
acta mechanica solida sinica 30 (2017) 374–389 

Available online at www.sciencedirect.com 

journal homepage: www.elsevier.com/locate/CAMSS 

A 3D multi-field element for simulating the 

electromechanical coupling behavior of dielectric 

elastomers 

Jun Liu 

∗, Choon Chiang Foo , Zhi-Qian Zhang 

Institute of High Performance Computing, A 

∗STAR, 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore 

a r t i c l e i n f o 

Article history: 

Received 4 April 2017 

Revised 27 June 2017 

Accepted 7 July 2017 

Available online 8 August 2017 

Keywords: 

Dielectric elastomer 

Electromechanical coupling 

Implicit multi-field finite element 

method 

Eigenvalue problem 

a b s t r a c t 

We propose a multi-field implicit finite element method for analyzing the electromechani- 

cal behavior of dielectric elastomers. This method is based on a four-field variational princi- 

ple, which includes displacement and electric potential for the electromechanical coupling 

analysis, and additional independent fields to address the incompressible constraint of the 

hyperelastic material. Linearization of the variational form and finite element discretization 

are adopted for the numerical implementation. A general FEM program framework is devel- 

oped using C ++ based on the open-source finite element library deal.II to implement this 

proposed algorithm. Numerical examples demonstrate the accuracy, convergence proper- 

ties, mesh-independence properties, and scalability of this method. We also use the method 

for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical load- 

ings. Our finite element implementation is available as an online supplementary material. 

© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied 

Mechanics. 
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. Introduction 

ielectric elastomers (DE) are a class of electroactive poly- 
ers, which have attracted immense attention in recent years 

ue to their ability to achieve extremely large deformation 

nder an electric field. Subject to a voltage, a DE membrane 
hins down and expands in its in-plane directions. Extremely 
arge in-plane expansions, exceeding several hundred percent 
trains, have been observed in experiments [1–4] . This capa- 
ility to achieve large voltage-actuated strains has motivated 

ntense developments in an emerging field of soft machines 
5,6] , which include actuators [4,7–9] , sensors [10] , and power 
enerators [11,12] . 
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In some applications, the dielectric elastomer is actu- 
ted at high frequencies and used as resonators [13–17] , duct 
ilencers [18] , pumps [19] , and loudspeakers [3] . Consequently,
he dielectric elastomer undergoes nonlinear oscillation and 

isplays a rich interplay of complex behavior. By adjusting 
re-stretch or loading conditions, the natural frequency of 
E may be modified, which allows the natural frequency to 
e tuned [13,20,21] . Actuated by a sinusoidal voltage, the di- 
lectric elastomer may exhibit resonance at multiple exci- 
ation frequencies [13,20,22] . Current work on the dynamic 
esponse of dielectric elastomers is largely based on experi- 

ents [17,19,23] and theoretical models for simple configu- 
ations [13,16,20,22,24] . However, numerical studies based on 

imulation tools are very limited. 
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To design practical DE transducers for the aforementioned
applications, recent efforts have focused on developing sim-
ulation tools capable of predicting the electromechanical
response of dielectric elastomers, which may undergo large
and inhomogeneous deformation. Most simulation methods
are based on a nonlinear finite-deformation field theory of di-
electric elastomers; and a recent review is available in [25] .
One common approach is to implement the constitutive mod-
els for these materials in commercial finite element software,
where ABAQUS has emerged as a popular choice. In ABAQUS,
user-defined material models (UMAT) can be defined to incor-
porate the electromechanical coupling through the free en-
ergy density of the material, without introducing additional
field nodal variables [26–28] . However, because this simplified
method cannot be used to analyze complex devices such as
dielectric elastomer generators and electromechanical insta-
bility (EMI), user-defined element in ABAQUS (UEL) has been
developed for this scenario [29,30] . Similarly, in-house codes
have also been developed by various groups to study phenom-
ena such as electromechanical actuation, instabilities, and
viscoelasticity. Zhou et al. [31] used a meshless method to in-
vestigate the propagation of wrinkles in dielectric elastomers.
Zhang et al. [32] proposed a semi-explicit method to simulate
the snap-through instability for dielectric elastomers; how-
ever, explicit time integration schemes require small time step
and may not be optimal for quasi-static problems, and ex-
plicit method cannot be used for eigenvalue analysis. Park et
al. [33–36] developed an implicit finite element model for elas-
tic and viscoelastic dielectric elastomers based on the Sandia-
developed simulation code Tahoe [37] . More recently, Schlogl
and Leyendecker [38] implemented a viscoelastic DE model
based on the deal.II library [39] ; and Ortigosa et al. [40] de-
veloped a computational framework based on multi-variable
strain energies. Generally, these in-house source codes are not
available to the community. 

In this paper, we present an implicit finite element method
based on the nonlinear field theory for dielectric elastomers
by Suo [25] . Based on a four-field variational approach, we de-
velop a hybrid element technique that accounts for electrome-
chanical coupling and incompressible behavior for the dielec-
tric elastomer. In finite element modeling of incompressible
materials, volumetric locking is a well-known problem. Pre-
vious approaches used to address volumetric locking in di-
electric elastomers include the F-bar method [29] , and the
B-bar method [41] . Generally, these two methods can well
solve the locking problem and have been widely adopted.
However, in the current study, we adopt a multi-field hybrid
element to overcome the difficulty. Although it is still incon-
clusive which methods are superior, we note that the hybrid
element technique is available for incompressible materials in
ABAQUS standard library and is widely used in industrial ap-
plications. It is also not trivial to develop such numerical tech-
niques to simulate the fully coupled electromechanical re-
sponse of dielectric elastomers with incompressible material
behavior. Besides methodology development, we study con-
vergence and stiffness matrix convex properties, parallel com-
puting scalability, and tunable vibration modes of a DE mem-
brane. 

The remainder of the paper is organized as follows.
Section 2 summarizes the constitutive model for dielectric
elastomers. In Section 3 , we propose a four-field variational
principle and describe the numerical implementation in a
general FEM program framework, which is based on the
open-source finite element library deal.II [39] . In Section 4 ,
numerical solutions are presented to validate the accuracy,
convergence properties, mesh-independence properties, and
scalability of this method. We demonstrate the capability of
the method to extract the natural frequencies of dielectric
elastomer subject to electromechanical loadings in eigenvalue
analysis, as well as to conduct implicit dynamics simulation
within the current numerical framework by a balloon inflation
test. 

2. Constitutive model for DE 

In this section, we begin by summarizing the governing equa-
tions used to model the electromechanical response of dielec-
tric elastomers, and then present specific constitutive equa-
tions for dielectric elastomers. 

2.1. Kinematic description 

Consider a continuum solid body which occupies a spatial do-
main in the region �0 as the reference (material) configuration,
where n 0 denotes the outward unit normal on the boundary
∂�0 of �0 . When deformed, the body occupies a region � in
the current (spatial) configuration, and n denotes the outward
unit normal on the boundary ∂� of �. Let X be the coordinates
of material particles in the reference state, while x is the cor-
responding coordinate in the current state, the motion of the
body can be described by x = χ ( X , t ). Throughout this work, ten-
sor notation ∇ X (),∇ X • () and ∇ X × () are used to represent the
gradient, divergence, and curl of variable in the material con-
figuration, while ∇ x (),∇ x • () and ∇ x × () are used to denote the
corresponding spatial operations. For two tensors A and B with
any order, the operations A • B and A : B are used to represent
the single contraction and double contraction operations, re-
spectively. 

According to the point-to-point mapping in continuum
mechanics, the deformation gradient can be represented in
tensor form F = ∇ X x , or F iI = 

∂ x i 
∂ X I 

using index notation, with
J = det( F ) being the Jacobian of the deformation gradient. The
left Cauchy–Green tensor B and right Cauchy–Green tensor C
are represented as 

B = F · F T or B i j = F ik F jk 
 = F T · F or C i j = F ki F k j . 

(1)

For the most part in our current presentation, we use the
tensor notation, and include indicial notation in some places
to improve clarity. 

2.2. Electrostatics equations 

In the reference configuration, the electric field and the elec-
tric displacement are denoted as ˜ E and 

˜ D , respectively. Accord-
ing to Maxwell–Faraday equation, in the absence of magnetic
fields, the electric field defined on the material configuration
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as zero curl: 

 X × ˜ E = 0 (2) 

hich enables us to define an electric potential φ as 

˜ 
 = −∇ X φ. (3) 

According to Gauss’s Law, without the existence of free 
harge, we have 

 X · ˜ D = 0 . (4) 

In the current configuration, the electric field E and electric 
isplacement D can be related by the deformation gradient as 

25] : 

˜ 
 = F T · E and 

˜ D = J F −1 · D . (5) 

.3. Constitutive equations 

efine the nominal density of the Helmholtz free energy of 
ielectric as �( F , ˜ E ) . Assuming isothermal processes, the vari- 
tion of free energy density function can be represented as 
25] : 

� = P i j δF i j − ˜ D k δ ˜ E k (6) 

here the first Piola–Kirchhoff (PK1) stress P ij is work- 
onjugate to the deformation gradient δF ij , and the electric dis- 
lacement ˜ D k is work-conjugate to the electric field 

˜ E k . Subse- 
uently we can write: 

 i j = 

∂�
(
F , ˜ E 
)

∂ F i j 
, ˜ D k = 

∂�
(
F , ˜ E 
)

∂ ̃  E k 
. (7) 

Therefore, the constitutive equations can be determined by 
rescribing an appropriate free energy density. In this work,
e adopt the model of ideal dielectric elastomers, in which 

he free energy density function may be expressed as 

= �mech + �ele (8) 

hich is a sum of free energy components due to mechani- 
al stretching and electrical polarization. For the free energy 
ue to mechanical stretching, we adopt the Gent hyperelastic 
odel [42] : 

mech = �dev (B̄ )+ �vol ( J ) (9) 

here B̄ is the modified left Cauchy–Green tensor with B̄ = 

 

−2 / 3 B and det ( ̄B ) = 1 . �dev and �vol are the deviatoric and vol- 
metric parts of free energy, respectively 

dev = −μJ m 

2 
In 

(
1 −
(
Ī 1 − 3 
)
/ J m 

)
, �vol = 

K 

2 

( 
J 2 − 1 

2 
− lnJ 

) 

(10) 
here ̄I 1 is the first invariant of B̄ as ̄I 1 = tr ( ̄B ) . μ and K are shear
odulus and bulk modulus, respectively. J m 

represents the ef- 
ect of limiting chain extensibility of polymeric molecules. In 

he model of ideal dielectric elastomers, we assume that the 
rue electric displacement D is linear in the true electric field 

 [25] as 

 = εE → 

˜ D = J ε C 

−1 · ˜ E (11) 

here ε is the permittivity, a material constant independent 
f deformation. The free energy due to electrical polarization 

ay be expressed as 

ele = −1 
2 

J ε ̃  E · ˜ C 

−1 ˜ E . (12) 

Hence, the Cauchy stress may be expressed as 

= σdev + σvol + σele (13) 

here 

dev = 

μ

J 

⎛ 
⎝ B̄ −

(
Ī 1 / 3 
)
I 

1 −
(
Ī 1 − 3 
)
/ J m 

⎞ 
⎠ 

vol = pI = 

∂�

∂J 
I = 

K 

2 

(
J − 1 

J 

)
I 

ele = ε 

(
E � E − 1 

2 
I ( E · E ) 

)
(14) 

. Four-field variational principle and 

inearization 

.1. Four-field variational principle 

e present a four-field variational principle that incorporates 
he displacement field u , electric potential field φ, and two ad- 
itional independent variables ˜ p and 

˜ J which are used to im- 
ose the incompressibility constraint in dielectric elastomers.

˜ 
 is a kinematic variable which serves as a constraint on the 
ilational deformation J enforced by the Lagrange multiplier 

˜ p , as shown in Eq. (15) . Following the Simo–Taylor–Pister vari- 
tion principle in [43] , we denote the field variable space as 

≡ ( u , φ, ˜ p , ˜ J ) , and express the internal and external poten- 
ials as 

int ( �) = 

∫ 
�0 

{ 
�dev (C̄ ( u ) 

)+ �vol 
(

˜ J 
)
+ ̃  p 
[ 
J ( u ) − ˜ J 
] 
+ �ele ( u , φ, J ( u ) ) 

} 
dV 

ext ( u , φ) = 

∫ 
�0 

b p 0 · u dV + 

∫ 
∂ �0 

t p 0 · u dA −
∫ 

∂ �0 

ω 

p 
0 φdA (15) 

here C̄ is the modified right Cauchy–Green tensor with C̄ = 

 

−2 / 3 C and det ( ̄C ) = 1 . b p 0 and t p 0 are prescribed body force
nd surface traction respectively in the reference configura- 
ion. ω 

p 
0 is the prescribed surface charge density in the refer- 

nce configuration. For our simulations, we neglect volumetric 
ree charge. According to variational principle, the system is in 

quilibrium when 

(
	int − 	ext 

)
= 0 (16) 
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The variation of internal potential δ	int ( �) can be derived
as follows: 

δ	( �) = D δu 	( �) + D δφ	( �) + D δ ˜ p 	( �) + D 

δ ˜ J 	( �) 

= 

∫ 
�0 

δe : 
[ 
S dev + J ( u ) ̃  p C 

−1 + S ele 
] 
dV 

+ 

∫ 
�0 

(
˜ D · ∇ X δφ

)
d V + 

∫ 
�0 

{ 
δ ˜ p 
[ 
J ( u ) − ˜ J 

] } 
d V 

+ 

∫ 
�0 

⎧ ⎨ 
⎩ δ ˜ J 

⎡ 
⎣ ∂ �vol 

(
˜ J 
)

∂ ̃  J 
− ˜ p 

⎤ 
⎦ 
⎫ ⎬ 
⎭ dV (17)

where e is the Green strain measure. S dev is the deviatoric part
of second Piola–Kirchhoff (PK2) stress (in material configura-
tion), and S ele is the stress contribution of electric field in the
material configuration. By imposing an independent pressure-
like field, the volumetric stress is now changed to σvol = ˜ p I in-
stead of σvol = p I . Substituting Eqs. (14) and ( 16 ) into ( 15 ) and
writing in separate form, one has 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∫ 
�0 

{ 
δe : 
[ 
S dev + J ( u ) ̃  p C 

−1 + S ele 
] } 

d V = 

∫ 
�0 

b p · δu d V + 

∫ 
∂ �0 

t p · δu d A 

∫ 
�0 

(
˜ D · ∇ X δφ

)
d V = − −

∫ 
∂ �0 

ω 

p δφd A 

∫ 
�0 

{ 
δ ˜ p 
[ 
J ( u ) − ˜ J 

] } 
dV = 0 

∫ 
�0 

⎧ ⎨ 
⎩ δ ˜ J 

⎡ 
⎣ ∂ �vol 

(
˜ J 
)

∂ ̃  J 
− ˜ p 

⎤ 
⎦ 
⎫ ⎬ 
⎭ dV = 0 

(18)

with the Dirichlet boundary conditions as 

u | 
∂ �d, u = u 

p 

φ| 
∂ �d,φ = φp (19)

where ∂�d,u and ∂�d , φ are the Dirichlet boundaries for dis-
placement and electric potential, respectively; u 

p and φp are
prescribed displacement and electric potential values on the
corresponding Dirichlet boundaries. 

3.2. Linearization and finite element implementation 

Eq. (18) is the weak form of the problem and constitutes the
governing equations for the electromechanical behavior of the
dielectric elastomer. For simplicity, we assume that the force
term is invariant within time step, and express Eq. (18) as 

R ( �) = P ( �) − Q = 0 (20)

where R is the residuals, P is the non-linear equations, and
Q is the external force term. Since it is a nonlinear problem,
an iterative Newton–Raphson method can be used for solving
each non-linear time step. For each time step, assuming � ≡
( u , φ, ˜ p , ˜ J ) has already been solved at iteration n , and is denoted
as �n , the residual R at iteration n + 1 can be expanded as 

R 

(
�n +1 
)

= R ( �n ) + D 

2 
δ�, ��( 	( �n ) ) · �� = 0 . (21)
Therefore, the increment of solution �� can be solved by 

D 

2 
δ�, ��( 	( �n ) ) · �� = −R ( �n ) = Q − P ( �n ) . (22)

Detailed form of D 

2 
δ�, ��( 	( �n ) ) is given as follows: 

D 

2 
δu , �u 	( �) = 

∫ 
�

∂δu i 
∂ x j 

(
δik σ jl + C i jkl 

) ∂�u k 
∂ x l 

dv 

D 

2 
δu , �φ	( �) = −ε 

∫ 
�

{ 
∂δu i 
∂ x j 

(
δik E j + δ jk E i − δi j E k 

) ∂�φ

∂ x k 

} 
dv 

D 

2 
δφ, �φ	( �) = −

∫ 
�

( 
∂δφ

∂ x i 
ε δi j 

∂�φ

∂ x j 

) 
dv 

D 

2 
δu , � ˜ p 	( �) = 

∫ 
�

( 
∂δu i 
∂ x j 

δi j � ˜ p 

) 
dv 

D 

2 
δ ˜ p , � ˜ J 

	( �) = −
∫ 
�

δ ˜ p � ˜ J dv 

D 

2 
δ ˜ J , � ˜ J 

	( �) = −
∫ 
�

δ ˜ J 
d 2 �vol 

(
˜ J 
)

d ̃  J d ̃  J 
� ˜ J dv (23)

where C i jkl is the fourth-order elasticity tensor in the spa-
tial description, and the explicit expression can be found in
Appendix A . 

When applying standard finite element discretization, we
choose the element where the interpolation order for ˜ p and J̃
is an order lower than that for u and φ, for the consideration
of stability. In this work, the U8/E8/P1/J1 element (tri-linear in-
terpolation for both displacement and electric potential fields,
and the quantities ˜ p and 

˜ J are constant) is adopted for all sim-
ulations. Although this type of element does not satisfy the
Ladyzhenskaya–Babuska–Brezzi (LBB) condition, it has been
widely used because of its simplicity and good convergence
characteristics [44] . Hence, we have the finite element inter-
polation within one element: 

u i = 

n n ∑ 

I=1 

N 

u ( I ) 
i u ( I ) i φ = 

n n ∑ 

I=1 

N 

φ( I ) φ( I ) 

˜ p = 

n n ∑ 

I=1 

N ̃

 p ( I ) ˜ p ( I ) ˜ J = 

n n ∑ 

I=1 

N 

˜ J ( I ) ˜ J ( I ) (24)

where n n is the node number for one element, and i means the
i th DOF of displacement field u . N 

u (I) 
i , N 

φ ( I ) , N ̃

 p (I) , N 

˜ J (I) are shape
functions of u i , φ, ˜ p , ˜ J corresponds to node I . For the current
U8/E8/P1/J1 element, we have 

N 

u 
i = N 

φ and N ̃

 p = N 

˜ J . (25)

Consequently, the linear system of equations for one single
element is given as 

⎡ 
⎢ ⎢ ⎢ ⎣ 

k uu k ue k up 0 
k eu k ee 0 0 
k pu 0 0 k pJ 

0 0 k Jp k JJ 

⎤ 
⎥ ⎥ ⎥ ⎦ 
⎡ 
⎢ ⎢ ⎢ ⎣ 

�u 

�φ

� ˜ p 
� ˜ J 

⎤ 
⎥ ⎥ ⎥ ⎦ = −

⎡ 
⎢ ⎢ ⎢ ⎣ 

R 

u 

R 

e 

R 

p 

R 

J 

⎤ 
⎥ ⎥ ⎥ ⎦ = 

⎡ 
⎢ ⎢ ⎢ ⎣ 

f u 

f e 

f p 

f J 

⎤ 
⎥ ⎥ ⎥ ⎦ (26)

where 

k uu ( AB ) 
ik = 

∫ 
�e 

∂ N 

u ( A ) 

∂ x j 

(
δik σ jl + C i jkl 

) ∂ N 

u ( B ) 

∂ x l 
dv 
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ue ( AB ) 
j = −

∫ 
�e 

{ 
∂ N 

u ( A ) 

∂ x i 
ε 
(
δ jl E i + δil E j − δi j E l 

) ∂ N 

φ( B ) 

∂ x l 

} 
dv, 

 

eu ( AB ) = 

[ 
k ue ( AB ) 

] T 

 

ee ( AB ) = −
∫ 
�e 

( 
∂ N 

u ( A ) 

∂ x i 
ε δi j 

∂ N 

φ( B ) 

∂ x j 

) 
dv 

 

up ( AB ) 
i = 

∫ 
�e 

( 
∂ N 

u ( A ) 

∂ x j 
δi j N ̃

 p ( B ) 

) 
dv, k pu ( AB ) = 

[ 
k up ( AB ) 

] T 

 

pJ ( AB ) = −
∫ 
�e 

N ̃

 p ( A ) N 

˜ J ( B ) dv, k Jp ( AB ) = k pJ ( AB ) 

 

J J ( AB ) = 

∫ 
�

N 

˜ J ( A ) 
d 2 �vol 

(
˜ J 
)

d ̃  J d ̃  J 
N 

˜ J ( B ) dv (27) 

 

uu ( AB ) 
ik represents the matrix entry corresponding to the i th 

OF of node A and k th DOF of node B related to the displace-
ent part; and this representation applies to all the rest sub- 
atrices. ∫ �e dv is the integration within the spatial element 

omain. 
The RHS of Eq. (26) has the form 

 

 

 

 

 

f u 

f e 

f p 

f J 

⎤ 
⎥ ⎥ ⎥ ⎦ = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∫ 
�e 

N 

u b p i d v + 

∫ 
∂ �e 

N 

u t p i d a − −
∫ 
�e 

σi j 
∂ N 

u 

∂ x j 
d v 

−
∫ 

∂ �e 

N 

φω 

p da − −
∫ 
�e 

ε E i 
∂ N 

φ

∂ x i 
dv 

∫ 
�e 

(
J − ˜ J 
)
da 

∫ 
�e 

(
d�

d ̃  J 
− ˜ p 
)

da 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (28) 

In assembling Eq. (26) into a global tangent stiffness ma- 
rix, three methods may be adopted, to arrange the global DOF 
ndex. Assuming the hexahedral element with linear interpo- 
ation for u and φ, while constant values for ˜ p and 

˜ J , we can 

ave the following three arrangement schemes, i.e. 

1) Arrange all the DOFs element-wise, i.e. 

 u 1 , φ1 , u 2 , φ2 , . . . . . . u 8 , φ8 , ˜ p 1 , ˜ J 1 } , . . . . . . { u ndof −7 , φndof −7 , . . . . . . 

 ndof , φndof , ˜ p nele , ˜ J nele } , where ndof is the number of DOFs in 

he system, and nele is the number of elements in the system.
For this method, the global stiffness matrix will be globally 

parse, hence no special treatment is required, and the linear 
ystem equations can be solved directly. This method is log- 
cally simplest and easiest to implement. However, since the 
xistence of ˜ p and 

˜ J terms will increase the band-width of the 
parse matrix, a much longer solution time may be required.
oreover, if an iterative solver is adopted, it is very difficult to 

nd an effective pre-conditioner for this complicated coupling 
ystem. 

1) Arrange all the DOFs component-wise, i.e. 

{
u 1 , u 2 , . . . u nnode 

}
, 
{
φ1 , φ2 , . . . φnnode 

}
, 
{

˜ p 1 , ˜ p 2 , . . . ˜ p nele 
}
, { 

˜ J 1 , ˜ J 2 , . . . ̃  J ele 

} 
. 

The resulting global stiffness matrix for this scheme is a 
lock-wise sparse matrix, and has a structure similar to the 
lement stiffness matrix in Eq. (26) . In order to solve this, we
eed to condense ˜ p and 

˜ J terms from the global stiffness ma- 
rix first, and then solve a block sparse matrix as the structure 
f 

 

K 

uu K 

ue 

K 

eu K 

ee 

] [ 
�u 

�φ

] 
= 

[ 
f u 

f e 

] 
. (29) 

Because this stiffness matrix is block sparse with a full 
andwidth, some special techniques are required for effec- 
ively solving this linear system. Hence, in this study, we 

ainly use the third method which is described as follows: 

1) Arrange u and φ element-wise, while ˜ p and 

˜ J component- 
wise, i.e. 

{
u 1 , φ1 , u 2 , φ2 , . . . u nnode , φnnode 

}
, 
{

˜ p 1 , ˜ p 2 , . . . ˜ p nele 
}{ 

˜ J 1 , ˜ J 2 . . . ̃  J ele 

} 
. 

Denoting ξ ≡ ( u , φ), the global stiffness matrix for this 
cheme is given as 

 

 

 

K 

ξξ K 

ξ p 0 
K 

pξ 0 K 

pJ 

0 K 

Jp K 

JJ 

⎤ 
⎥ ⎦ . (30) 

By performing a static condensation technique analogous 
o that described in [39] , the final linear system is reduced to 

˜ 
 

ξξ�ξ = 

˜ f ξ (31) 

here 

˜ 
 

ξξ = K 

ξξ + K 

ξ p K̄ K 

pξ

˜ f ξ = f ξ − K 

ξ p 
[ (

K 

Jp )−1 
f J − K̄ f p 

] 
¯
 = 

(
K 

Jp )−1 
K 

JJ (K 

pJ )−1 
. 

(32) 

Thus, the large-deformation nonlinear electromechanical 
ehavior of dielectric elastomer can be solved with any suit- 
ble linear solver. The algorithm proposed in this work is im- 
lemented using C ++ , based on the open-source FEM library 
eal.II. 

. Numerical simulation 

n this section, we validate the proposed methodol- 
gy and show its potential capability. Unless speci- 
ed otherwise, the material parameters are selected as 
= 1000 kg/m 

3 , μ= 4.3 × 10 4 Pa, K = 4.3 × 10 10 Pa, J m 

= 115,
nd ε = 4.12225 × 10 − 11 F/m. For a better comparison with 

he theoretical results, in all the numerical simulation tests,
e normalize the voltage and charge as 

ˆ = 

φ

H 

√ 
ε 

μ
, ˆ Q = 

Q 

L 2 
√ 

εμ
(33) 

here H is the original characteristic thickness of the DE sam- 
le, and L is the original characteristic length of the sample (i.e.
dge length for square and radius for circle). 
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Fig. 1. – (a) In the reference state, the dielectric elastomer has thickness H and lengths L . (b) In the actuated state, subject to 

in-plane force P and voltage � through the thickness direction, the dielectric elastomer undergoes equal-biaxial 
deformation and deforms to thickness h and lengths l . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Benchmark test 

We first analyze the equibiaxial deformation behavior of
a dielectric elastomer membrane, which is sandwiched be-
tween two compliant electrodes. The schematics are shown in
Fig. 1 . In the reference state, the block has a square cross-
section in the x–y plane, with length L , and height H . In the
actuated state, the block undergoes in-plane expansion, and
its original dimensions L and H respectively become L ′ and H 

′

without volume change. Therefore, the stretch of the material
can be represented as 

λ = L ′ /L = 

√ 
H/H 

′ 
(34)

• u x = 0 at the x = 0 surface 
• u y = 0 at the y = 0 surface 
• u z = 0 and 

ˆ φ = 0 at the z = 0 surface 

In Fig. 2 , we plot the voltage–stretch response curves of
the dielectric elastomer under various levels of pre-stretches.
The pre-stretch is the stretch at which 

ˆ φ = 0 . At each pre-
stretch λpre , the traction force P is kept as constant, while
charge is applied on the z = H surface. At low pre-stretch, when
charge is ramped up initially, the electrical potential increases
and the elastomer expands in area. When the charge is suf-
ficiently large, the elastomer thins down appreciably, such
Fig. 2. – Voltage–stretch curves of the dielectric elastomer under 
The theoretical curves are compared with the simulation results
interpreted from the intersection between the curve and the hor
that the electric field is high and the voltage needed to main-
tain the charge starts to decrease. This results in a peak in
the voltage–stretch curve and marks the onset of electrome-
chanical instability, which is a well-known phenomenon [45] .
Electromechanical stability may be averted by pre-stretching
[2] , as also seen for the cases when λpre > 2. When the
elastomer is subject to a large charge, the elastomer under-
goes strain-stiffening, and the voltage again increases with
charge. Numerical results compare well with theoretical pre-
dictions [32] for all cases in Fig. 2 . 

Dielectric elastomers are generally modeled as incom-
pressible; in finite element simulations, compressible hypere-
lastic models are often used to avoid numerical difficulties,
where the bulk modulus K is assumed to be much higher
than the shear modulus μ for simulating a nearly incom-
pressible material behavior. However, a large K / μ value may
cause ill-conditioned stiffness matrix [43] , or volumetric lock-
ing when fully integrated linear elements are used. We then
ask what value of K / μ is appropriate. For an dielectric elas-
tomer at λpre = 1 and λpre = 6 with four different values of
K / μ, we plot the simulated voltage–stretch plots and com-
pare them with the theoretical results which assume incom-
pressibility, as shown in Fig. 3 . When λ < 6.5, the results are
insensitive to the choice of K / μ, implying K / μ= 10 3 may be
suitable in most simulation scenarios. However, at very large
stretches approaching the extension limit of the elastomer
equal-biaxial deformation in a charge-control procedure. 
. The value of pre-stretch λpre for each curve can be 
izontal axis. 
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Fig. 3. – Voltage–stretch plots for various bulk moduli K when (a) λpre = 1 (b) λpre = 6. 
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here strain-stiffening becomes significant, we find that K / μ
 10 4 would be more suitable. 

Next, a convergence study is conducted for the nonlin- 
ar solver. The Newton–Raphson method is used to solve the 
onlinear equations, and within one nonlinear iteration step,

he tangent stiffness matrix for one element is given as 

 

k uu k ue 

k eu k ee 

] 
(35) 

hich is denoted as the fully coupled form. However, in some 
ommercial solver for multiphysics simulation [46,47] , when 

he coupling terms are not easy to be obtained, and the cou- 
ling is weak between different fields, we may ignore the cou- 
ling term and use 

 

k uu 0 
0 k ee 

] 
(36) 

o assemble the global stiffness matrix. We call this weakly 
oupled form. Since this is only a Newton–Raphson step, the 
nal solution will not be influenced as long as the non-linear 
olver converges. The advantage of this form is its simplic- 
ty, and it can avoid solving ill-conditioned problems which 

xist in many multiphysics simulations. A linear solver can 

olve this equation system much faster than the fully coupled 

nes. However, the main drawback is the slow convergence 
hen the multiphysics coupling is strong. Here, we investigate 

he convergence behavior of these two forms. For simplicity,
nly one non-linear iteration step is simulated, and the pre- 
cribed normalized voltage is ˆ φp = 0 . 34 , since above this value 
he weakly coupled form cannot converge at all. Residuals for 
oltage and displacement with respect to iteration number are 
lotted in Fig. 4 (a) and (b), respectively. It is clear that the fully
oupled form converges much faster than the weakly coupled 

orm. In order to achieve a residual of 10 − 4 , the fully coupled 

orm requires only 4 iterations, while the weakly coupled form 

equires at least 10 iterations. The fully coupled form is supe- 
ior to the weakly coupled form in this case. 

Besides the convergence rate, interestingly the coupling 
erm can also aid the convergence of a Newton–Raphson 

ethod when electromechanical instability (EMI) occurs. It is 
nown that the free energy of a typical dielectric elastomer 
aterial is globally non-convex [25,45] . This property of free 

nergy generally results in a non-positive definite Hessian at 
MI, leading to convergence failure when using the Newton–
aphson method. However, by imposing appropriate bound- 
ry conditions, such as those in this benchmark test, the free 
nergy shows a local convex property, which enables the im- 
lementation of Newton-Raphson method even in the EMI re- 
ion. A more straightforward way to explain this is rewriting 
q. (29) by separating out the Dirichlet boundary condition,
nd the global linear system for a fully coupled form can be 
onceptually represented as 

 

 

 

ˆ K 

uu ˆ K 

ue 0 
ˆ K 

eu ˆ K 

ee 0 
0 0 D K 

⎤ 
⎥ ⎦ 
⎡ 
⎢ ⎣ u 

φ

ξp 

⎤ 
⎥ ⎦ = 

⎡ 
⎢ ⎣ 

ˆ f u 

ˆ f e 

f p 

⎤ 
⎥ ⎦ (37) 

here the hat accent ∧ on the K matrix represents the subma- 
rix term after eliminating the Dirichlet boundary constraint 
ntries, while D K denotes the corresponding Dirichlet bound- 
ry constraint entries. The superscript p represents the pre- 
cribed boundary conditions. The submatrices for fully cou- 
led form and weakly coupled form are respectively denoted 

s 

 = 

[ 
ˆ K 

uu ˆ K 

ue 

ˆ K 

eu ˆ K 

ee 

] 
, S w = 

[ 
ˆ K 

uu 0 
0 ˆ K 

ee 

] 
. (38) 

In the simulation of this benchmark, it is found that the 
eterminant of S matrix is always positive even in the EMI re- 
ion, i.e. det (S ) > 0 . This property ensures the convergence of
ewton–Raphson method, so that a minimum free energy can 

e found. However, without considering the coupling term,
t is shown that just before EMI, there is a conversion from 

et ( S w ) > 0 to det ( S w ) < 0 , which prohibits the convergence
f Newton–Raphson method from finding a local minimum 

oint of free energy. 
In the above discussion regarding the simulation in 

ig. 4 , the weakly coupled form converges much slower than 

he fully coupled form, which can be expected because a rela- 
ively high voltage is applied in one iteration step. However, if 
he applied load/voltage rate is limited by some other factors,
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Fig. 4. – Comparison of convergence rates for (a) voltage and (b) displacement between fully and weakly coupled forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such as time steps and loading rates in a dynamic simulation,
the weakly coupled form may exhibit a similar convergence
behavior as the fully coupled one. In our experience, both
converge within 3 iterations. In this case, the weakly coupled
form may have a similar or faster computing time compared
to the fully coupled counterpart, since the linear system solver
used for the weakly coupled form takes less time in each it-
eration. Furthermore, this weakly coupled form can only be
adopted without the existence of EMI, since the local non-
convex property of stiffness matrix prohibits the convergence
of a Newton–Raphson method, which limits its application
range. 

4.2. Bending cantilever 

We next simulate the bending of a cantilever beam, which is
made of two parts, as illustrated in Fig. 5 (a). The upper part
is an elastomer, with length L , height H/2 , and thickness T .
The lower part is a dielectric elastomer, with the same mate-
rial properties and dimensions, subject to an applied voltage.
Similar 2D cantilever beams have been investigated in [29] . In
the current study, we simulate this 2D case by enforcing plane
strain boundary conditions on the front and back surfaces of
the 3D model. The boundary conditions are given as 

• u y = 0 at the y = 0 or y = T surface 
• u x = 0 at the x = 0 surface 
• u x = u y = u z = 0 along the y -axis 
• φ = 0 at the z = 0 surface 

p 
• φ = φ at the z = −H /2 surface. 

Fig. 5. – (a) Schematics of a dielectric elastomer bilayer actuator i
in response to a voltage applied on its lower half. 
As voltage is applied, the lower part of the beam extends
due to the incompressible behavior under Maxwell stress,
resulting in bending of the beam, as shown in Fig. 5 (b). The
bending angle θ is measured with respect to the applied
voltage for comparison with the published results in [29] .
Fig. 6 (a) shows the initial and final cantilever configurations
when 

ˆ φ = 0 . 5 . Fig. 6 (b) illustrates the evolution of bending an-
gle with respect to the applied normalized voltage, the result
of which matches the reference result in [29] very well. This
simulation shows that our method is capable of handling large
rotation problems without encountering the locking problem.

Using this cantilever bending problem, we also investigate
the scalability of the proposed model. Computational cost is
evaluated for different numbers of DOFs, and the convergence
rate to achieving the accurate result is also considered. For the
smallest simulation case, we consider only 2 elements along
the z direction, and 20 elements distributed in the x direc-
tion. Subsequently, all elements are split into 4 sub-elements
(with only one single element kept in the y direction), serv-
ing as the mesh setup for the next simulation run. In total,
seven simulations are performed, which involves 163,840 el-
ements, corresponding to 1321,992 DOFs. As for a benchmark
test, ˆ φp = 0 . 05 is applied to the model within one iteration
step, and all the simulations are run on a dual-socket work-
station with two Intel Xeon X5650 processors and 32 G RAM.
Fig. 7 (a) shows the wallclock time per iteration with an in-
creasing number of DOFs. The computational cost scales al-
most linearly with the number of DOFs. 

The solution convergence capability of mesh refinement
is also studied, where the bending angle of the beam after
n the reference state. (b) The actuator bends with an angle θ
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Fig. 6. – (a) Contour plot of the voltage before and after applying ˆ φ = 0 . 5 . (b) Bending angle θ versus applied voltage ˆ φ

between simulated results and reference results [29] . 

Fig. 7. – (a) Wallclock time per iteration for different numbers of DOFs. (b) Relative error of bending angle at different 
numbers of DOFs. 
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pplying voltage is evaluated. The value of θ obtained using 
63,840 elements is chosen as the reference result, and the 
elative error is evaluated as 

 

θ = 

∣∣∣θ − θ ref 
∣∣∣

θ ref 
. (39) 

The convergence of the solution increases monotonically 
ith the number of DOFs, as shown in Fig. 7 (b). 

With increasing demand of large-scale models, computa- 
ional time cost is a concern for researchers and software 
sers. In high performance computing, one interest is in the 
erformance of code in a parallelized computing environ- 
ent, either on shared-memory or distributed-memory ma- 

hines. For this work, we investigate how a symmetric mul- 
iprocessor system (SMP) with shared memory may enhance 
ur algorithm. Within the application of programming with 

eal.II library, the thread-based parallelization library TBB 

48] is adopted to compute the local matrix contribution for 
ssembly, while a direct sparse linear solver UMFPACK [49] can 

tilize multiple cores to speed up the linear system solution 

ime. A strong scaling problem is investigated here, with two 
esh densities considered. Both models are simulated on dif- 

erent numbers of CPU cores up to the maximum capabil- 
ty, i.e. 12, and the wallclock time per iteration is plotted in 

ig. 8 (a). The speedup ration S and parallel efficiency E are 
espectively defined as 

 = 

T 1 
T N 

and E = 

S 
N 

(40) 

here N is the number of cores adopted, T 1 is the time cost
or serial calculation, and T N is the time cost when N cores are
sed for the same problem. Fig. 8 (b) shows the speedup ratios 
f these two models for different CPU cores. Models with dif- 
erent DOFs appear to have a similar and stable scalability. For 
 cores, the parallel efficiency reaches the highest value and 

early linear speedup ratio; while for 12 cores, the program 

eaches the highest speedup, which is around 6, correspond- 
ng to an efficiency of 0.5. This reasonable result demonstrates 
he parallelization capability of our current model. 

.3. Vibration mode of rectangular membrane without 
pplying electric field 

henomena such as coexistent phases [2,45] and nonlinear os- 
illation [20,22] in dielectric elastomers have elicited interest 
rom the community, and analyses of these phenomena usu- 
lly involve solving eigenvalue problems in some form. In this 
ection, we focus on vibration of a dielectric elastomer mem- 
rane to demonstrate the capability of our method in eigen- 
alue analysis. By modifying Eq. (31) , the governing equation 
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Fig. 8. – (a) Wallclock time per iteration with large DOFs for different CPU cores. (b) Parallel speedup ratio with large DOFs for 
different CPU cores. 

Fig. 9. – Schematics of rectangular membrane without applied voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the dynamic problem can be represented as 

M 

ξξ ξ̈ + 

˜ K 

ξξ�ξ = 

˜ f ξ (41)

where M 

ξξ is the mass matrix coupling the u and φ terms
element-wise. Since there is no inertial effect for the electric
potential part, the corresponding term in M 

ξξ is zero. Hence,
we have the element-wise form of the mass matrix: 

M 

e ξξ = 

[ 
M 

e uu 
0 

0 0 

] 
(42)

where M 

e uu = ∫ 
�e 

0 

ρN 

u T N 

u dV is the standard element mass ma-

trix. 
This approach has previously been adopted in the eigen-

value analysis for piezoelectric materials [50] . Assuming a har-
monic solution and solving the homogeneous form of Eq. (41) ,
we have the eigenvalue problem as 

(
˜ K 

ξξ − ω 

2 M 

ξξ
)
ξ = 0 (43)

where ω is the angular natural frequency, and ξ is the corre-
sponding eigenvector. This equation is solved using the eigen-
value solver provided by Trilinos [51] – a high performance lin-
ear algebra library. 

Consider a rectangular membrane of dimension L × W × H ,
as shown in Fig. 9 , where L = 100 mm, W = 50 mm, and
H = 0.1 mm. For theoretical analysis, we assume the mem-
brane to be infinite thin, such that the traction T and density ρ
is evaluated based on per line and per area, respectively. How-
ever, for the 3D finite element model, we simulate this with a
very thin brick model, such that T and ρ become the area trac-
tion and volume density, respectively. All the boundaries are
fixed in all three directions. Analytically, the natural frequency
is given as [52] : 

f = 

ω 

2 π
= 

1 
2 

√ 
T 
ρ

√ 
m 

2 

L 2 
+ 

n 2 

W 

2 
(44)

where m and n are the mode numbers along the length and
the width directions, respectively. 

Two simulations with different pre-stretch values are con-
ducted, i.e. λpre = 2 and λpre = 4, respectively. For each case, the
eigenvalue analysis is performed based on the pre-stretched
state. The first 4 frequencies and mode profiles for both simu-
lations are illustrated in Fig. 10 , and compared with the theo-
retical results. Both theoretical and simulation results appear
to be in good agreement. 

The theoretical and simulation frequencies for the first 10
modes with two different pre-stretches are plotted in Fig. 11 ,
which shows a reasonable agreement between both sets of re-
sults. A higher pre-stretch leads to a higher natural frequency.
Besides, the frequencies for λpre = 4 are much higher than
those for λpre = 2, which is within expectation. Figs. 10 and
11 demonstrate the validity of the current model in solving
eigenvalue problems. This capability greatly extends the po-
tential application of this model. 
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Fig. 10. – Comparison of theoretical and simulation results for rectangular membrane vibration mode and frequency, in the 
first four modes under different pre-stretches. 

Fig. 11. – Comparison between theoretical and simulation 

results for the first 10 frequencies at different pre-stretches. 
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.4. Vibration mode of circular membrane with applying 
lectric field 

ow we consider a circular dielectric elastomer membrane,
ith radius R = 50 mm and thickness H = 0.0625 mm, as 

hown in Fig. 12 . Voltage is applied on a circular region with ra- 
ius A coated with electrodes at the center of the membrane.
uch a configuration has been widely studied experimentally 
nd theoretically [7,18,21] . The natural frequencies and vibra- 
ion modes under voltage are determined by applying the fol- 
owing boundary conditions: 

• ˆ φ = 0 at the z = 0 surface 

• u x = u y = u z = 0 at r = 

√ 
x 2 + y 2 = R 

• ˆ φ = 

ˆ φp at the z = H surface with r ≤ A . 

After voltage is applied on the pre-stretched membrane 
 λpre = 1.05), we solve the eigenvalue problem at the equilib- 
ium state. Fig. 13 (a) plots the first four natural frequencies 
gainst applied voltage for aspect ratios R / A = 2 and R / A = 1. In
oth cases, the dielectric elastomer is held fixed at its bound- 
ry. Under voltage, the active electrode region expands against 
he surrounding region. Consequently, stresses at the bound- 
ries of the active region decrease with voltage-induced actu- 
tion, and the natural frequency also decreases with applied 
oltage, as shown in Fig. 13 (b), which is similar to that ob-
erved elsewhere [13,20,21] . At a critical voltage denoted as ˆ φc ,
he natural frequency vanishes, and the loss of tension occurs.

We also plot the natural frequencies against applied volt- 
ge for various pre-stretches in the case of R / A = 1 in Fig. 14 .
ur calculations are terminated at the onset of loss of tension.
he results show that for all different pre-stretch values, the 

undamental frequency has a similar trend with the increas- 
ng voltage. The frequency initially decreases relatively slowly 
or a large range of voltage, and then decreases rapidly within 

 short range of voltage. Furthermore, it appears that a large 
re-stretch allows a higher natural frequency, and by applying 
n appropriate level of voltage, the dynamics response of the 
embrane may be actively tuned, as demonstrated in previ- 

us studies [21] . 
To illustrate the change in vibration mode in more detail,

e depict the 1st and 4th eigenmodes at the instances when 

ˆ = 0 , ˆ φm 

= 

ˆ φc / 2 , and the critical value ˆ φc for R / A = 1 and
 / A = 2. The contours for the vibration mode shapes are shown

n Fig. 15 . 
The 1st eigenmode profile appears similar for both cases of 

 / A = 1 and R / A = 2, when applied voltage is increased from 0
o ˆ φm 

. However, at the critical voltage ˆ φc , the eigenmode pro- 
les show a discernible difference for both cases. For R / A = 1,
he mode profile is still similar to that of ˆ φ = 0 , with only a
light change in the region near the outer boundary. However,
or R / A = 2, all deformation occurs within the region where 
oltage is applied. This is because the material structural 
roperty changes greatly in this region, and becomes much 

ofter compared with the zero electric field region. 
Secondly, the situation is slightly different for the 4th 

igenmode. The eigenmode profile has already been influ- 
nced even when 

ˆ φ = 

ˆ φm 

. Besides, when 

ˆ φ = 

ˆ φc , we can also 
nd that for R / A = 2, the deformation profile is concentrated
ithin the electrode region. This is similar as that for the 1st 

igenmode discussed above. 
As a result, some conclusions can be summarized accord- 

ng to this simple simulation. We can find that for the same 
 / A , when applying voltage, higher eigenmode profile patterns 
re easier to be influenced. With the increase of voltage, this 
nfluence gradually affects the lower mode profile patterns.
urthermore, for the same applied voltage, eigenmode profile 
ill be greatly influenced by how the external force/voltage 
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Fig. 12. – Schematics of a circular dielectric elastomer membrane with electrodes coated on a region of radius A . When 

voltage is applied, the electrode region expands. 

Fig. 13. – (a) Frequencies in the first four modes for R / A = 2 and R / A = 1 under various applied voltages. (b) Degeneration of 
membrane stiffness with the increase of applied voltage . 

 

 

 

 

 

 

 

 

 

 

is applied. Besides, all the simulations show that the applied
voltage on membrane softens the structural stiffness, and
hence decreases the natural frequency. All these effects can
be potentially adopted to a variety of applications because of
the capability in frequency turning. 

4.5. Dynamic simulation of an inflation balloon 

In the last part, the capability of this model is extended to
studying an implicit dynamic problem. Time integration is
Fig. 14. – Fundamental frequency is plotted against applied 

voltage for different pre-stretch setups for the case of 
R / A = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

performed with the Newmark method [44] . Assuming the ve-
locity and displacement at time t + �t have the form 

˙ u 

t+�t = ˙ u 

t + 

[
( 1 − γ ) ̈u 

t + γ ü 

t+�t ]�t 

u 

t+�t = u 

t + ˙ u 

t �t + 

[(
1 
2 

− β

)
ü 

t + βü 

t+�t 
]
�t 2 (45)

where γ and β are Newmark integration parameters, and one
typical choice is γ = 1/2 and β = 1/4. 

Substituting Eq. (45) into Eq. (41) for the dynamic problem
(without consideration of damping), we can have the following
linear equation system after derivation: 

[ 
˜ K 

uu + c 0 M 

˜ K 

ue 

˜ K 

eu ˜ K 

ee 

] [ 
�u 

n 

�φn 

] 
= 

[ 
˜ f u 

n + M 

[
c 0 u 

t − c 0 u 

n + c 2 ̇  u 

t + c 3 ̈u 

t ]
˜ f e 

n 

] 

(46)

where n represents the iteration number in the current time
step; c 0 = 1 / (β�t 2 ) , c 2 = 1 /β�t, and c 3 = 

1 
2 β −1 are coefficients.

The inflation of a balloon is simulated using the dynamics
equations. A schematic of the model and loading procedure is
illustrated in Fig. 16 . A circular thin membrane of DE is fixed
by its edge, and pre-inflated from state (a) to state (b), with an
applied excess pressure p . Then this pressure is kept constant,
and the electric field is applied on the membrane by charge
control with a constant ramping rate of ˆ ω = ˙ ω t. During ramp-
ing of charge, the membrane undergoes expansion because of
the Maxwell stress, and inflates as a balloon. The setup of this
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Fig. 15. – Comparison between vibration modes for R / A = 1 and R / A = 2, at different applied voltages. ˆ φm 

= 

ˆ φc / 2 , and 

ˆ φc 

represents the critical value of ˆ φ during applying voltage. 

Fig. 16. – Schematics of balloon inflation. 
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umerical model is similar to the experiments in [53,54] (volt- 
ge control in experiments). 

The profiles of membrane during inflation are illustrated 

n Fig. 17 , together with the applied voltage vs balloon volume 
lot. After pre-inflation, the membrane slightly inflates, as in 

tate (a), which is considered as the initial state. Then, the 
harge begins to ramp, and the membrane inflates inhomo- 
eneously due to clamped edges until it is in state (b), where 
rinkle occurs near the fixed boundary, and the voltage soon 

eaches the maximum value. At state (c), the wrinkle appears 
long the whole fixed edge, and electro-mechanical instabil- 
ty occurs, as discussed in the previous benchmark test. The 
alculation stops at state (d) because of the mesh distortion. 

Observing the balloon profiles in the simulation results, the 
rinkle behavior shown in Fig. 17 (d) is similar to the experi- 
ental observation illustrated in Fig. 12 in [54] , and Fig. 15 in 
53] . A detailed analysis of the wrinkling phenomena is beyond 

he scope of the current paper, and will be conducted in future 
ork. 

. Conclusion 

n this work, we have proposed a hybrid element for DE simu- 
ation based on a four-field variational principle. The model is 
mmune from volumetric locking, and capable of conducting 
oupled electromechanical analysis for an incompressible di- 
lectric elastomer. The model is implemented using a C ++ in- 
ouse code based on an open-source FEM library deal.II, and 

he source code is available to the community. Numerical tests 
how the capability and validity of such a model in simulating 
he electromechanical response for both static and dynamic 
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Fig. 17. – The profile of balloon inflation at different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problems, as well as conducting eigenvalue analysis to inves-
tigate the vibration modes of a dielectric elastomer actuator.
This model can be potentially used for design, analysis, devel-
opment, and optimization of such soft active materials. 
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Appendix A. Tangent stiffness tensor in 

spatial configuration 

The relationship of spatial and material tangent stiffness ten-
sor is [43] : 

C i jkl = J −1 F iI F jJ F kK F lL C I J K L (A.1)

where C I J K L is the material tangent stiffness, while C i jkl repre-
sents its spatial counterpart. 

We also have 

C I J K L = 2 
∂ S IJ 
∂ C KL 

= 2 

( 
∂S dev 

IJ 

∂ C KL 
+ 

∂S vol 
IJ 

∂ C KL 
+ 

∂S ele 
IJ 

∂ C KL 

) 
. (A.2)

Therefore, after derivation, the following spatial tangent
stiffness tensor can be obtained. 

The deviatoric part of the tensor: 

C dev 
i jkl = 

2 μ
Ja 

[ 
1 

a J m 

B̄ i j ̄B kl −−
( 

Ī 1 
3 a J m 

+ 

1 
3 

) 
B̄ i j δkl − −

( 
Ī 1 

3 a J m 

+ 

1 
3 

) 
B̄ kl δi j

+ 

( 
Ī 2 1 

9 a J m 

+ 

Ī 1 
9 

) 
δi j δkl + 

Ī 1 
6 

(
δik δ jl + δil δ jk 

)] 
. (A.3)

The volumetric part of the tensor: 

C vol 
i jkl = 

K 

(
1 − J 2 
)

2 J 

(
δik δ jl + δil δ jk 

)
+ K J δi j δkl . (A.4)
However, because of the imposing of independent
pressure-like field, the modified volumetric part of tangent
stiffness tensor now becomes 

C vol 
i jkl = − ˜ p 

(
δik δ jl + δil δ jk − δi j δkl 

)
(A.5)

The electric part of the tensor 

C ele 
i jkl = 

1 
2 

ε ( δik δ jl + δil δ jk − δi j δkl ) E a E a + ε ( δkl E i E j + δi j E k E l 

−δil E j E k − δik E j E l − δ jl E i E k − δ jk E i E l ) . (A.6)

Appendix B. Open-source finite element 
program 

The source code for our finite element program is available at:
https://github.com/nicklj/de _ implicit.git . 

Supplementary materials 

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.camss.2017.07.
005 . 
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