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a b s t r a c t 

Under the as-welded condition the fatigue crack initiation period was considered non- 

existent and Linear Elastic Fracture Mechanics (LEFM) was used to calculate fatigue strength 

for a range of weld geometries. Fracture mechanics assessment of welded joints requires 

accurate solutions for stress intensity factor (SIF). However, the solutions for the SIF of com- 

plex welded joints are difficult to determine due to the complicated correction factors. Three 

methods for SIF prediction are discussed on fillet welded specimens containing continuous 

or semi-elliptical surface cracks, including the traditional correction method M k , the ap- 

proximate correction method K t , and the suggested additional crack size method ( ac + ae ). 

The new additional crack parameter ae is used to replace the stress concentration effect of 

weld profile M k , which simplifies the calculation process. Experimental results are collected 

to support fatigue strength assessment of the additional crack size method. 

© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied 

Mechanics. 
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. Introduction 

atigue failure is probably the most common type of failure 
n welded structures. It usually initiates at the stress concen- 
ration area. Transverse fillet welded joints are often divided 

nto two categories: non-load-carrying and load-carrying 
llet welds [1] . The non-load-carrying fillet weld is defined 

s an attachment weld not designed to transmit the load 

n the main member. While for a load-carrying fillet weld,
he load is transmitted through the weld and across the 
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ontinuous member. In this paper, attention is focused on the 
on-load-carrying fillet weld, as shown in Fig. 1 . 

For notched specimens without any initial cracks, the fa- 
igue life is dominated by crack initiation. However, for welded 

pecimens containing initial cracks, the initiation life de- 
reases greatly and the crack propagation life will dominate 
he fatigue life [2] . Generally, the initial defects are inevitable.
herefore, the fatigue assessment for most welded structures 

s focused on the crack growth portion of fatigue life and the 
racture mechanics method is used to calculate the fatigue 
ife. For non-load-carrying fillet joints, failure initiates at the 
hina (No. 51609185 ) and the State Key Laboratory of Ocean Engi- 
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Fig. 1 – Fillet welded joint under tensile load or bending. 
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weld toe. In order to analyze the fatigue life, it is necessary to
calculate the stress intensity factor (SIF) of the fatigue crack.
Fracture mechanics assessment of these weld toe cracks re-
quires accurate solutions for SIF. However, the solution for the
SIF of a complex welded joint is difficult to obtain due to the
complicated correction factors. A particular parameter of such
solutions is the stress concentration factor M k which takes
into account the stress concentration due to the welded joint
geometry. In this paper, the M k factors were calculated using
several different methods. Meanwhile, a new additional crack
size method ( ac + ae ) for fillet welded joints was proposed to
solve SIF, instead of M k . This method treats the effect of a crack
growing in a corner as an effective crack length which equals
the sum of the actual crack length ( ac ) and an additional crack
length ( ae ) related to the corner singularity. As an alternative
to the calculation of geometric correction coefficient M k , the
additional crack can be added to the actual crack size. 

2. The traditional method of fracture 

mechanics 

2.1. Stress intensity factor K 

For an infinite plate subjected to an in-plane uniform stress
σ perpendicular to a central through crack of length 2 a , the
fundamental equation for SIF can be presented as [3] : 

K = σ
√ 

πa (1)

Correction factors are introduced to take into account the
geometry of the crack and cracked body, for a single-edge
crack: 

K = Yσ
√ 

πa (2)

where Y is a function of crack length, the geometry of the
cracked body and crack shape. Y = M k Y u , where M k is a cor-
rection factor to take into account the presence of the weld;
and Y u =M s M t M p is the product of the free surface correction
factor M s , the finite size correction factor M t and the crack tip
plasticity correction factor M p . 

M s depends on the crack aspect ratio, Maddox [4] suggested
an approximate solution: 

M s = 1 + 0 . 12(1 − 0 . 75 a/c ) (3)
M t depends on the crack depth to plate thickness ratio and
the crack front shape. 

In the case of a fatigue crack subjected to cyclic loading
( �σ ), the crack tip plasticity correction term was often consid-
ered as [5,6] : 

M p ≈
√ 

1 + 

1 
13 

(
�σ

σY 

)2 

(4)

where σY is the yield limit strength. 
Generally, M p is always small for fatigue crack propagation

due to nominal elastic stresses and can be ignored in most
fatigue situations. Therefore, the correction factor M p is con-
sidered in this paper. 

For an elliptical crack at the toe of a fillet welded joint, SIF
can be written as [4] : 

K = 

M k Y u 

E(k ) 
σ
√ 

πa (5)

where E ( k ) is the second category of complete elliptic integral.
It will be seen that geometrical factor Y u and geometric cor-

rection coefficient M k are the two most important parameters
to solve SIF. The solutions for Y u and M k will be discussed in
turn. 

2.2. Geometrical factor Y u 

Y u is the corresponding value of Y for the same crack geometry
in a plate without any welds. 

As for the single-edge crack, E ( k ) = 1, Brown [7] proposed an
empirical formula under tensile load: 

 u = 1 . 122 −0 . 231 α+ 10 . 55 α2 −21 . 71 α3 +30 . 382 α4 , 0 < a/T ≤ 0 . 6

(6)

where α=a / T is the crack length ratio. 
Tada [8] also suggested an approximate formula and

claimed that the resulting solution was accurate to within
0.5% for a / T ≤ 0.6: 

 u = 0 . 265 (1 − a/T ) 4 + 

0 . 857 + 0 . 265 a/T 

(1 − a/T ) 3 / 2 
(7a)

And the following formula was accurate to within 1% for
a / T < 0.2 and 0.5% for a / T ≥ 0.2: 
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Fig. 2 – Y u with different empirical formulas. 
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 u = 

√ 

2 T 
πa 

tan 

πa 
2 T 

0 . 752 + 2 . 02 a T + 0 . 37 (1 − sin 

πa 
2 T ) 

3 

cos πa 
2 T 

(7b) 

The results of the above three experiential formulas are 
ompared in Fig. 2 . 

Similarly, for a single-edge crack under bending, it was sug- 
ested by Brown [7] that function Y u can be expressed as: 

 u = 1 . 122 −1 . 4 α + 7 . 33 α2 −13 . 08 α3 + 14 . 0 α4 , 0 < a/T ≤ 0 . 6 (8)

The following approximate formula was obtained by Tada 
8] under bending: 

 u = 

√ 

2 T 
πa 

tan 

πa 
2 T 

0 . 923 + 0 . 199 (1 − sin 

πa 
2 T ) 

4 

cos πa 
2 T 

(9) 

As shown in Fig. 2 , the predicted results based on Eq. (6) are
imilar to those based on Eq. (7a) . After the comparison among 
hese empirical formulas, Eqs. (6) and ( 9 ) are used to calcu- 
ate the geometrical factor Y u in this study for the single-edge 
rack under tensile load ( Fig. 1 a) or bending ( Fig. 1 b). 

As for the semi-elliptical surface crack, Newman and Raju 

9,10] presented an empirical equation for SIF as follows: 

 I = ( σt + H σb ) F 
( a 

T 
, 

a 
c 
, 

c 
w 

, φ
)√ 

πa 
E(k ) 

(10) 

here H is a function of crack depth ratio a / T , aspect ratio a / c ,
nd parametric angle ϕ; geometric factor Y u is expressed in 

unction F ; σ t is the tensile stress and σ b is the bending stress 
t the surface. 

.3. Geometric correction coefficient M k 

 k is the stress concentration magnification factor which is 
efined as the ratio of the stress intensity factor of a cracked 

late with stress concentration to the SIF of the same cracked 

late without stress concentration. 
For different joint forms, the empirical formulas of M k are 

ften different and complicated. 
For the butt-welded plate with a thickness of T , the mod- 
fying factor can be calculated approximately as follows [11] : 

 

M k = (5 a T ) 
−q ( 0 ≤ a ≤ 0 . 2 t ) 

M k = 1 ( a ≥ 0 . 2 t ) 
(11) 

here q = lg (11 . 584−0 . 0588 θ ) / 2 . 30 , and θ is the weld toe angle.
Fu and Haswell [12] suggested the expression of M k for the 

urface crack of T joint: 

 k,t = 0 . 9755 + 1 . 7261 
(
1 . 0 + 76 . 9069 

a 
T 

)−1 . 2879 
(12a) 

 k,b = 0 . 9249 + 2 . 9041 
(
1 . 0 + 266 . 4478 

a 
T 

)−0 . 7916 
(12b) 

here t refers to tension, and b refers to bending. 
Considering the geometric parameters of T joint, Bowness 

nd Lee [13,14] provided the approximate formula based on 

he Finite Element (FE) method: 

 k = f 1 
( a 

T 
, 

a 
c 

)
+ f 2 

( a 
T 

, θ
)

+ f 3 

(
a 
T 

, θ, 
L 
T 

)
(13) 

here f 1 , f 2 and f 3 are very complex polynomials. Although 

an [15] simplified the above formula according to the main 

nfluence factors, the expression is still tedious. 
As for fillet welded joints, Hayes [16] provided SIF solutions 

or edge cracks ( Fig. 1 ). He calculated the non-dimensional 
IF K/ [ σ

√ 

(πa ) ] , i.e. Y u M k , for different crack lengths. The solu-
ions of Y u were analyzed using an edge-cracked plate without 
tress concentration, then it was easy to separate the values 
f M k . 

In order to simplify the analytical process, Maddox [4] pro- 
osed an approximate evaluation method based on the su- 
erposition principle. As shown in Fig. 3 , the superposition 

ethod assumes that the stress distribution along the cracked 

lane is equivalent to that in an edge-cracked plate without a 
llet ( Fig. 3 a), M k =1, plus that across a crack-free plate of the
riginal geometry ( Fig. 3 b). In other words, the SIF for the crack
f fillet joint ( Fig. 1 ) is magnified by the same amount as that
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Fig. 3 – Superposition principle of fillet joints. 

Table 1 – Comparison between M k and K t for a 45 ° fillet. 

a / T K t M k ( M k −K t )/ M k ×100% 

0 2.80 2.80 0 
0.05 1.27 1.27 0 
0.075 1.13 1.20 5.8 
0.10 1.05 1.16 9.5 
0.15 0.95 1.12 15.1 
0.20 0.91 1.08 15.75 
0.25 0.88 1.04 15.4 
0.30 0.87 1.01 13.8 
0.40 0.84 1.00 16 
0.50 0.84 1.00 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – A more complex fillet joint. 

 

 

 

 

 

 

 

for the uncracked plate ( Fig. 3 b) at a position corresponding
to the crack length, M k =K t at x=a . However, the error is ob-
vious since the presence of a crack would modify the stress
distribution due to the stress concentration at crack tip. 

The method above would provide useful means to obtain
the approximate solutions of M k if the error is small. Generally,
for very small cracks, M k ≈ K t . The value of M k is therefore set
equal to K t when a / T = 0. With the increase of crack, the stress
field of crack tip will become stable and the value of M k will
reduce to 1. However, the notch stress concentration factor K t

is relative to the uncracked body and K t =σ t / σ 0 may decrease
further. The values of K t and M k for a 45 ° fillet are compared
in Table 1 . 

It can be seen in Table 1 that the error could be up to 16%.
This confirms that SIF can be overestimated if it is assumed
that M k =K t . However, for some approximate analyses, this ac-
curacy may be sufficient. 

For more complex fillet joints, as shown in Fig. 4 , the
weld flank angle β and weld toe radius ρ were introduced to
calculate M k . The fitted M k was presented by Eq. (14) [17] : 

M k = 

1 + s 1 ( 2 x T ) 

s 2 + s 3 ( 
2 x 
T ) 

s 4 
(14)

where s i = 

r 1 ,i + r 2 ,i ( ρT ) 
r 3 ,i 

r 4 ,i + ( ρT ) 
r 3 ,i 

, r i, j = 

a i, j + b i, j ( 
π

180 β ) 
c i, j 

d i, j + ( π
180 β ) 

c i, j 
, and the parame-

ters a i,j , b i,j , c i,j , and d i,j are presented in literature [17] . 
The SIF and the magnification factor M k are analyzed

above. Obviously, the empirical formulas of M k are often diffi-
cult and complicated to calculate due to the changes in joint
forms. Based on notch stress strength theory, a simplified
model is proposed in this paper to solve the SIF of transverse
fillet welded joints. 
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Fig. 5 – Joint geometry of 135 ° welded joint. 
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. The method of additional crack size 

.1. Notch stress strength theory 

illiams [18] stated that the stress field is singular at the crack 
ip. In a polar frame of reference ( r , θ ), the stress field at the
orner is the summation of Mode I and Mode II stresses. 

 

 

 

 

 

σθ

σr 

τrθ

⎫ ⎪ ⎬ 

⎪ ⎭ 

= λ1 r λ1 −1 a 1 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f 1 ,θ (θ ) 
f 1 ,r (θ ) 
f 1 ,rθ (θ ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ λ2 r 
λ2 −1 a 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f 2 ,θ (θ ) 
f 2 ,r (θ ) 
f 2 ,rθ (θ ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(15) 

here r is the distance to the corner, f i ( θ ) are described in
q. (17) and the eigenvalues λi are determined by Eq. (16) . 

in ( λi qπ ) + λi sin (qπ ) = 0 (16) 

Parameters around the 135 ° corner can be defined, as 
hown in Fig. 5 . 

The stress component for Mode I, tension, is: 

 

 

 

 

 

σθ

σr 

τrθ

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

1 √ 

2 π

r λ1 −1 K 1 

[(1 + λ1 ) + χ1 (1 − λ1 )] 

⎡ 

⎢ ⎣ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 + λ1 ) cos (1 − λ1 ) θ
(3 − λ1 ) cos (1 − λ1 ) θ
(1 − λ1 ) sin (1 − λ1 ) θ

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ χ1 (1 − λ1 ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cos (1 + λ1 ) θ
− cos (1 + λ1 ) θ
sin (1 + λ1 ) θ

⎫ ⎪ ⎬ 

⎪ ⎭ 

⎤ 

⎥ ⎦ 

(17) 

or Mode II, shear, is: 

 

 

 

 

 

σθ

σr 

τrθ

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

1 √ 

2 π

r λ2 −1 K 2 

[(1 − λ2 ) + χ2 (1 + λ2 )] 

⎡ 

⎢ ⎣ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 + λ2 ) sin (1 − λ2 ) θ
(3 − λ2 ) sin (1 − λ2 ) θ
(1 − λ2 ) cos (1 − λ2 ) θ

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ χ2 (1 + λ2 ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

sin (1 + λ2 ) θ
− sin (1 + λ2 ) θ
cos (1 + λ2 ) θ

⎫ ⎪ ⎬ 

⎪ ⎭ 

⎤ 

⎥ ⎦ 

(18) 

here K i = σ0 ·k i ·t 1 −λi ; k i is a function of h, t, L ; σ 0 is the nominal
ensile or shear stress; and K i is the N-SIF value defined by 
azzarin and Tovo [19–21] . 
.2. Modified singularity strength method 

he axial stress distribution of Mode I at a corner can be sim-
lified as: 

θ 1 = 

σ0 √ 

2 π

1 
x p 1 

[ C 1 (α, θ ) f 1 (h, t, L ) 1 / p 1 t] p 1 (19a) 

And for Mode II: 

θ 2 = 

σ0 √ 

2 π

1 
x p 2 

[ 
C 2 (α, θ ) f 2 (h, t, L ) 1 / p 2 t 

] p 2 (19b) 

here x is the distance to the corner; 

 1 (α, θ ) = 

[
(1 + λ1 ) cos (1 − λ1 ) θ + χ1 (1 − λ1 ) cos (1 + λ1 ) θ

(1 + λ1 ) + χ1 (1 − λ1 ) 

]
1 

p 1 ;

 2 (α, θ ) = 

[
(1 + λ2 ) sin (1 − λ2 ) θ + χ2 (1 + λ2 ) sin (1 + λ2 ) θ

(1 − λ2 ) + χ2 (1 + λ2 ) 

]
1 

p 2 ;

 i ( h,t, L ) = k i ; and p i = 1 −λi . For different corner angels, the pa-
ameters can be extracted from literature [11] . 

For a given corner (2 α), p i and C i ( α,θ ) are constants; and k i 
s a function of h, t, L . Taking all the constants into k i , a new

unction can be defined as a s i = C i (α, θ ) f i (h, t, L ) 
1 
p i t π

1 
2 p i , then 

q. (19) becomes Eq. (20): 

θ 1 = 

σ0 √ 

2 

(a s 1 
x 

)p 1 
(20a) 

θ 2 = 

σ0 √ 

2 

(a s 2 
x 

)p 2 
(20b) 

θ = σθ 1 + σθ 2 = 

σ0 √ 

2 

[(a s 1 
x 

)p 1 + 

(a s 2 
x 

)p 2 
]

(21) 

here ‘ as ’ is introduced and named as singularity strength to 
escribe the singular stress field at the corner. 

For a given corner, it can be seen that as long as the strength
ingularity values ‘ as i ’ are known, the stress distribution along 
hickness at the corner will be determined by Eq. (21) . Within 

he investigation range of 0 < L / t ≤ 3.0 and 0 < 2 h / t ≤ 1, the
E models were employed to analyze the influence of the at- 
achment geometry. The dimensions ( L, H ) of the attachment 
ere changed from 0.5 m to 3 m; the length of the main plate

 was fixed at 2 m (meeting the requirement of providing uni- 
orm stress field near the corner), and the width t was changed 

rom 1 m to 4 m [22,23] . Values of the ‘ as i ’ were fitted using the
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Fig. 6 – The prediction of ‘ as 1 ’ under tensile loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method of least-squares with a polynomial function based on
the numerical data. The results show that the ‘ as 1 ’ value can
be determined by two approximate formulas, and the smaller
of the two approximate formulas is closer to the numerical
results, as shown in Figs. 6 –7 . 

Expressions of as 1 and as 2 for transverse non-load-carrying
fillet weld are fitted as follows: Tensile: 

a s 1 = min 

( 

t 0 . 4 H 

0 . 2 h 0 . 04 

4 
, 

2 h + L 
9 

) 

(22a)

a s 2 = 

2 h + L 
0 . 33 

(22b)

Bending: 

a s 1 = min 

(
2 t + L 

40 
, 

4 h + L 
12 

)
(23a)

a s 2 = 

2 h + L 
0 . 36 

(23b)

where t is the width of main plate, L is the width of attach-
ment, H is the length of attachment and h is the height of
bracket (see Fig. 5 ). 

3.3. Concept of additional crack size 

Validity of the above method was further verified in literature
[22] . As soon as as 1 and as 2 are known, the relevant stress
distribution can be easily computed by Eq. (21) .When Mode
I stress is dominant, Mode II stress is often ignored. At 0 ° (an
edge crack), p 1 = 0.5 and the stress decreases at x from the cor-
ner, in proportion to 1/ x 0.5 . At 90 °, p 1 reduces to 0.455. And at
135 °, p 1 is 0.326. Stress plots for different corner angles are
shown in Fig. 8 (a). 

As shown in Fig. 8 (b), the notch stress field distribution and
trend are very similar for 0 ° and 90 ° corners. Therefore, the
additional crack size method treats the effect of a crack grow-
ing in a 90 ° corner as an effective crack length which equals
the sum of the actual crack length ( ac ) and an additional crack
length ( ae ) related to the corner singularity, as demonstrated
in Fig. 9 . 

This additional crack length ( ae ) can be defined for any ac-
tual crack length and ( ac + ae ) is calculated to give the same
stress intensity factor as that of the corner crack. The method
of additional crack size can be represented as follows: 

K = Y u σ

√ 

π (ac + ae ) ( ac > 0 ) (24)

The additional crack length depends on the nature of the
corner singularity p as well as the size of the crack relative
to the singularity strength value ( as ) given in Eq. (20) . By def-
inition, the singularity strength ‘ as ’ is introduced to describe
the singular stress field at the corner. Therefore, the additional
crack length can be approximately estimated from the value
of as by ae ≈ as [24] . 

Based on the above assumption, a similar formula for fillet
joints could be expressed as: 

K = Y u σ

√ 

π (ac + nas ) ( ac > 0 ) (25)

where as is calculated by the simple formulas in Eqs. (22) and
( 23 ), and the coefficient n is defined as the attenuation coef-
ficient due to a smaller singularity exponent p 1 . For the 135 °
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Fig. 7 – The prediction of ‘ as 1 ’ under bending. 

Fig. 8 – The stress field distribution for different corner angles. 

Fig. 9 – Concept of additional crack size. 
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corner, n = 0.25 is suggested by analyzing a series of models
using the FE method [25] . 

The new additional crack parameter is used to replace the
stress concentration effect of weld profile, which simplifies
the calculation process. 

4. Crack propagation life analysis 

As one of the most important fatigue crack growth models,
the Paris formula is commonly used in practice, which is also
recommended by IIW and BS 7608 for calculating the fatigue
crack propagation rate of welded joints made of steel or alu-
minum. 

d a 
d N 

= C �K 

m (26)

where d a /d N , in mm/cycle, is the crack growth rate; �K is the
range of SIF; and C and m are material constants. The con-
stants C mean = 1.7 ×10 −13 , C char = 5.21 ×10 −13 and m = 3.0 are
recommended by IIW [26] . C mean is the mean fatigue crack
growth rate coefficient and C char is the value considering 95%
survival probability. 

The mean value of C is suggested in BS 7608 by the equation
[27] : 

 mean = 

1 . 315 × 10 −4 

895 m 

, R = 0 (27)

When m = 3.0, C mean = 1.1834 ×10 −13 . It is also recom-
mended that the calculated value of C should be multiplied
by 2 to consider the scatter, i.e. C char = 2.367 ×10 −13 , m = 3.0. 

If the crack length is normalized by the plate thickness, a / T ,
the fatigue life is obtained by integrating Eqs. (2) and ( 26 ). 

N = 

∫ a f 
T 

a i 
T 

1 
C 

�K 

−m T d 

( a 
T 

)
= 

∫ a f 
T 

a i 
T 

1 
C 

( 

M k Y u �σ

√ 

πT · a 
T 

) −m 

T d 

( a 
T 

)
(28)

Separating the parameters, one has: 

∫ α f 

αi 

( M k Y u 
√ 

πα) −m 

d 

α = C (�σ ) m T m/ 2 −1 N (29)

where α= a / T , αi = a i / T , αf = a f / T, a i is the initial crack depth and
αf is the final crack depth. Eq. (29) can also be written as: 

⎧ ⎨ 

⎩ 

�σ

( 

T m/ 2 −1 

I 

) 1 /m 

⎫ ⎬ 

⎭ 

m 

N = 

1 
C 

(30)

where I is 
∫ α f 
αi 

( M k Y u 
√ 

πα) −m 

d 

α; and the expression

�σ ( T 
m/ 2 −1 

I ) 1 /m = �σ ∗ is defined as the equivalent struc-
tural stress range or the generalized stress parameter by
Gurney [28] and Dong [29] . This equivalent parameter reflects
the effect of stress gradient due to specimen geometry. 
5. Analysis of estimated results 

For the purpose of fatigue design, welded joints are often di-
vided into a series of Classes, with different designed S-N
curves. The basic S-N curves are defined as follows [27] : 

log (N) = log ( k 1 ) − dσ − m log ( S B ) (31)

where k 1 is a constant; σ is the standard deviation of log ( N );
d is the number of standard deviations below the mean S-N
curve, d = 2 for 97.7% survival probability; and m is the inverse
slope of S-N curve. 

To validate the above proposed method, fatigue test results
[30] are collected for several non-load-carrying fillet welded
joints shown in Fig. 1 . Fatigue tests were performed on 16 se-
ries under tensile load and 7 series under bending for both
continuous cracks and semi-elliptical cracks, as shown in
Table 2 . 

It is well known that the fracture mechanics based com-
putations are extremely sensitive to the initial crack size. In
all cases it was assumed that the initial defect at the weld toe
a i was 0.15 mm, this being typical of the average values which
have been recommended in literature [30] . The final crack size
αf was assumed to be T /2. The initial semi-elliptical cracks
were assumed to be semi-circular with the length 2 c 0 =0.3 mm
and the depth a 0 =0.15 mm. The experimental crack aspect ra-
tio curve proposed by Engesvik and Moan [31] was used for the
growing semi-elliptical surface cracks: 

a 
2 c 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 . 5 (a < 0 . 062 mm ) 
1 / (6 . 43 − 0 . 27 /a ) (0 . 062 ≤ a ≤ 3 mm ) 
0 (a > 3 mm ) 

(32)

In the analyses, the value of Y u for continuous crack was
taken to be Eqs. (6) and ( 9 ) defined by Brown [7] and Tada [8] . As
for the semi-elliptical crack, Y u was calculated by Eq. (10) pro-
posed by Newman and Raju [9,10] . 

Three methods for SIF prediction were discussed on the
above fillet welded specimens: the traditional geometric co-
efficient correction method M k , the approximate stress con-
centration factor method K t and the new additional crack size
method ( ac + ae ). 

The correction coefficients M k were those defined by Smith
and Gurney [30] . The notch stress field formulas of 135 ° sharp
corners proposed by Shen and Barltrop [22] were used to cal-
culate the values of K t =σ t / σ 0 . The corresponding additional
crack lengths ( ae ) were given in Eqs. (22)-(23). 

The corresponding values of C and m in Eq. (28) refer to
standards BS 7608 and IIW: 

⎧ ⎪ ⎨ 

⎪ ⎩ 

m = 3 . 0 , C = 2 . 367 × 10 −13 (BS 7608) 
m = 3 . 0 , C = 5 . 21 × 10 −13 ( II W ) 
Actua l m, C = 1 . 315 × 10 −4 / 895 m 

(33)

where the actual m is fitted by experimental data in literature
[30] , as shown in Table 2 . 

The predicted and experimental results of fatigue strength
at 2 ×10 6 cycles with three methods are summarized in
Fig. 10 . The fatigue strengths derived from the approximate
stress concentration factor method K t , the new additional
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Table 2 – Summary of fatigue strength for cruciform welded specimens ( R ≈ 0, N = 2 ×10 6 cycles). 

Series Specimens [30] Load type Width of main 
plate t (mm) 

Width of attachment 
L (mm) 

Height of 
bracket h (mm) 

The inverse 
slope m 

Fatigue strengths at 
2 ×10 6 cycles (MPa) 

1 Cruciform T 13 3 5 3.367 122.4 
2 Cruciform T 13 10 8 3.358 100.9 
3 Cruciform T 25 3 5 3.340 124.6 
4 Cruciform T 25 32 9 3.179 88.5 
5 Cruciform T 38 13 8 3.103 93.1 
6 Cruciform T 38 220 15 2.430 67.7 
7 Cruciform T 100 3 5 3.697 124.7 
8 Cruciform T 100 220 15 2.914 54.9 
9 Cruciform T 13 13 8 3.469 97.4 
10 Cruciform T 13 13 10 3.744 95.8 
11 Cruciform T 25 25 16 2.711 85.6 
12 Cruciform T 38 38 10 3.139 80.9 
13 Cruciform T 38 50 10 3.299 81.7 
14 Cruciform T 13 10 8 3.701 102.3 
15 Cruciform T 50 50 16 3.563 79.4 
16 Cruciform T 100 50 16 3.234 73.7 
17 Cruciform B 6.4 13 8 4.050 154.8 
18 Cruciform B 8 13 8 3.374 130.6 
19 Cruciform B 13 13 10 3.599 127.6 
20 Cruciform B 13 13 5 3.200 125.8 
21 Cruciform B 13 38 10 3.246 119.1 
22 Cruciform B 25 38 10 3.100 102.2 
23 Cruciform B 38 13 10 3.427 112.5 

Fig. 10 – Predicted and experimental results of fatigue strengths with three methods. 
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M
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rack size method ( ac + ae ) and those calculated by the tradi- 
ional geometric coefficient correction method M k are shown 

n Fig. 11 . The following observations are drawn based on the 
omparative analysis of Figs. 10 –11 . 

1) The values of C and m from BS 7608 and IIW are different.
The results from IIW tend to be more conservative. How- 
ever, all the predicted results have considered the 95% sur- 
vival probability. Most of the data are below FAT 90, the ref- 
erence fatigue strength recommended by IIW [26] . 

2) Comparative calculations show that the predicted fa- 
tigue strengths are very sensitive to the crack forms. The 
strength of a joint with a semi-circular crack is approxi- 
mately 30% greater than that of the same joint with a con- 
tinuous crack. 
3) As shown in Fig. 11 , the strength errors with methods M k 

and ( ac + ae ) are very close. The maximum relative error 
with the ( ac + ae ) method does not exceed 10%, and most
of the errors are within 5%. 

4) It is concluded that the maximum relative error introduced 

by assuming M k ≈ K t could be up to 20%. However, this ac- 
curacy may be acceptable for some approximate analyses,
and the calculation process will be simplified effectively. 

. Conclusions 

he geometrical factor Y u and geometric correction coefficient 
 k are the most important parameters to solve SIF of the com- 
lex welded joints. On the basis of theoretical calculations and 
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Fig. 11 – The relative errors compared with the results of the traditional correction method M k . 
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comparisons between predictions and experimental results,
the following conclusions can be made: 

1) It has been confirmed that the fatigue strength of trans-
verse non-load-carrying fillet joints are very sensitive to
both the assumed values of C and m and the assumed crack
forms. The strength of the joint with a semi-circular crack
is approximately 30% greater than that of the same joint
with a continuous crack. It is concluded that the continu-
ous crack is more dangerous than the semi-circular crack. 

2) When a / T = 0, M k =K t . With the increase of crack depth,
the stress field of crack tip will become stable and the
value of M k will reduce to 1. However, the notch stress con-
centration factor K t is relative to the uncracked body and
K t =σ t / σ 0 may decrease further. Therefore, the predicted
fatigue strengths of K t are greater than those of the same
joints with the correction of M k . Experimental results show
that the maximum relative error introduced by assuming
M k ≈ K t could be up to 20%, compared with the results of
the traditional correction method M k . 

3) The fatigue strengths derived from the traditional coeffi-
cient correction method M k and the new additional crack
size method ( ac + ae ) are compared. The maximum relative
error does not exceed 10%. The results show that the new
additional crack size method based on the notch stress
strength theory has the advantage in simple and accu-
rate fatigue strength estimation for transverse fillet welded
joints. 
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