqs. (16) and (18) to Eq. (4).

It remains to derive the expected value of N2 for obtaining the value of E[τ ] and the explicit form of F(x). A cycle of the
surplus process {X(t), t ≥ 0} starts at the level b. If it reaches the barrierM at the exit time Tb, then there is at least one type
II process in a cycle, i.e.

Pr{N2 ≥ 1} = Pb,M .
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After the surplus process reaches the barrierM , another type II process starts with the level a. From the Markov property of
the surplus process, we have

Pr{N2 = k} = Pb,MPk−1
a,M (1− Pa,M), k = 1, 2, . . . ,

which gives

E[N2] = Pb,M
1− Pa,M

.

Applying Theorem 2 to the above equation, we have

E[N2] = H(b)
H(M)− H(a)

. (19)

From the above results, we have the explicit form of the stationary level of the surplus process {X(t), t ≥ 0} as follows,

Theorem 4. Let f (x) be the p.d.f. of the stationary level of the surplus process {X(t), t ≥ 0}. Then,

f (x) = 1
cE[τ ]

{
H(b)(H(M − x)− H(a− x))

H(M)− H(a)
− H(b− x)

}
, 0 ≤ x < b,

f (x) = 1
cE[τ ]

H(b)(H(M − x)− H(a− x))
H(M)− H(a)

, b ≤ x < a,

f (x) = 1
cE[τ ]

H(b)H(M − x)
H(M)− H(a)

, a ≤ x < M,

where

E[τ ] = 1
c

{
H(b)

H(M)− H(a)

∫ M

a
H(x) dx−

∫ b

0
H(x) dx

}
. (20)

Proof. By applying Eqs. (17), (18), and (19) to Eq. (2), we derive the expected cycle length of the surplus process as the form
of Eq. (20). It follows from Eq. (3) that the p.d.f. of the stationary level of the surplus process is given by

f (x) = E[τ1]
E[τ ] f1(x)+

E[N2]E[τ2]
E[τ ] f2(x), 0 ≤ x < M.

Since fi(x) = E[Ui(x)]/E[τi], i = 1, 2, the above equation is rewritten as

f (x) = E[U1(x)] + E[N2]E[U2(x)]
E[τ ] , 0 ≤ x < M.

By applying Eqs. (17), (18), (19), and (20) into the above equation, we obtain the desired result. �

6. Approximation

As shown in Eq. (8), H(x) is a series of multiple convolutions of Be(x), which makes it hard to compute the stationary
distribution of the surplus process via Theorem 4. Thus, in the practical point of view, we need to find an approximation
of H(x) which is easily computable. Generalized hyperexponential (GH) distributions are popularly used as approximating
distributions. GH distributions are linear combinations of exponential c.d.f.’s withmixing parameters that sum to unity, i.e. if
G(x) is a c.d.f. of a GH distribution, then G(x) has the support of positive values and has the following form,

G(x) = 1−
k∑

i=1

wie−μix, x ≥ 0,

where μi > 0, i = 1, 2, . . . , n,
∑k

i=1 wi = 1 and the values of some wi’s might be negative. Due to Botta and Harris (1986),
the family of GH distribution is a dense subset of all distributions with support [0,∞), i.e. there is a sequence of GH distri-
butions that converges weakly to a given distribution with support [0,∞). The attractive properties of the GH distributions
are discussed by Botta, Harris, and Marchal (1987) and Harris, Marchal, and Botta (1992).

Suppose that B(x), the c.d.f. of a claim size, can be approximated well by

G(x) = 1−
k∑

i=1

wie−μix, x ≥ 0, (21)
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and let

Ĥ(x) = 1+
∞∑
n=1

(
λmg

c

)n

G∗(n)e (x), (22)

where Ge(·) is the equilibrium distribution of G(·) andmg is the mean of G(·), i.e.

mg =
k∑

i=1

wi

μi
.

Then, Ĥ(x) is an approximation of H(x) in Eq. (8). Laplace transform of Ĥ(x) is given by

ψ(s) =
∫ ∞

0
e−sxĤ(x) dx

= 1
s

∫ ∞

0
e−sx dĤ(x)+ 1

s
.

Let ge(·) be the p.d.f. of Ge(·). Then, it follows from Eq. (22) that

ψ(s) = 1
s

∞∑
n=1

(
λmg

c

∫ ∞

0
e−sxge(x) dx

)n

+ 1
s

= 1
s
{
1− (λmg/c)

∫∞
0 e−sxge(x) dx

} . (23)

The explicit form of ge(x) is given by

ge(x) = 1
mg

k∑
i=1

wie−μix, x ≥ 0,

and Laplace transform of it is derived to be∫ ∞

0
e−sxge(x) dx = 1

mg

k∑
i=1

wi

s+ μi
.

Applying above equation to Eq. (23) gives

ψ(s) = 1

s{1− (λ/c)
k∑

i=1
wi/(s+ μi)}

,

or, we also have

ψ(s) =

k∏
i=1

(s+ μi)

s

{
k∏

i=1
(s+ μi)− (λ/c)

k∑
i=1

wi

k∏
j�=i

(s+ μj)

} . (24)

We can see thatψ(s) in Eq. (24) is a rational polynomial and the order of denominator is greater than that of numerator.
In this case, the inverse Laplace transform ofψ(s) is obtained by the method of partial fraction expansion or partial fraction
decomposition, i.e. we can obtain the exact form of Ĥ(x)which is a linear combination of simple functions. By applying Ĥ(x)
to Theorem 4, we can approximate the stationary distribution of the surplus process.

7. Case studies

In this section, we consider the cases in which the claim sizes are exponentially distributed, Erlang distributed, and GH
distributed. For each case, we derive explicit form of the function H(x), which enables us to obtain the exact forms of E[τ ],
E[N2], and f (x). For some specific values of parameters, we obtain numerically the exact value of E[τ ], i.e. the expected cycle
length, or the expected time to ruin after a reinvestment, and also obtain the exact value of E[N2], which is equal to the
expected number of payment of dividends between ruins. f (x) is also computed numerically. In the following, we assume
that c > λm, i.e. the premium rate is larger than the average claim amount per unit time.
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(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 3. Expected time to ruin after a reinvestment and expected number of payment of dividends between two ruins with various values of the amount of
dividend.

7.1. Exponentially distributed claim sizes

Suppose that the claim sizes are exponentially distributed with rate 1/m. Then, the equilibrium distribution is also
exponential with rate 1/m, and B∗(n)e (·), k = 1, 2, . . . , is the n-Erlang distribution with rate 1/m. From the definition
of H(x) in Eq. (8), we have for x ≥ 0,

H(x) = 1+
∞∑
n=1

(
λm
c

)n ∫ x

0

un−1e−u/m

(n− 1)!mn
du

= 1− ρe−θx

1− ρ
,

where ρ = λm/c and θ = 1/m− λ/c . Then, Eqs. (19) and (20) give

E[N2] = 1− ρe−θb

ρ(e−θa − e−θM)
,

and

E[τ ] = 1
c

{
(M − a)(1− ρe−θb)

ρ(1− ρ)(e−θa − e−θM)
− 1

θ
− b

1− ρ

}
.

The p.d.f. of the stationary surplus follows from Theorem 4, i.e.

f (x) = 1
cE[τ ]

eθx − 1
1− ρ

, 0 ≤ x < b,

f (x) = 1
cE[τ ]

(1− ρe−θb)eθx

1− ρ
, b ≤ x < a,

f (x) = 1
cE[τ ]

(1− ρe−θb)(1− ρe−θ(M−x))

ρ(1− ρ)(e−θa − e−θM)
, a ≤ x < M.

(25)

This result is exactly the same as that of Brill and Yu (2011).
Numerical example: Suppose that the claim size is exponentially distributed with rate μ = 6.0 and c = 2.05 for the

comparison with the numerical results of Brill and Yu (2011). We assume that the arrival rates are λ = 11.8 and 12.29.
Then, c is larger than λm for each case. H(x) is given by, for λ = 11.8,

H(x) = 24.6− 23.6e−0.2439x, x ≥ 0,

and for λ = 12.29,

H(x) = 1230− 1229e−0.004878x, x ≥ 0.

We obtain numerically the values of E[τ ] and E[N2] for various values of M − a, the amount of dividend per a time. For
M − a = 0.5, 1.0, . . . , 5.0, Fig. 3 shows the results. In this figure, the expected time to ruin decreases almost linearly, while
E[N2] decreases exponentially in both cases of λ = 11.8 and 12.29. Fig. 4 shows f (x) forM − a = 1.0, 3.0, 5.0. As shown in
the figure, f (x) has jumps at x = a and x = b, and has its peak at x = a.
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(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 4. The p.d.f. f (x) of the stationary level of the surplus process with various values of the amount of dividend.

7.2. Erlang distributed claim sizes

Suppose that the claim sizes follow the Erlang distribution with shape parameter 2 and rate parameter 2/m, i.e.

B(x) =
∫ x

0

(
2
m

)2

ue−
2
m u du, x > 0.

Then, the mean claim size is m, and the Laplace transform of a claim size S is given by

E[e−sS] =
(

2
2+ sm

)2

. (26)

Let be(x) be the p.d.f. of the equilibrium distribution of B(x), i.e.

be(x) = 1− B(x)
m

, x > 0.

Then, the Laplace transform of it is computed to be∫ ∞

0
e−sxbe(x) dx = 1

m

(
1− E[e−sS]

s

)
= 4+ sm

(2+ sm)2
. (27)

Let φ(s) be the Laplace transform of H(x). Then, in the similar manner to derive Eq. (23), we have

φ(s) = 1
s
{
1− (λm/c)

∫∞
0 e−sxbe(x) dx

} .
Applying Eq. (27) into the above equation, we have

φ(s) = (ms+ 2)2

s
{
m2s2 + (4− ρ)ms+ 4(1− ρ)

} , (28)

where ρ = λm/c . Then, φ(s) has the following three poles,

s0 = 0,

s1 = −(4− ρ)+√ρ2 + 8ρ
2m

,

s2 = −(4− ρ)−√ρ2 + 8ρ
2m

.

Due to the fact that c > λm, it can be easily checked that s1 and s2 are negative real numbers. Then, Eq. (28) is rewritten as

φ(s) = c0
s
+ c1

s− s1
+ c2

s− s2
,

where

ci = φ(si)(s− si), i = 0, 1, 2.
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(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 5. Expected time to ruin after a reinvestment and expected number of payment of dividends between two ruins with various values of the amount of
dividend.

(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 6. The p.d.f. f (x) of the stationary level of the surplus process with various values of the amount of dividend.

Its inverse Laplace transform is given by

H(x) = c0 + c1es1x + c2es2x

= 1
1− λm/c

+ (s1 + 2/m)2

s1(s1 − s2)
es1x + (s2 + 2/m)2

s2(s2 − s1)
es2x. (29)

Then, the stationary distribution of the surplus process is obtained by applying the above equation to Theorem 4.
Numerical example: In this numerical example,m = 1/6, c = 2.05, and the input rates λ = 11.8, 12.29 as the same as

the exponential distribution case. The claim size is Erlang distributed with rateμ = 12.0 and shape parameter 2 so that the
expected claim sizem = 1/6. If λ = 11.8, then the other two solutions of Eq. (28) are

s1 = −0.3267, s2 = −17.9172,

and

H(x) = 24.6− 23.7111e−0.3267x + 0.1111e−17.9172x, x ≥ 0,

and if λ = 12.29, then the other two solutions of Eq. (28) are

s1 = −0.0065, s2 = −17.9984,

and

H(x) = 1230− 1229.1111e−0.0065x + 0.1111e−17.9984x, x ≥ 0.

Weobtain numerically the values of E[τ ] and E[N2] for various values ofM−a. ForM−a = 0.5, 1.0, . . . , 5.0, Fig. 5 shows
the results.We can find the same feature as the exponential distribution case, i.e. the expected time to ruin decreases almost
linearly, while E[N2] decreases exponentially in both cases of λ = 11.8 and 12.29. However, due to the lower variance of the
claim size compared to the exponential distribution case, both E[τ ] and E[N2] have the greater value than the exponential
distribution case. Fig. 6 gives f (x) for M − a = 1.0, 3.0, 5.0. As shown in the figure, f (x) has a negligible size of jump at
x = a, but a lot larger size of jump at x = b as same as the exponential distribution case.
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7.3. GH distributed claim sizes

Suppose that the c.d.f. of the claim sizes can be approximated by a two term GH distribution,

G(x) = 1− w1e−μ1x − w2e−μ2x.

Then, the approximate average claim size is

mg = w1

μ1
+ w2

μ2
.

We assume that the premium rate c is greater than λmg . From Eq. (24), Laplace transform of Ĥ(x) is computed to be

ψ(s) = (s+ μ1)(s+ μ2)

s{s2 + (μ1 + μ2 − λ/c)s+ μ1μ2(1− λmg/c)} . (30)

Since c > λmg , we can see that s0 = 0 is a simple pole of ψ(s). Let s1 and s2 be the other two poles. Then,

s1 = −(μ1 + μ2 − λ/c)+√(μ1 + μ2 − λ/c)2 − 4μ1μ2(1− λmg/c)
2

,

s2 = −(μ1 + μ2 − λ/c)−√(μ1 + μ2 − λ/c)2 − 4μ1μ2(1− λmg/c)
2

.

We consider the simplest case that both s1 and s2 are real and s1 �= s2. Then, we can decompose ψ(s) as follows,

ψ(s) = c0
s
+ c1

s− s1
+ c2

s− s2
,

where

ci = (s− si)ψ(s)|s=si , i = 0, 1, 2.

Its inverse Laplace transform is given by

Ĥ(x) = c0 + c1es1x + c2es2x

= 1
1− λmg/c

+ (s1 + μ1)(s1 + μ2)

s1(s1 − s2)
es1x + (s2 + μ1)(s2 + μ2)

s2(s2 − s1)
es2x. (31)

By applying the above equation to Theorem 4, we can approximate the stationary distribution of the surplus process.
Numerical example: In this numerical example,m = 1/6, c = 2.05, and the input rates λ = 11.8, 12.29 as same as the

previous cases. The claim size is two-term GH distributed with c.d.f. G(x),

G(x) = 1− 10
11

e−12x − 1
11

e−x, x ≥ 0.

If λ = 11.8, then the other two solutions of Eq. (30) are

s1 = −0.0680, s2 = −7.1759,

and

H(x) = 24.6− 23.0159e−0.0680x − 0.5841e−7.1759x, x ≥ 0,

and if λ = 12.29, then the other two solutions of Eq. (30) are

s1 = −0.0014, s2 = −7.0035,

and

H(x) = 1230− 1228.3883e−0.0014x − 0.6117e−7.0035x, x ≥ 0.

We obtain numerically the values of E[τ ] and E[N2] for various values of M − a. For M − a = 0.5, 1.0, . . . , 5.0, Fig. 7
shows the results. As same as the previous cases, the expected time to ruin decreases almost linearly, while E[N2] decreases
exponentially in both cases of λ = 11.8 and 12.29. However, both E[τ ] and E[N2] are lower than those of the previous cases,
which is due to the larger variance of the GH distributed claim size. Fig. 8 shows f (x) for M − a = 1.0, 3.0, 5.0. Differently
from the previous cases, f (x) has no negligible jump at x = a, and has larger size of jump at x = b compared to the previous
cases.
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(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 7. Expected time to ruin after a reinvestment and expected number of payment of dividends between two ruins with various values of the amount of
dividend.

(a) When λ = 11.8. (b) When λ = 12.29.

Fig. 8. The p.d.f. f (x) of the stationary level of the surplus process with various values of the amount of dividend.

8. Conclusion

In this paper, a modified Cramér–Lundberg model is analyzed. In the model, a constant amount of dividend is paid
immediately whenever the surplus level reaches a barrier, and at ruin a reinvestment is done so that the surplus level is
to be a specified level. Such a model is justified in case the costs of payment of dividends and reinvesting are not negligible.
We obtain the distribution of the stationary surplus level, the expected time to ruin after a reinvestment, and the expected
number of payments of dividends between ruins.

In obtaining the results, we adopt the level-crossing argument and the technique of the decomposition of the surplus
process. However, differently fromBrill andYu (2011),weobtain the expectednumber of the up-crossing of a level, andusing
this, we drive the distribution of the stationary surplus level. Brill and Yu (2011) also adopted the level-crossing argument
to obtain the distribution of the stationary surplus level, while they obtained the renewal type equation (or Volterra integral
equation) for the p.d.f. of the stationary surplus level.

In practice, it may be difficult to obtain the value of the function H(x). For such case, the Laplace transform method
is helpful for evaluating H(x) if the Laplace transform of H(x) is easily invertible. When a GH distribution gives a good
approximation of the distribution of the actual claim size, we show that H(x) can be evaluated using the partial fraction
expansion of the Laplace transform of H(x). Through the numerical examples, the cases with various distributions of the
claim size are treated, and we can see that the obtained results of this paper can be applied without huge difficulty.
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