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a b s t r a c t 

This paper is concerned with the wave propagation behavior of rotating functionally 

graded (FG) temperature-dependent nanoscale beams subjected to thermal loading based 

on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distribu- 

tions across the thickness are investigated. Thermo-elastic properties of FG beam change 

gradually according to the Mori–Tanaka distribution model in the spatial coordinate. The 

nanobeam is modeled via a higher-order shear deformable refined beam theory which has 

a trigonometric shear stress function. The governing equations are derived by Hamilton’s 

principle as a function of axial force due to centrifugal stiffening and displacement. The so- 

lution of these equations is provided employing a Galerkin-based approach which has the 

potential to capture various boundary conditions. By applying an analytical solution and 

solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are ob- 

tained. Numerical results illustrate that various parameters including temperature change, 

angular velocity, nonlocality parameter, wave number and gradient index have significant 

effects on the wave dispersion characteristics of the nanobeam under study. The outcome 

of this study can provide beneficial information for the next-generation research and the 

exact design of nano-machines including nanoscale molecular bearings, nanogears, etc. 

© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied 

Mechanics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Functionally graded materials (FGMs) have been created from
a mixture of ceramic and metal with a continuous variation in
one or more dimensions, which are designed to reach the high
structural performance. Thus, it is important to investigate
the mechanical specifications of FGM structures. Recently,
many papers have been published concerning the analysis of
FG nanostructures. For example, the free vibration analysis
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of FG size-dependent nanobeam using the finite element
method investigated by Eltaher et al. [1] ; thermal loading
effects on buckling and vibrational behavior of FG nanobeam
explored by Ebrahimi et al. [2,3] ; the nonlocal thermo-elastic
wave propagation in temperature-dependent embedded non-
homogeneous FG nanobeams presented by Ebrahimi et al. [4] ;
thermal environment effects on the wave dispersion behavior
of inhomogeneous strain gradient FG nanobeams based
on higher order refined beam theory studied by Ebrahimi
and Barati [5] ; the size-dependent mechanical behavior of
functionally graded trigonometric shear deformable nano-
beams including the neutral surface position concept studied
by Ahouel et al. [6] ; hydro-thermal effects on the vibration
y of Theoretical and Applied Mechanics. 
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ehavior of FG nano-beams explored by Ebrahimi and Barati 
7,8] ; the thermo-mechanical buckling analysis of curved 

unctionally graded (FG) nanobeams based on the analytical 
olution method performed by Enrahimi and Barati [9] ; and 

he wave propagation analysis of quasi-3D FG nanobeams 
n thermal environment based on nonlocal strain gradient 
heory conducted by Ebrahimi and Barati [10] . Then, in the 
otating FG nanobeam field, Ebrahimi and Shafei [11] inves- 
igated the application of Eringen’s nonlocal elasticity theory 
n the vibration analysis of rotating FG nano-beams. 

The physical and mechanical characteristics of structures 
n the nanorealm, render evident size effects that make them 

emonstrate significant mechanical and thermal behaviors 
hich are superior to the conventional structural materials.
herefore, nanomaterials have the potential to revolution- 

ze critical technologies. Hence, for investigation on the me- 
hanical behavior of nanostructures, in which the interatomic 
onds possess a vital role in their regime, the classical con- 
inuum theory which disregards such a notable fact is not 
ppropriate for this situation. Accordingly, this issue (size- 
ffect) has been examined in the context of nonlocal con- 
inuum theories such as the nonlocal elasticity theory that 
as first proposed by Eringen [ 12 ,13 ,14 ]. According to this the- 
ry, the strain/stress state at any reference point is a func- 
ion of the corresponding states of other points of the con- 
inuum body. Narendar and Gopalakrishnan [15] studied the 
mall-scale influences on wave propagation of multi-walled 

arbon nanotubes. Wang [16] analyzed the wave propagation 

n fluid-conveying single-walled carbon nanotubes using the 
train gradient theory. Yang et al. [17] researched wave dis- 
ersion of double-walled carbon nanotubes on the basis of 
ize-dependent Timoshenko beam model. The wave propaga- 
ion analysis of single-walled carbon nanotubes exposed to 
n axial magnetic field in the framework of nonlocal Euler–
ernoulli beam model was investigated by Narendar et al.

18] Aydogdu [19] studied the longitudinal wave dispersion 

f carbon nanotubes. Also, Filiz and Aydogdu [20] performed 

ave propagation analysis of functionally graded (FG) nan- 
tubes conveying fluid embedded in elastic medium. A review 

n nonlocal elastic models for bending, buckling, vibration,
nd wave dispersion of nanoscale beams was explored by Elta- 
er et al. [21] 

Devices in the nanometer realm with moving parts are 
alled nano-machines. Rotating nanostructures containing 
olecular bearings, nanogears, nanoturbines and multiple 

ear systems have received notable consideration from the 
esearch community [22,23] . Hence, investigation of vibration 

nd wave propagation of nanomachines is significant for their 
ccurate design. Pradhan and Murmu [24] used a nonlocal 
eam model to investigate the flap-wise bending–vibration 

haracteristics of a rotating nanocantilever. Narendar and 

opalakrishnan [25] explored the wave dispersion behavior 
f a rotating nanotube using the nonlocal elasticity theory.
randa-Ruiz et al. [26] reported free vibration of rotating non- 
niform nano-cantilevers according to Eringen’s nonlocal 
lasticity theory. Recently, Mohammadi et al. [27] conducted 

ibration analysis of a rotating viscoelastic nano-beam 

mbedded in a visco-Pasternak elastic medium and in a 
onlinear thermal environment. 
t

i

Moreover, the stiffness enhancement observed in the 
xperiments and the strain gradient elasticity [28] cannot be 
ell reproduced using Eringen’s nonlocal elasticity theory. Re- 

ently, to diagnose the true effects of the two size-dependent 
roblems on the structural responses, Lim et al. [29] reported a 
igh-order nonlocal strain gradient theory (named the nonlo- 
al strain gradient theory) to bring both of the size dependent 
cales into a single theory. The nonlocal strain gradient theory 
ccounts the stress for both the nonlocal elastic stress field 

nd the strain gradient stress field. It is worth mentioning 
hat the nonlocal strain gradient theory catches the true 
ffects of the two length scale parameters on the physical 
nd mechanical characteristics of small-scale structures. Li et 
l. [30] reported vibration analysis of nonlocal strain gradient 
G nano-beams. In these works, both stiffness-hardening and 

tiffness-softening influences on the vibration behavior of 
G nanobeams were presented. It is observed that most of 
he studies were dedicated to buckling, statics and vibration 

f FG nano-beams, with only a few working in the field of 
ave propagation of FG small-scale beams. The flexural wave 
ropagation in size-dependent functionally graded beams 
ased on nonlocal strain gradient theory was investigated 

y Li et al. [31] . In another work, Ebrahimi and Barati [32] an-
lyzed the flexural wave propagation of embedded S-FGM 

ano-beams under longitudinal magnetic field. Narendar 
33] investigated the wave dispersion in functionally graded 

agneto-electro-elastic nonlocal rod. Recently, Ebrahimi et 
l. [34] reported wave propagation analysis of rotating strain 

radient temperature-dependent (nonlinear distribution) FG 

anobeam in thermal environment based on Euler–Bernoulli 
eam theory. According to the history, it is clear that the wave 
ispersion analysis of rotating FG thermo-elastic nanobeams 
ased on higher-order shear deformable refined beam theory 
nder different temperature distributions is a novel and 

seful topic. 
This research deals with the wave dispersion character- 

stics of a rotating FG thermo-elastic nano-beam based on 

efined beam theory by using the nonlocal strain gradient 
heory under different temperature distributions. Material 
roperties are supposed to change gradually across the thick- 
ess of nanobeam based on the Mori–Tanaka distribution 

odel. The governing partial differential equations are de- 
ived by applying the Hamilton’s principle in the framework 
f higher-order shear deformable refined beam model. An 

nalytical solution is applied to capture required parameters.
t is clear that the wave dispersion characteristics of rotating 
G nanobeams are significantly affected by temperature 
hange, angular velocity, wave number, nonlocal parameter,
ength scale parameter, and material graduation. 

. Theory and formulation 

.1. Mori–Tanaka FGM nanobeam model 

he material properties of the FG nanobeam are assumed to 
istribute in accordance with the Mori–Tanaka model about 
he spatial coordinate. The Mori–Tanaka homogenization 

echnique represents the local effective material properties 
ncluding local effective bulk modules K e and shear modules 
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Table 1. – Temperature-dependent coefficients for Si 3 N 4 and SUS 304. 

Material Properties P 0 P − 1 P 1 P 2 P 3 

Si 3 N 4 E (Pa) 348.43e + 9 0 −3.070e −4 2.160e −7 −8.946e −11 
α(K 

− 1 ) 5.8723e −6 0 9.095e −4 0 0 
ρ( k g/m 

3 ) 2370 0 0 0 0 
κ(W/mK) 13.723 0 −1.032e −3 5.466e −7 −7.876e −11 
ν 0.24 0 0 0 0 

SUS 304 E (Pa) 201.04e + 9 0 3.079e −4 −6.534e −7 0 
α(K 

− 1 ) 12.330e −6 0 8.086e −4 0 0 
ρ( k g/m 

3 ) 8166 0 0 0 0 
κ(W/mK) 15.379 0 −1.264e −3 2.092e −6 −7.223e −10 
ν 0.3262 0 −2.002e −4 3.797e −7 0 
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μe in the form (Barati et al. 2016) 

K e − K m 

K c − K m 

= 

V c 

1 + V m 

( K c − K m 

) / ( K m 

+ 4 μm 

/ 3) 
(1)

μe −μm 

μc −μm 

= 

V c 

1 + V m 

( μc −μm 

) / [( μm 

+ μm 

(9 K m 

+ 8 μm 

) / (6( K m 

+ 2 μm 

))] 
(2)

where subscripts m and c define metal and ceramic, respec-
tively, and their volume fractions are related by the following
form: 

 c + V m 

= 1 (3)

in which the volume fractions of the ceramic and metal
phases are respectively given by 

 c = 

(
z 
h 

+ 

1 
2 

) P 

(4)

 m 

= 1 −
(

z 
h 

+ 

1 
2 

)p 

(5)

Here p indicates the gradient index which determines grad-
ual alteration of material properties through the thickness of
the nanobeam. Finally, the effective Young’s modulus ( E ), Pois-
son’s ratio ( v ) and mass density ( ρ) can be expressed by: 

E(z ) = 

9 K e μe 

3 K e + μe 
(6)

v (z ) = 

3 K e − 2 μe 

6 K e + 2 μe 
(7)

ρ(z ) = ρ c V c + ρ m 

V m 

(8)

And the thermal expansion coefficient ( α) and thermal con-
ductivity ( κ) may be expressed as: 

αe − αm 

αc − αm 

= 

1 
K e 

− 1 
K m 

1 
K c 

− 1 
K m 

(9)

κe − κm 

κc − κm 

= 

V c 

1 + V m 

( κc −κm ) 
3 κm 

(10)

Also, the temperature-dependent coefficients of material
phases can be expressed according to the following relation: 

P = P 0 ( P −1 T −1 + 1 + P 1 T + P 2 T 
2 + P 3 T 

3 ) (11)
where, P 0 ,P − 1 , P 1 , P 2 and P 3 are the temperature-dependent
constants which are tabulated in Table 1 for Si 3 N 4 and
SUS 304. The bottom and top surfaces of the FG nanobeam are
fully metal (SUS 304) and fully ceramic (Si 3 N 4 ), respectively. 

2.2. Kinematic relations 

In the framework of refined shear deformation beam theories,
the displacement field of nonlocal FGM beam can be written
as: 

u x ( x, z ) = u ( x ) − z 
∂ w b 

∂x 
− f (z ) 

∂ w s 

∂x 
(12)

u z (x, z ) = w b (x ) + w s (x ) (13)

where, w b , w s indicate the components corresponding to the
bending and shear transverse displacements of a point on
the mid-surface of the beam, respectively; u denotes the lon-
gitudinal displacement; and f ( z ) denotes the shape function
representing the shear stress/strain distribution through the
thickness of the beam. The present theory has a trigonometric
function in the form (Mantari et al. 2014) 

f (z ) = z − sin (ξz ) /ξ (14)

where ξ = π/ h . The non-zero strains of the present beam
model can be expressed in the following form: 

ε xx = 

∂u 
∂x 

− z 
∂ 2 w b 

∂ x 2 
− f (z ) 

∂ 2 w s 

∂ x 2 
(15)

γxz = g 
∂ w s 

∂x 
(16)

where, g ( z ) = d ƒ/ dz . Also, the Hamilton’s principle states that:

∫ t 

0 
δ(U + V − K) d t = 0 (17)

Here, U is strain energy, V is the work done by external
forces, and K is kinetic energy. The virtual strain energy can
be written as: 

δ U = 

∫ 
v 
σi j δ ε i j d V = 

∫ 
v 

( σxx δ ε xx + σxz δ γxz ) d V (18)
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Substituting Eqs. (15) and (16) into Eq. (18) yields: 

U = 

∫ L 

0 

( 

N 

d δu 
dx 

− M b 
d 

2 δw b 

d x 2 
− M s 

d 

2 δw s 

d x 2 
+ Q 

d δw s 

dx 

) 

d x (19) 

n which the variables expressed in the above equation are 
efined as follows: 

 = 

∫ 
A 

σxx d A, M b = 

∫ 
A 

z σxx d A, M s = 

∫ 
A 

f σxx d A, Q = 

∫ 
A 

g σxz d A

(20) 

The first variation of the work done by applied forces can 

e expressed in the following form: 

V = 

∫ L 

0 

(
N 

T 
(

d( w b + w s ) 
d x 

d δ( w b + w s ) 
d x 

))
d x (21) 

here N 

T and N 

R indicate the applied force due to temperature 
nd the external force due to rotation, respectively, which can 

e defined by: 

 

T = 

∫ h/ 2 

−h/ 2 
E(z, T ) α(z, T ) (T − T 0 ) d z (22) 

 

R = b 
∫ L 

x 

∫ h/ 2 

−h/ 2 
(ρ(z ) A 2 x ) d x d z (23a) 

here T 0 denotes the reference temperature and  denotes 
he angular velocity. In this research, we assume a uniform 

otating FG nanobeam, with the maximum axial force consid- 
red (Narendar and Gopalakrishnan, 2011): 

 

R 
max = b 

∫ L 

x 

∫ h/ 2 

−h/ 2 
(ρ(z ) A 2 x ) d x d z (23b) 

The variation of kinetic energy can be presented by: 

K = 

∫ L 

0 

(
I 0 

[
du 

dt 
d δ u 

dt 
+ 

(
dw b 

dt 
+ 

d w s 

dt 

)(
d δ w b 

dt 
+ 

d δ w s 

dt 

)]

−I 1 

(
du 

dt 
d 

2 δw b 

dxdt 
+ 

d 

2 w b 

dxdt 
d δu 

dt 

)

+ I 2 

(
d 

2 w b 

d x d t 
d 

2 δw b 

d x d t 

)
− J 1 

(
d u 
d t 

d 

2 δw s 

d x d t 
+ 

d 

2 w s 

d x d t 
d δu 
d t 

)

+ K 2 

(
d 

2 w s 

d x d t 
d 

2 δw s 

d x d t 

)

+ J 2 

(
d 

2 w b 

d x d t 
d 

2 δw s 

d x d t 
+ 

d 

2 w s 

d x d t 
d 

2 δw b 

d x d t 

))
d x (24) 

n which 

 I 0 , I 1 , J 1 , I 2 , J 2 , K 2 ) = 

∫ 
A 

ρ(z )(1 , z, f, z 2 , z f, f 2 )d A (25) 

The following equations are obtained by substituting Eqs.
19 –23 ) into Eq. (17) when the coefficients of δu , δ w b and δ w s 

re equal to zero: 

∂N 

∂x 
= I 0 

d 

2 u 
d t 2 

− I 1 
d 

3 w b 

d x d t 2 
− J 1 

d 

3 w s 

d x d t 2 
(26) 
d 

2 M b 

d x 2 
+ ( N 

T + N 

R 
max ) 

d 

2 ( w b + w s ) 
d x 2 

= I 0 

(
d 

2 w b 

d t 2 
+ 

d 

2 w s 

d t 2 

)
+ I 1 

d 

3 u 
d x d t 2 

− I 2 
d 

4 w b 

d x 2 d t 2 
− J 2 

d 

4 w s 

d x 2 d t 2 
(27) 

d 

2 M s 

d x 2 
+ 

d Q 

d x 
+ ( N 

T + N 

R 
max ) 

d 

2 ( w b + w s ) 
d x 2 

= I 0 

(
d 

2 w b 

d t 2 
+ 

d 

2 w s 

d t 2 

)

+ J 1 
d 

3 u 
d x d t 2 

− J 2 
d 

4 w b 

d x 2 d t 2 
− K 2 

d 

4 w s 

d x 2 d t 2 
(28) 

.3. The nonlocal FG nanobeam strain gradient model 

ccording to the theory of high-order nonlocal strain gradient 
lasticity developed by Lim et al. [29] , the stress enumerates 
or both nonlocal elastic stress field and strain gradient stress 
eld. Therefore, the stress can be expressed by the following 
elations: 

i j = σ
(0) 
i j −

d σ
(1) 
i j 

d x 
(29) 

here the classical stress σ (0) 
xx and the higher-order stress σ (1) 

xx 

re related to strain εxx and strain gradient εxx,x , respectively,
hich are defined as: 

(0) 
i j = 

∫ L 

0 
C i jkl α0 (x, x ′ , e 0 a ) ε ′ kl (x 

′ )d x ′ (30) 

(1) 
i j = l 2 

∫ L 

0 
C i jkl α1 (x, x ′ , e 1 a ) ε ′ kl,x (x 

′ )d x ′ (31) 

n which, L is length of the beam, C ijkl is the elastic constants,
 0 a and e 1 a are nonlocal parameters with the effect of 
onlocal stress field taken into account, l is the material char- 
cteristic parameter (length scale parameter) that represents 
he influence of higher-order strain gradient field ( l = 0gives 
he relation of nonlocal continuum theory). The nonlocal 
arameters e 0 a and e 1 a in the nonlocal functions α0 ( x,x ′ ,
 0 a ) and α1 ( x,x ′ , e 1 a ) may be determined by matching the
ave dispersion relation from experimental data or atomic 

attice dynamics. Also, it is found that α1 ( x,x ′ , e 1 a ) and l do
ot present in Eringen’s nonlocal elasticity theory [29] . The 
onstitutive relation for a FGM nanobeam can be stated as: 

[1 − ( e 1 a ) 2 ∇ 

2 ][1 − ( e 0 a ) 
2 ∇ 

2 ] σi j 

= C i jkl [1 − ( e 1 a ) 2 ∇ 

2 ] ε kl − C i jkl l 
2 [1 − ( e 0 a ) 

2 ∇ 

2 ] ∇ 

2 ε kl (32) 

It contains three length scale parameters: two of them rep- 
esent the nonlocal size-effect (one of them for the lower- 
rder nonlocal stress and the other the higher-order nonlocal 
tress), and the third one accounts for the size-effect induced 

y higher-order deformation or strain gradients. In Eq. (32) , ∇ 

2 

enotes the Laplace operator. According to the assumption in 

im et al. [29] , e 1 = e 0 = e . By discarding terms of order O ( ∇ 

2 ),
he general constitutive relation in Eq. (34) can be stated as: 

1 − (ea ) 2 ∇ 

2 ] σi j = C i jkl [1 − l 2 ∇ 

2 ] ε kl (33) 

Thus, the constitutive relations for a nonlocal refined shear 
eformable FG nanobeam can be expressed as: 

xx − μ
∂ 2 σxx 

∂ x 2 
= E(z ) 

( 

ε xx − λ2 ∂ 
2 ε xx 

∂ x 2 

) 

(34) 
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σxz − μ
∂ 2 σxz 

∂ x 2 
= G (z ) 

( 

γxz − λ2 ∂ 
2 γxz 

∂ x 2 

) 

(35)

where μ= ea 2 and λ = l . Integrating Eqs. (34) and ( 35 ) over the
cross-sectional area of the nanobeam provides the following
nonlocal relations for FGM beam model as: 

N − μ
∂ 2 N 

∂ x 2 
= 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

A 

∂u 
∂x 

− B 
∂ 2 w b 

∂ x 2 
− B s 

∂ 2 w s 

∂ x 2 

) 

− N 

T 
x (36)

M b − μ
∂ 2 M b 

∂ x 2 
= 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

B 
∂u 
∂x 

− D 

∂ 2 w b 

∂ x 2 
− D s 

∂ 2 w s 

∂ x 2 

) 

− M 

T 
b 

(37)

M s − μ
∂ 2 M s 

∂ x 2 
= 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

B s 
∂u 
∂x 

− D s 
∂ 2 w b 

∂ x 2 
− H s 

∂ 2 w s 

∂ x 2 

) 

− M 

T 
s 

(38)

Q − μ
∂ 2 Q 

∂ x 2 
= 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) (
A s 

∂ w s 

∂x 

)
(39)

where the cross-sectional rigidities are explained as: 

(A, B, B s , D, D s , H s ) = 

∫ 
A 

E(z ) (1 , z, f, z 2 , z f, f 2 ) d A (40)

A s = 

∫ 
A 

g 2 G (z ) d A (41)

The governing equations of refined shear deformable FGM
nanobeams in terms of displacements are obtained by substi-
tuting the N, M b , M s and Q of Eqs. (36) –( 39 ), respectively, into
Eqs. (26) –( 28 ) as follows: 

A 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 2 u 
∂ x 2 

) 

− B 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 3 w b 

∂ x 3 

) 

−B s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 3 w s 

∂ x 3 

) 

− I 0 
∂ 2 u 
∂ t 2 

+ I 1 
∂ 3 w b 

∂ x∂ t 2 
+ J 1 

∂ 3 w s 

∂ x∂ t 2 

+ μ

(
I 0 

∂ 4 u 
∂ x 2 ∂ t 2 

− I 1 
∂ 5 w b 

∂ x 3 ∂ t 2 
− J 1 

∂ 5 w s 

∂ x 3 ∂ t 2 

)
= 0 (42)

B 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 3 u 
∂ x 3 

) 

− D 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) (
∂ 4 w b 

∂ x 4 

)

−D s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) (
∂ 4 w s 

∂ x 4 

)
− ( N 

T + N 

R ) 
∂ 2 ( w b + w s ) 

∂ x 2 

−I 0 

( 

∂ 2 w b 

∂ t 2 
+ 

∂ 2 w s 

∂ t 2 

) 

− I 1 
∂ 3 u 

∂ x∂ t 2 
+ I 2 

∂ 4 w b 

∂ x 2 ∂ t 2 
+ J 2 

∂ 4 w s 

∂ x 2 ∂ t 2 

+ μ

(
( N 

T + N 

R ) 
∂ 4 ( w b + w s ) 

∂ x 4 
+ I 0 

(
∂ 4 w b 

∂ x 2 ∂ t 2 
+ 

∂ 4 w s 

∂ x 2 ∂ t 2 

)

+ I 1 
∂ 5 u 

∂ x 3 ∂ t 2 
− I 2 

∂ 6 w b 

∂ x 4 ∂ t 2 
− J 2 

∂ 6 w s 

∂ x 4 ∂ t 2 

) 

= 0 (43)
B s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 3 u 
∂ x 3 

) 

− D s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) (
∂ 4 w b 

∂ x 4 

)

−H s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) (
∂ 4 w s 

∂ x 4 

)
+ A s 

( 

1 − λ2 ∂ 
2 

∂ x 2 

) ( 

∂ 2 w s 

∂ x 2 

) 

−( N 

T + N 

R ) 
∂ 2 ( w b + w s ) 

∂ x 2 
− I 0 

( 

∂ 2 w b 

∂ t 2 
+ 

∂ 2 w s 

∂ t 2 

) 

−J 1 
∂ 3 u 

∂ x∂ t 2 
+ J 2 

∂ 4 w b 

∂ x 2 ∂ t 2 
+ K 2 

∂ 4 w s 

∂ x 2 ∂ t 2 

+ μ(( N 

T + N 

R ) 
∂ 4 ( w b + w s ) 

∂ x 4 
+ I 0 

(
∂ 4 w b 

∂ x 2 ∂ t 2 
+ 

∂ 4 w s 

∂ x 2 ∂ t 2 

)

+ J 1 
∂ 5 u 

∂ x 3 ∂ t 2 
− J 2 

∂ 6 w b 

∂ x 4 ∂ t 2 
− K 2 

∂ 6 w s 

∂ x 4 ∂ t 2 
) = 0 (44)

3. Solution procedures 

The solution of governing equations of nonlocal thermoelastic
FGM nanobeam can be presented by: 

u (x, t) = U n exp [ i (βx − ωt)] (45)

w b (x, t) = W bn exp [ i (βx − ωt)] (46)

w s (x, t) = W sn exp [ i (βx − ωt)] (47)

where ( U n ,W bn ,W sn ) are the wave amplitudes; β and ω indicate
the wave number and circular frequency, respectively. Substi-
tuting Eqs. (45) –( 47 ) into Eqs. (42) –( 44 ) gives: 

⎧ ⎪ ⎨ 

⎪ ⎩ 

⎛ 

⎜ ⎝ 

k 11 k 12 k 13 

k 21 k 22 k 23 

k 31 k 32 k 33 

⎞ 

⎟ ⎠ 

− ω 

2 

⎛ 

⎜ ⎝ 

m 11 m 12 m 13 

m 21 m 22 m 23 

m 31 m 32 m 33 

⎞ 

⎟ ⎠ 

⎫ ⎪ ⎬ 

⎪ ⎭ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

U n 

W bn 

W sn 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 0 

(48)

where, 

k 11 = −A β2 (1 + λ2 β2 ) , k 21 = −Bi β3 (1 + λ2 β2 ) , k 12 = −k 21 

k 22 = −D β4 (1 + λ2 β2 ) + (N 

R 
max + N 

T ) β2 (1 + μβ2 ) , 

k 31 = −B s i β2 (1 + λ2 β2 ) , k 13 = −k 31 

k 32 = −D s β
4 (1 + λ2 β2 ) + (N 

R 
max + N 

T ) β2 (1 + μβ2 ) , 

k 23 = −D s β
4 (1 + λ2 β2 ) + (N 

R 
max + N 

T ) β2 (1 + μβ2 ) 

k 33 = −( H s β
4 + A s β

2 )(1 + λ2 β2 ) + (N 

R 
max + N 

T ) β2 (1 + μβ2 ) , 

m 11 = −I 0 (1 + μβ2 ) 

m 21 = −I 1 iβ(1 + μβ2 ) , m 12 = −m 21 , m 31 = −i J 1 β(1 + μβ2 ) , 

m 13 = −m 31 , m 22 = −( I 0 + I 2 β
2 )(1 + μβ2 ) 

m 32 = −( I 0 + J 2 β
2 )(1 + μβ2 ) , m 23 = −( I 0 + J 2 β

2 )(1 + μβ2 ) , 

m 33 = −( I 0 + k 2 β
2 )(1 + μβ2 ) 

By setting the determinant of the above matrix to zero, the
circular frequency ω can be obtained. Hence, the roots of Eq.
(43) can be written as: 

ω 1 = M 0 (β ) , ω 2 = M 1 (β ) , ω 3 = M 2 (β ) (49)

These roots correspond to wave modes M 0 , M 1 and M 2 , re-
spectively. Wave modes M 0 and M 2 are related to the flexural
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Table 2. – Comparison of the wave frequency for rotating FG nanobeam. (NLTR, μ= 1 nm, �T = 800, l = 1.5). 

β Ω P = 0 P = .2 P = 1 P = 5 
Li et al.[31] . Present Li et al. [31] . Present Li et al. [31] . Present Li et al. [31] . Present 

0.1 0 0.164617 0.106587 0.109812 0.0811336 0.0694308 0.0555902 0.058270 0.0405788 
1 0.164782 0.108673 0.109942 0.083689 0.0695951 0.0592566 0.0584509 0.0458823 
2 0.165275 0.114688 0.110329 0.0907568 0.070079 0.0674888 0.0589657 0.0578131 

5 0 12.842553 12.8253 8.322701 8.16948 5.234263 5.231979 4.382287 4.359028 
1 12.842555 12.8255 8.322702 8.16952 5.234265 5.231980 4.382289 4.359033 
2 12.842562 12.8261 8.322707 8.16964 5.234271 5.231981 4.382296 4.359046 

15 0 38.8989264 38.8931 25.208407 24.7478 15.853894 15.8469 13.273356 13.202798 
1 38.8989272 38.8932 25.208408 24.7478 15.853894 15.8469 13.273357 13.202800 
2 38.8989296 38.8934 25.208409 24.7479 15.853896 15.8469 13.273359 13.202804 
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aves, and mode M 1 is related to the extensional waves. Also,
he phase velocity of waves can be calculated by the following 
elation: 

 p(i ) = 

M i (β ) 
β

, i = 1 , 2 , 3 (50) 

hich displays the dispersion relation between phase veloc- 
ty c p and wave number β for the FGM nanobeam. Also, the 
scape frequencies of the FG nanobeam can be obtained by 
etting β → ∞ . It should be noted that after the escape fre- 
uency is reached, the flexural waves will not propagate any- 
ore. 

. Different types of thermal loading 

.1. Uniform temperature rise (UTR) 

emperature of the FG nanobeam is uniformly increased from 

he reference temperature T 0 to the final temperature T , with 

T = T − T 0 . 

.2. Linear temperature rise (LTR) 

n this state, the temperature varies linearly through the thick- 
ess of the nanobeam as follows 

 = T m 

+ �T ( 
z 
h 

+ 

1 
2 

) (51) 

here �T = T c − T m 

, in which T c and T m 

are the temperature of
ottom and top surfaces of the nanobeam, respectively. 

.3. Nonlinear temperature rise (NLTR) 

n this case, the temperature varies nonlinearly through the 
hickness. The temperature distribution can be obtained by 
olving the steady-state heat conduction equation across the 
hickness, with the boundary conditions on the bottom and 

op surfaces of the nanobeam: 

d 
dz 

(
κ (z, T ) 

d T 
dz 

)
= 0 (52) 
d  
For every kind of temperature rise, the boundary conditions 
re considered as follows: 

 

(
h 
2 

)
= T c , T 

(
−h 

2 

)
= T m 

(53) 

The solution of Eqs. (12) and ( 13 ) is: 

 = T m 

+ ( T c − T m 

) 

∫ z 
− h 

2 

1 
κ (z,T ) dz 

∫ h 
2 

− h 
2 

1 
κ (z,T ) dz 

(54) 

here �T = T c − T m 

indicates the temperature change. 

. Numerical results and discussions 

his section is assigned to investigate the propagation charac- 
eristics of the mentioned nanobeam. This nanoscale beam is 

odeled based on the higher order shear deformable refined 

eam theory. The thickness of the nanobeam is considered 

o be h = 100 nm. The material properties of the mentioned 

anobeam are reported in Table 1 . The wave frequencies of 
he mentioned nanobeam are verified with those of Li et al.
31] for various wave numbers and angular velocities, a good 

greement is observed, as reported in Table 2 . 
Tables 3 and 4 report the influence of angular velocity 

 Ω = 1,3 and 5), length scale parameter, temperature change 
nd material composition ( p = .2, 1 and 5) on the phase velocity
 c p ) of rotating refined FG nanobeam for various temperature 
istributions (UTR, LTR, NLTR) at L/h = 20. 

In Table 3 , it is found that, increasing angular velocity leads 
he increase in phase velocity for all three tables. Also, in 

 constant angular velocity, gradient index and temperature 
istribution type, the phase velocity increases due to an in- 
rease in �T . Furthermore, with the increase in gradient in- 
ex, the phase velocity increases too. Finally, it can be seen 

hat, for a constant value of Ω , gradient index and �T phase
elocity decrease due to a change in the type of temperature 
istribution (UTR/LTR/NLTR), and vice versa for �T = 0. 

It is observed in Table 4 that, for a specific temperature dis- 
ribution, phase velocity increases due to the increases in an- 
ular velocity and length scale parameter. However, with the 
ncrease in gradient index, the phase velocity decreases. In ad- 
ition, for a constant value of Ω , both the gradient index and
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Table 3. – Variation of phase velocity of FG nanobeam for various gradient indices, angular velocities, temperature changes 
and thermal loadings. ( L/h = 20, μ = 1 nm, β = 0.08 (1/nm), l = 1 nm). 

P = .2 P = 1 P = 5 
Ω = 1 Ω = 3 Ω = 5 Ω = 1 Ω = 3 Ω = 5 Ω = 1 Ω = 3 Ω = 5 

UTR 
�T = 0 5.61695 6.70877 7.976 4.25386 5.47553 5.79173 3.48769 4.97612 5.10986 
�T = 200 5.5248 6.62856 7.85451 4.18573 5.39787 5.67595 3.43427 4.89626 5.00331 
�T = 500 5.3587 6.47548 7.57756 3.98648 5.10782 5.27783 3.22105 4.53325 4.57983 
�T = 800 5.08321 6.2028 7.05056 3.59779 4.42377 4.49009 2.80093 3.72275 3.73479 
LTR 
�T = 0 5.61726 6.709 7.97607 4.25414 5.47565 5.79173 3.48798 4.97619 5.10986 
�T = 200 5.51818 6.62351 7.85319 4.17951 5.39554 5.67587 3.42816 4.89508 5.0033 
�T = 500 5.33957 6.46137 7.57473 3.96935 5.10389 5.27768 3.20446 4.53218 4.5798 
�T = 800 5.05115 6.18121 7.0478 3.57258 4.42196 4.48998 2.77723 3.72252 3.73478 
NLTR 
�T = 0 5.61726 6.709 7.97607 4.25414 5.47565 5.79173 3.48798 4.97619 5.10986 
�T = 200 5.51798 6.62335 7.85314 4.17911 5.39539 5.67587 3.42786 4.89503 5.0033 
�T = 500 5.33832 6.46045 7.57455 3.96707 5.10336 5.27766 3.20277 4.53206 4.5798 
�T = 800 5.04794 6.17905 7.04752 3.56749 4.42159 4.48996 2.77358 3.72248 3.73478 

Table 4. – Variation of phase velocity of FG nanobeam for various gradient indices, angular velocities, length scale param- 
eters and thermal loadings. ( L/h = 20, μ = 1 nm, β = 0.08 (1/nm), �T = 800). 

P = .2 P = 1 P = 5 
Ω = 1 Ω = 3 Ω = 5 Ω = 1 Ω = 3 Ω = 5 Ω = 1 Ω = 3 Ω = 5 

UTR 
λ = 0 5.0685 6.18976 7.03039 3.58813 4.41063 4.47595 2.79443 3.71107 3.72293 
λ = 1 5.08321 6.2028 7.05056 3.59779 4.42377 4.49009 2.80093 3.72275 3.73479 
λ = 2 5.12707 6.24163 7.11042 3.62659 4.46284 4.53223 2.82036 3.75752 3.77017 
LTR 
λ = 0 5.03635 6.16819 7.02768 3.56287 4.40885 4.47585 2.77067 3.71085 3.72292 
λ = 1 5.05115 6.18121 7.0478 3.57258 4.42196 4.48998 2.77723 3.72252 3.73478 
λ = 2 5.09528 6.22001 7.10751 3.60156 4.46094 4.53211 2.79682 3.75728 3.77015 
NLTR 
λ = 0 5.03314 6.16603 7.02741 3.55777 4.40849 4.47582 2.76701 3.71081 3.72291 
λ = 1 5.04794 6.17905 7.04752 3.56749 4.42159 4.48996 2.77358 3.72248 3.73478 
λ = 2 5.0921 6.21784 7.10722 3.5965 4.46055 4.53209 2.79319 3.75724 3.77015 

Ω

Z

X

L

h

Ceramic-rich

Metal-rich

Wave dispersion

b

Fig. 1 – Configuration of rotating FG nanobeam. 

 

 

 

 

 

 

 

 

 

�T phase velocity increase with the change in the type of tem-
perature distribution (UTR/LTR/NLTR). ( Fig. 1 ). 

In Fig. 2 . variation of the phase velocity ( c p ) of rotating FG
nanobeam versus wave number ( β) for various angular veloci-
ties ( Ω ) and different values of gradient index for a constant
value of nonlocality parameter ( μ = 1 nm), length scale pa-
rameter ( λ = 0.5 nm) and temperature ( �T = 800) for nonlinear
temperature distribution model is plotted. It is observed that,
in the lower values of wave number with an increase in wave
number, the phase velocity increases (it is not true when Ω = 3
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Fig. 2 – Variation of phase velocity of rotating FG nanobeam versus wave number for various angular velocities and gradient 
indices (NLTR, μ = 1 nm, λ= 0.2 nm, �T = 800). 
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nd 4 for p = 1 and 5). But for β ≥ 0.9 (approximately), the phase 
elocity decreases, then in β ≥ 10 the phase velocity tends to 
e constant and does not sensibly change with the increase in 

ave number. In addition, at a constant value of wave num- 
er, the phase velocity increases with the increase in angular 
elocity. However, the diagrams of different angular velocities 
hen β ≤ 0.9 nm are more distinguished and more observable.
hus, the angular velocity of the mentioned nanobeam has no 
onsiderable influence on phase velocity at higher values of 
ave number. Moreover, phase velocity decreases with an in- 

rease in gradient index because of the higher portion of metal 
hase due to an increase in the gradient index. 

Fig. 3 . indicates the variation of phase velocity of rotating 
G nanobeam versus wave number for various length scale 
arameters ( λ = 0.5 and 1.5) and temperature changes with 

he constant values of nonlocality parameter ( μ= 1 nm) and 

radient index ( p = 1). It is clear that the phase velocity in- 
reases due to an increase in wave number. But for λ = 0.5, af- 
er β ≥ 0.8 (approximately), the phase velocity decreases with 

he increase of wave number. In addition, an increase in the 
ength scale parameter leads to an increase in phase veloc- 
ty with higher values of wave number. Also, the diagrams of 
arious length scale parameters are distinguished. Moreover,
or β ≥ 10 the phase velocity tends to be constant and does 
ot change anymore. Finally, with the increase in tempera- 

ure change at a constant wave number, the phase velocity 
ecreases. ( Fig. 4 ). 

Variation of escape frequency of rotating FG nanobeam ver- 
us length scale parameter for various gradient indices with 

he constant values of nonlocality parameter ( μ= 1 nm), tem- 
erature change ( �T = 200) and angular velocity ( Ω = 2 ∗10 ̂ 9)
or the NLTR temperature distribution is plotted in Fig. 5 . 

It is observable that, an increase in length scale parameter 
eads to the increase of escape frequency in a linear way. Also,
he escape frequency decreases due to an increase in gradient 
ndex. 

Variation of escape frequency of rotating FG nanobeam 

ersus angular velocity for various temperature changes and 

onstant values of nonlocality parameter ( μ= 1 nm), length 

cale parameter ( λ = 0.2 nm) and gradient index ( p = 1) for the
LTR temperature distribution type is reported in Fig. 6 . It can 

e seen that escape frequency decreases due to an increase 
n temperature change. Also, it is clear that the escape fre- 
uency does not sensibly change with the increase in angular 
elocity. 
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Fig. 3 – Variation of phase velocity of rotating FG nanobeam versus wave number for various length scale parameters and 

temperature changes (NLTR, μ = 1 nm, p = 1). 
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Fig. 5 – Variation of escape frequency of rotating FG 

nanobeam versus length scale parameter for various 
gradient indices ( μ= 1 nm, �T = 200 and Ω = 2 ∗10 ̂ 9). 
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nanobeam versus angular velocity for various temperature 
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. Conclusion 

n this paper, the wave dispersion characteristics of a ro- 
ating thermo-elastic FG nanobeam are explored based on 

he higher-order refined shear deformable beam theory.
he Mori–Tanaka distribution model and nonlocal strain 

radient theory are also applied. Through some parametric 
tudy, the influences of different parameters such as angular 
elocity, gradient index, nonlocality parameter, wave number,
emperature rise, and temperature distribution on the wave 
ispersion behavior of the mentioned nanobeam are investi- 
ated. It is found that an increase in angular velocity leads to 
he increase of phase velocity, especially at higher values of 
ngular velocity. However, the increase in angular velocity has 
o sensible effect on the escape frequency. Also, an increase 

n wave number causes the increase in phase velocity for 
ower values of wave number and angular velocity. In addi- 
ion, phase velocity increases due to an increase in angular 
elocity, but the diagrams in lower values of wave number are 
istinguished. Moreover, an increase in length scale causes 
he increase of escape frequency, but at a constant value of 
ength scale parameter, an increase in the gradient index 
eads to a decrease in the escape frequency. 
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