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ABSTRACT

The problem of a screw dislocation interacting with a circular nano-inhomogeneity near a
bimaterial interface is investigated. The stress boundary condition at the interface between
the inhomogeneity and the matrix is modified by incorporating surface/interface stress.
The analytical solutions to the problem in explicit series are obtained by an efficient com-
plex variable method associated with the conformal mapping function. The image force
exerted on the screw dislocation is also derived using the generalized Peach-Koehler for-
mula. The results indicate that the elastic interference of the screw dislocation and the
nano-inhomogeneity is strongly affected by a combination of material elastic dissimilarity,
the radius of the inclusion, the distance from the center of inclusion to the bimaterial inter-
face, and the surface/interface stress between the inclusion and the matrix. Additionally, it
is found that when the inclusion and Material 3 are both harder than the matrix (11 > 2
and us > u), a new stable equilibrium position for the screw dislocation in the matrix ap-
pears near the bimaterial interface; when the inclusion and Material 3 are both softer than
the matrix (11 < pp and ps < py), @ new unstable equilibrium position exists close to the

bimaterial interface.
© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied
Mechanics.

1. Introduction

In view of their importance, a great number of contributions
have been conducted toward the problem concerning materi-
als science, solid state physics and nanomechanics during the

Nanocomposite solids with special physical properties (high
strength, high toughness, high heat, high conductivity, etc.)
serve as key materials and are widely used in high techno-
logical fields. For the purpose of acquiring better performance
of nanomaterials, it is essential to study the interaction be-
tween nanoscale structure and crystal lattice defects such as
dislocations, disclinations and twins in detail. Its effect plays
an extremely great part in the material stability, physical and
mechanical performance—strength and plastic deformation.
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last several decades [1-7].

For a nanoscale inclusion embedded in a matrix, the in-
terface condition in researching the mechanical behavior of
the matrix is an important factor. To our knowledge, when
the size of inclusion is reduced to nanometer scale, atoms
at the surface/interface possess their own unique environ-
ment and differ from the atoms in the surrounding mate-
rial. As a result of the equilibrium lattice spacing at the sur-
face/interface, the surface/interface stress emerges, which
needs to be taken into consideration [8|. Gurtin and his co-
workers [9,10] firstly presented a classical continuum model
for the surface/interface stress problems on elastic solid. At
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Fig. 1 - (a) Schematic diagram of a screw dislocation. (b) The
model.
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present, the surface/interface stress model has been widely
employed to theoretically describe some unusual behavior re-
lated to the interface stress in nanomaterials [11-17].

The interaction between a dislocation and a nano-
inclusion is an important topic in studying the mechanical
behavior of materials. Based on the above-mentioned sur-
face/interface stress model, Fang and Liu [18-20] dealt with the
elastic interaction between a screw dislocation and a circu-
lar nano-inhomogeneity or a nano-hole with interface stress.
Gutkin et al. [21] considered the elastic behavior of an edge
dislocation located in the shell of nanowire by applying the
theory of surface/interface elasticity. Tian [22] investigated the
elastic field with a nanoscale elliptical inhomogeneity embed-
ded in an infinite matrix under far-field loading and a uniform
eigenstrain. Subsequently, the problem of a dislocation inter-
acting with an elliptical nano-inhomogeneity is carried out by
Luo [23,24] with different kinds of dislocations. Li [25] exam-
ined the elastic interaction between a screw dislocation and a
nanoscale cylindrical inclusion in a half-plane.

The references mentioned above are mainly focused on
two-phase materials. Nevertheless, most materials for en-
gineering application consist of multiphase systems. Fortu-
nately, Christensen and Lo [26] introduced a reasonably sim-
plified three-phase model consisting of three concentric re-
gions to describe the behavior of these interactions. Applying
the simplified three-phase model, the exact solution for the
stress field with an edge dislocation located in a three-phase
composite cylinder was then derived by Luo and Chen [27].
Later on, Xiao and Chen [28] analyzed the problem for elastic
interaction between a screw dislocation and nearby inclusions
in a fiber-reinforced composite material. In addition, plenty of
investigations have been conducted based on the three-phase
model [29-32].

However, composite materials with multiphase systems
are in general combined with different shapes, sizes and other
styles. The elastic interaction between a screw dislocation and
a circular inhomogeneity with a bimaterial interface and in-
terface stress has not been studied. In the present paper, we
address the elastic interaction between a screw dislocation
and a circular inhomogeneity with interface stress near a bi-
material interface by using the conformal mapping technique.
The surface/interface stress model is utilized at the interface

between the inhomogeneity and the matrix. The explicit so-
lutions of image force acting on the screw dislocation located
in Material 2 and Material 3 are calculated using the Peach-
Koehler formula. The stability of a screw dislocation located in
Material 2 with interface stress is evaluated in detail. Finally,
the influence of variable parameters (interface stress and ma-
terial mismatch) on the image force is examined by several
numerical examples.

2. Basic formulations

There is a nano-inclusion (Material 1) near a bimaterial inter-
face, as shown in Fig. 1, where Ry and h are the inclusion ra-
dius and the distance between the center of inclusion and the
bimaterial interface, respectively. Material 2 and Material 3 oc-
cupy the regions denoted by S, and Ss, respectively. The inclu-
sion, with its center at the origin of the Cartesian coordinate
system, occupies a region denoted by Si, and the bimaterial
interface is perpendicular to the x-axis. The shear moduli of
S1,S,, and S are respectively w1, io, and us. “I'” and “Q” repre-
sent the Material 2/inhomogeneity interface and the bimate-
rial interface, respectively. It is assumed that Material 2, Mate-
rial 3 and the nano-inhomogeneity are all homogeneous and
isotropic.

For the convenience of analysis, the following conformal
mapping function is adopted [33,34]

Ry +Rq?
z=o() = 72; 2 (1)

where R, = h + /h? —R,? and z=x+1y, ¢ =& +in. Utilizing the
mapping function, regions of S, S, and Ss in the z-plane are
transformed onto the domain S'1(|¢| < R1),5'2(R1 < [¢] < Ry), and
S'3(|¢| > Rp) in the ¢-plane correspondingly. The coordinate ori-
gin o, the point at infinity and z, in the z-plane are mapped to
0'(¢ =—R1%/Ry), K(¢ = —R;) and ¢ in the ¢-plane, as depicted in
Fig. 1(b).

For the current anti-plane problem, the constitutive equa-
tions of displacement and stress are presented as follows
[9,35]
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where w; (j=1, 2, 3) refers to the anti-plane displacements in
nano-inhomogeneity, Material 2 and Material 3, respectively;
w;j are shear moduli, and 7,5 (e,5) and 74, (e4) are the stress
(strain) components in polar coordinates system (r, §). Never-
theless, the interface showing interface stress owns its intrin-
sic constants and is expressed by a new constitutive equation
as below [11,29,36,37]

1 81:92
R 36

Tz = 2(u" = 7" )egg, [z (t)] = 4)
where the superscript “I'” denotes the interface between Ma-
terial 2 and the inhomogeneity, t}, and &}, are the interface
stress and strain components, u! is the interfacial/face elastic
constant, ' denotes the residual interface/face tension, and
t=Rel? refers the points on the circular interface I'. Besides,
[tr2(t)] represents the discontinuity of the stress across the in-
terface I'.

For a coherent interface, the interfacial strain e[, is equal
to the associated tangential strain abutting the bulk materials.
For semi-coherent or incoherent interfaces, additional condi-
tions in the interfacial strain are required. The case for a co-
herent interface will be considered in what follows.

Allowing for the relation of &, (t) = s¢;(t), then combining
Egs. (3) and (4), we can get

N
[1r2(t)] = (MTL) d Sg(t) (5)

With the help of Egs. (1)-(5), the boundary conditions at dif-
ferent interfaces can be obtained as follows
ul — 1" 91959 (2r)
Ripo a0

,zZrel

()

wl(ZF) = w2(ZF)s TVZQ(ZF) — Trzl (ZI‘) =

wa(ze) = W3(Za), wn(Zae) = t23(2a), 2o € (7)

where the subscripts “1”, “2” and “3” denote regions of the in-
clusion, Material 2 and Material 3, respectively, and zr and zq
denote the points at the I' interface and at the @ interface,
respectively.

For anti-plane problems, the displacement w, shear
stresses 1, and 7y, can be given in terms of an analytical func-
tion f(z) of the complex variable z=x+1y as follows:

=[f@) + f@)1/2 (8)

vz — itz = Meiaf/(z) e

“« n

where u is shear modulus of the material, the “~” shows the
complex conjugate, and f'(z) denotes the differentiation with
respect to the argument z.

The next step is to calculate the complex potentials f;(z),
f2(z), and f3(z) in the inclusion, Material 2 and Material 3 with
the aid of Egs. (6)-(9), respectively.

2.1. A screw dislocation in Material 2

Considering a screw dislocation with the Burgers vector
b(0, O, b;), which is assumed to be straight and infinite along
the direction perpendicular to the x-y plane and is located at
an arbitrary point zo=xo+1yo in Material 2, the complex po-
tential in the Material 2 region can be written in the following
form [38,39]

f1(2) = fio(2). 2 € S1 (10)

fale) = 52 Infa -

where f,(z) is analytical in the region of S,. Ignoring the con-
stant terms representing the rigid body displacement and tak-
ing into account Eq. (1), Egs. (10) and (11) can lead to

zo) + f20(2). 2 € S3 (11)

f1(6) = f10(¢). g1 < Rq (12)
fae) = *[111(( ¢0) —In(¢ +Ry ]+Zﬂk§ Rt
+ ibkgk“, Ry < ¢l <Ry (13)
k=0

where o = (Rozo — R2)/(R; — o).

In order to solve the current problem more easily, the fol-
lowing new auxiliary functions are recommended in the corre-
sponding regions based on the Schwarz symmetry principle.

/ b ¢ ¢ > o —k—1
= — — ) ap(k+1
R0 = o200 = 35 (g i)~ k2
+) bk +1)c%t Ry < [¢] <Ry (14)
k=0

B*(¢) = B(R?/¢) =

bz( ¢ ¢ >
27l {—{1* ¢+ 5"

_Zak (k+1) 2k+2

Zbk k+1

2k+2 2

Ry
k+1 , R72<|§|<R1 (15)

k( S )
27i C—{z** {+Ry

_Zak (k+1) 2k+2

E¥() = BR?/¢) =

R, 2k+2 2

Ry
+];)bk (k+1)—2 — e Ry < ¢l < 3- (16)

where ¢1% = R1? /2o, & = R1? /R, and 5% = Ry?/2p.

On the basis of the equilibrium condition at the interface
Q between Material 2 and Material 3, the analytical function
F5(¢) in the Material 3 region is given by

F3(t) = ¢f3(¢) = 5= +Fao(0). £ > R (17)

where F30(¢) is an analytical function in the Material 3 region.
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In view of Eq. (17), we have

b
— o +F0*(0). g1 <Ry (18)

=R(R2/¢) = o

F*(¢)

According to Eq. (9), the following expressions can be ob-
tained

o /Lei"‘f/(z) +He—iaf/(z)
Yz — 2
el f'(z) — pe i f(z)
2i 9
where f'(z) = f'(¢)//'(2).

Following England [40], Tian and Rajapakse [22], we have

Opz = —

R CA(S
¢/ ()]

~

" e )] @0

The partial differentiation of the tangential direction « in
Eg. (6) can be written as

08 _0R% 02 DANE B2 g, 2 __jee (o)
a0 d¢ 0z 00 9¢ 0Z 96 a6 le
where A = £26) (l{' 28)
2%
From Egs. (19)-(21), the displacement and stress boundary

conditions in Eq. (6) can be obtained as

[Fi(t) + RO = [R) + F* (1)@, 1tI=R (22)

NtFp, ()]
NtF/,(t)]?, [t| = Ry (23)

[aFr(t) = (2 + M)E"(t) -
= [(n2 = M)Fy(t) — maFa"(t) -

where N = (" — t7)(R12 + Ry? + 2R1Ry cos a)/[R12(Ro2 — R12)],
M = 4isina(u" — z7)Ry/[R1(Ro? — R1?)], the superscripts (1), (2),
and (3) refer to the boundary values as approached from the
respective regions occupied by Material 1, Material 2 and Ma-
terial 3, respectively.

Combining Eq. (14) with Eq. (15), and according to the gen-
eralized Liouville theorem [35], Egs. (22) and (23) result in

2

* Ri< <
gc) = (PO HECQ). o<l <Ra (24)

F(¢) +F7(), Ri<Itl <Ry

2

“(¢) — ¢NF’ Ri®
h(c) = w1F1(¢) = (n2 + M)E* (¢) — ¢NF'2,(¢), R, <|¢l <R

(2 = M)Ex(¢) — naF1"(¢) = ¢NF'2(¢), R1 < ¢l <Ry

(25)
where
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k=0

bz< ¢ ¢ )
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~ e Poile—o " tvar
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(

27i C-a @+
(27)

+1

t %) (¢ +Ry)

It is found from Egs. (24) and (25) that
b, ¢ ¢
Rl = ﬁ(; o §+R2)
M2 +M b, ( ¢ _ ¢ >
it pe—M2mi\¢—of (+ 5
2= +M-NR+1) &
M1+ pa —M

Za(k + 1) 1k+1
k=0 ¢

~ N(k+1)
ag(k + 1)¢
M1+ —Ww Z

N N b | a'¢ £*¢
mtpg =M - o) e+ )

+ ) b+ 1)ck? (28)
k=0

The displacement and stress boundary conditions in
Eq. (7) can be rewritten as

[2(t) + F*©]? = [F3(t) + B )] P, [t = Ry (29)

[12Fa () — u3Fs*(£)]® = [uaFs(t) — woF™ (t)]®), Itl = Ry (30)

Similarly, following the generalized Liouville theorem
[35] and considering Egs. (14), (16) and (17), the solutions of
Egs. (29) and (30) are explicitly obtained as

F(¢) +F"(¢),R1 < [¢] <Ry

p(¢) = R,2 (31)
F3(¢) + B (¢),Ra < ] < -
1
raFa(¢) — nsF3*(¢), R1 < 16l <Ry

a(¢) = R,2 (32)
wsF3(¢) — paFo™(¢), Ry < 18] < R

_ b (¢
Ple) = 2771(4*{0 {+R,

) - i (R +1)¢

b, ¢
ol rm) - Z“kk“ Rz %

b, > b
ac) = o ( ) 12 ay (e + 1)
{-t k=0

. bz< ¢ >
227i\¢ — 5™ (4R,
k+1 bz

gt
+M2kz(:)ﬂk k+1)R o T2M35 (34)
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Considering Egs. (31)—-(34), the analytical function F,(¢) is

derived as
_ bz ¢ —k-1

PZ(”_Tni<c—§o {+R2> Za (k+2)t
2u3 bfz_uz—/mk( ¢ ¢ )
w2+ s 2wl po +ps3 27i\8 =™ C+Ry
12 = 13 o — gkt
2N ap(k+1) = 35
o +p3 = kl )R22k+2 33)

In order to simultaneously satisfy all the boundary condi-
tions on the interfaces I' and €, the analytical function Fy(¢)
expressed by Egs. (28) and (35) must be compatible to each
other [30]. Physically, the compatibility conditions F,(¢) mean
that the stress field and displacement field in the intermedi-
ateregion (R; < [¢| < Rp) are unique. From Egs. (28) and (35), the
following equation is derived to deduce the undetermined co-
efficients a;, and by,.

/LZ_,le‘f‘M bz( ¢ _ ¢ )
it pe —M27i\C—oF C+G°

M —p1+M—N(k+1) i Rfk+2

u1+pr —M

Nk+1) < —k-1
+——=) a(k+1
M1+M2*M]§ A )

LN b av &'
mtpg =M - o) (e + )

> 2 b
R+1 _ M3 Pz
+) bk +1)F = ot

from Egs. (8) and (9). Here, the explicit expressions of complex
potentials f1(¢), f2(¢) and f3(¢) are given as follows

2u b,
f1(¢) = mzm[n( —¢o0) — In(¢ +Ry)]
___ N ﬁ( Lo, R )
p1t+ua +M27i\s -5 ¢ +Ry
N o ;-k-%—l N
S S k41 _
w1+ o +Mk2=(:)ak( - )R12k+2 w1+p2 +M
x ibk(k +1)ck 4+ - ibkck“ (40)
s m1+pg + M=
b o0 o0
fe) = 27:1[111({ —20) = In( +Rp)] + Y @t * T+ Y bttt (41)
k=0 k=0
. 2u3 b 2u oy
f3(¢) u2+u37ﬂln 2 s 2:11 In(¢ - ¢0) —In(¢ +Ry)]
20y o~ k1
42
M2+ 13 gakg (42)

In order to validate the analytical results derived in this pa-
per, the reduced results are given. When the interface stresses

vanish (u"'=t"=0), the solutions shown in Egs. (40)-(42) can be

reduced to

fale) = 242 P [infe — g5) ~Inc + Ry)] + Zb e
1+ pg 2wl + 12 %

(43)

Fale) = S5 lInfe — o) ~Tn(e +Ra)] + 3 awe 1+ Y byt (49

k=0 k=0 k=0
M2 — W3 k( ¢ ¢ ) ) b )
+ 3 2w\ ¢ — o** +R - M3 Yz M2 ) —
Mo+ u3 (=0 C 2OC f3(¢) T2 i3 2 In 2 s 2;11 In(¢ — &) — In(¢ +Ry)]
ar(k + 1) a(k +1)¢ 71 36 s
M2 + "3 Z k 2k+2 k_zo k( ); ( ) 2/1'2 Zakg—kfl (45)
- Mo+ U3 =5
Comparing the coefficients in the same power terms yields
P { Ro?**2(1tp + is)[pt2 — 1 + M = Nk + 1)][e"" — (—5)*]
2mi(k+ 1) | (ug + p3)lua + ua = M+ N(R+ 1)]Ro™ — (15 — u3)[pg — pa +M — N(k + 1)]Rs ™2
k1
Ra?*2(up — pg)lpta — i1 + M — Nk + D[R/ (—Rp)* ™ — R/ (5™) ] (37)
(12 + m3)lis + o = M+ N(k + 1)]Ry%*2 — (1o — p3)[sa — 1 + M — N(k + 1)]Ry 22
k1 k1
b s (12 = na)liz =1 =M =Nk + D™~ — (-5")" "]
27i(R+ 1) | (12 + p3)lpa + po + M+ N(k + 1)]Rp% 2 — (ug — p3)[pg — pa — M — N(k + 1)]Ry ¥ +2

(12 — wa)la + ma + M+ Nk + ][Ry 22 /(=Ro)*™" — Ry %2/ (557)*™"]

(no + p3)[u1 + u2 + M+ Nk + 1)]R22k+2 —

By substituting Egs. (37) and (38) into Eq. (14), the analytical
expression of function F,(¢) is determined

_b (0 ¢ )y k-1
Fz(l)—zﬂi<§_§0 €+R2> gak(k+1)§

+ bR+ 1)k (39)

k=0
Finally, together with the relations of fi (¢) = f[Fe(¢)/¢]d¢ (k =
1, 2, 3), the closed-form solutions of stress and displacement
fields for a screw dislocation interacting with a circular nano-
inhomogeneity near a bimaterial interface can be obtained

38
(12 — 13)li2 — m1 — M — N(k + 1)]R,2%+2 } (38)

where
a, = _ b
kT ik + 1)
» : RoZ**2 (g + pa) (g — ) [cr™® ! — ()]
(12 + 13) (1 + 12)Ro %2 — (g — pis)(pg — n1)R1 %€ +2

—n k1
R 282 (119 — 3) (12 — 1) [Ra? 2/ (—Ro) T — Ry Z¥+2/ (1,)

(2 + m3) (1 + 12)Ro ™2 — (g — p3)(ua — pa)R1%+2

]

and
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by — __ bz
kT T2k + 1)
— k41 k1
(2 = w3z — )™ — (-527) ]
(2 + m3) (11 + 12)Ro ™2 — (g — ps)(ua — pna)R1%¥+2

(12 — 13) (11 + p2)[RoZ¥+2/ (—Ro)* T — RyZ¥H2 ()]
(2 + m3) (11 + 1n2)Ra 2 — (g — ps)(ug — pu1)Ry ¥ 2

As expected, the solutions of complex potentials f;(¢) are
in agreement with the results by Chai et al. [33] for the case
of coupling interaction between a screw dislocation and a cir-
cular inclusion with a bimaterial interface. In addition, if we
take u3 =0, the new solutions are similar to the case derived
by Li [25] for the interaction between a screw dislocation and a
circular nano-inclusion in the half-plane model. The current
reduced solutions are presented as follows

filey= — 22 brpa

1T T M2 to) —In(¢ + Ry)]

___ N k( o, R )
u1+pr+M2ri\¢ -4 ¢+Ry

N é-k-%—l N
P (k+1
u1+u2+M,§ak Y 2 i+ +M
b k-’rl k+1+7 b k+1 46
xg ek +1)¢ M+M+MZ K (46)
b
fae) = 5 5 In(c —fo)—ln(c+Rz)]+2akc*k*l+2bk;k“ (47)
k=0 k=0
where
bz R22k+2[/L2—;L1+M—N(k+1)][§1*k+1—

0= ar * > dt c e, (52)
k=0 k=0
b, ,
f3(6) = 52 In(¢ — o) ~In(¢ +Ra)] + fao¢). ¢ € 5 (53

Referring to Egs. (14)-(16), the following complex function
vectors can be written as

F(¢) = ¢f5(¢) ch (k+1) T
k=0
+) de(R+1)* Ry < 2] <Ry (54)
k=0

k+1
€+

F (()_FZ Rlz/g chk+1 2k+2

© R2k+2 RZ
+de(k+1) ;M Ry <ll<Ra (55)

ch (k+1) 2k+2

B*(¢) = B(R2/¢) =

2k+2 2

Ry R
+dek+1) — R2<|;|<Ri (56)
k=0 ¢ 1
b
B =BR0) = 55 (= — gy ) Bl Iel < Re

(57)
Using the similar method in Section 2.1, the relations of the
complex potentials F;(¢) and F3(¢) can be obtained

(=5

a, = n X
2i(k+1) | [u1 + p2 — M+ N(k + 1)]R2*+2 —

[2 — n1 +M — N(k + 1)]R, %+2
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]

b,
by = —— X
©T 2mikr ) { (11 + 12 + M+ Nk + 1)]R,* —

[n2 — n1 — M = N(k + 1)]R, 2

[11 + t2 + M+ Nk + 1)][R™2/(=Ry)** — RyZ*¥2/(5,™) ] }

[1+ 1o + M+ N(k + 1)]R %42 —

2.2. A screw dislocation in Material 3

Letting a screw dislocation with Burgers vector b, lie at point
Zo in Material 3, the complex function vectors can be written
as:

f1(z) = fio(2). 2z € $1 (48)
fa(2z) = fao(2).2€ Sy (49)

fa(e) = 5% In(z ~ 20) + fole). 2 < S5 (50)

where the complex function vectors f10(z), f20(z) and f3o(z) are
holomorphic in the regions where they are defined, respec-

tively.
By noting Eq. (1), Egs. (48)—(50) can lead to
f1€) = f10(¢). ¢ € 5] (51)

[n2 — 1 — M = N(k + 1)]Ry *+2

o0

2[1,27 k+1 k+1
F :7 k+1 +
10 pm1+p +M Z
N(k+1) 007 ;k-%—l
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/41+uz+M,§J xl )Rlzk“ G8)

b ¢ ¢
Blt) = ﬁ(c—fo - C+R2>
Mz-Mk( ¢ ¢ )
M2+ 13 27i\E — 5™ ¢ +Ry
2u9 .- —k—1
- ap(k+1 59
TS k( )¢ (59)

The complex potential f,(¢) is determined by the following
equation

=Y @+ 1)+
k=0

k+1
{+

— U3
ap(k+1
o + 3];) ) 2k+2

N 213 ﬁ( ¢ ¢ )
o+ u327i\¢ -t (+Rp
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> —u1+M-Nk+1) & Ry 2k+2
=3 b+ 1)cket - F2 R > Bk + 1) —
= m1+puy —M = gkt
Nk+1) < 1
— Y (k4 1) 60
M1+M2—M,§, 3 )Ck” (€0)

Comparing the coefficients of the same power terms in
Eq. (60) yields

Table 1 — Material constants for typical metals o

Al Cu Ni a-Fe W
1 (GPa) 28 33 95 85 160
b, (nm) 0.286 0.256 0.249 0.248 0.274

o b 2113[11z = 1 + M = N(k+ D[R ?/50" " — Ry 2/ (~Rp)* Ry 2 6
© 7 2mik+ ) 7 (g + pa)lua + sz — M+ NR + )R — (g — pra)liz — pa + M — N(k + 1Ry %2
d b, N —2u3[p1 + p2 + M+ N(k + 1)][Rp?*2/cgk+1 — Ry?+2/(—R,)* ] 62)
k= 5
27i(R+1) * (up + ps)[i1 + po + M+ Nk + 1)R%2 — (1 — p3)[pp — 1 — M — N(k + 1)]R, 2¢+2
By noting Eq. (9), we have
Now the complex function vectors f1(¢), f2(¢) and f3(¢) can £(¢)
be obtained using Egs. (51)-(62). Twz(20) — 17y, (20) = ) L ) (68)
=%0

21y — N(k + 1) e N(R+1) S gk
= P2 TR T INT g ok
fite) p1+p2 + M Z ¥ f1+pg + M= FR 22
(63)
=Y e F Y dpett? (64)
— k7
f3(6) = 2 [In(¢ — o) ~ In(¢ +R )1+Mb—z
3907 ond 0 2 Ho + p3 27i

x [In(¢ — &™) —1n(¢ +Ry)]

ZCM I (5)

2+/l3

Itis worth pointing out that from Egs. (63)-(65), when w1 =0,
wo=p3, and the distance h between the center of inclusion
and the bimaterial interface approaches infinity, the solutions
of complex potentials are in line with the results of Fang and
Liu [20] for the case of size-dependent elastic interaction be-
tween a screw dislocation and a circular nano-hole with sur-
face stress, and the reduced results are written as follows

b,

&) = 5 5 In(c o) +chc k-t (66)
where p;=ps=p, flt)=f2(¢)=f2(¢) and ¢ = m
u=(u )(’Hl)(R2 Je+1

uA (e —T)(k+1)

3. Image forces on screw dislocations

The image forces exerted on dislocations will be evaluated in
this section, which is of primary importance in analyzing the
physical and mechanical behaviors in mobility and the so-
called trapping mechanism of dislocations. Associated with
the Peach-Koehler formula [30,41], the image force acting on
a screw dislocation at point zy can be expressed as

fx = 1fy = 1bz[r355(20) — ity (20)] (67)

where fy and f are the force components in the x-axis and y-
axis directions, respectively, and t},, and < 722 denote the per-
turbation stress components at the dlslocatlon point, which
can be derived by subtracting those attributions to the disloca-
tion in the corresponding infinite homogeneous medium from
the stresses obtained currently.

Referring to the work of Lee [42], the explicit expression of
the image force acting on the screw dislocation for the present
problem can be written as

. R,)
)‘x—lfy_lb””“zz(Lz2 Zak (k+1)c7% 2+Zbk (k +1)¢*
Ry™—Ry k=0 k=0

(69)
for the dislocation in Material 2, and
fooif, = ansle +Ro)” uz—Mg( 11 >
o Ro2—R? | mo+m327i\¢ - 5™ ¢+Ry
C2up cplk + 1) 7F2 (70)
M2 + K3 o

for the dislocation in Material 3.

4, Numerical examples and discussion

Having the expressions of the image forces given in Egs.
(69) and (70), the influence of various parameters (the mate-
rial elastic mismatch, the interface stress, the distance be-
tween the center of inclusion and the bimaterial interface,
and the location of the screw dislocation) upon image force
acting on the screw dislocation can be well calculated. In sub-
sequent numerical calculation, the relative shear moduli are
defined as a=pu1/puy and B=us/u,, and the intrinsic length
y = (u" — 77)/uy [23,43]. Former studies have shown that
and " are on the order of 1 N/m and their values can be posi-
tive or negative depending upon the crystallographic orienta-
tion [8]. According to the results of Miller and Shenoy (8], the
absolute value of the intrinsic length y = (u' —tT)/u, is nearly
0.1 nm. In addition, the magnitude of Burgers vector b; is not
constant but depends on the specific materials. The material
constants of Material 2 are taken from metal Cu (1, =33 GPa,
b, =0.256 nm) listed in Table 1.

In this section, we will just focus on the case that a screw
dislocation is located in Material 2 in detail, and the case in
Material 3 is omitted to save space. Supposing that the screw
dislocation lies at point xy on the x-axis (R1 < Xp < Ryp), in
this case, fy=0 and the component of normalized image force
along the x-axis direction is defined as fyg=27fx/(12bz2). In
Figs. 2-5, we illustrate the variation of the values of fyo with
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Fig. 2 - Normalized force fx¢ versus zg for « =1.2, =0.8,R; =10nm and h=10 nm.
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Fig. 4 - Normalized force fx¢ versus zg for « = 0.8, §=0.8, R1 =10 nm and h=10 nm.
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Fig. 5 - Normalized force fyo versus zg for « =0.8, =1.2, R; =10 nm and h=10 nm.
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Fig. 6 - Normalized force fx¢ versus R; with = 0.8, zg = 41 nm, h = 50 nm for different «, y.

respect to parameter zy for the selected material constants
and the intrinsic length y (R; =10 nm, h =10 nm). It is shown
from Figs. 2-5 that, if the interface stresses are positive, with
the increase of y, the screw dislocation will be repelled more
strongly by the inclusion (Material 1), and there may be zero
(8 =0.8), or a stable equilibrium position point (8 = 1.2) in Ma-
terial 2 when the matrix (Material 2) is softer than the inclu-
sion; while if the interface stresses are negative, the screw dis-
location will be first attracted then repelled by the inclusion,
and there may be a non-stable (8 = 0.8), or a stable equilibrium
position point (8 =1.2) in Material 2. At the same time, if the
interface stresses are negative, the screw dislocation will be
attracted toward the inclusion, and there may be zero (8 = 1.2),
or a non-stable equilibrium position (8 =0.8) when the ma-
trix is stiffer than the inclusion; while the positive interface
stresses are likely to give rise to a non-stable (8=1.2), or a
stable equilibrium position point (8 =0.8) in Material 2. The
same as those shown by Fang and his groups [18,29,30,37], the
mechanical behavior of interface effect revealed in this study
shows that the dislocation can be attracted by the negative in-

terface stresses and repelled by the positive interface stresses,
which differs from the classical cases under the same condi-
tions that the screw dislocation can be attracted by the stiffer
matrix or repelled by the softer matrix when the dislocation
approaches the nano-inclusion. Comparing with the solution
[25] for a screw dislocation and a nano-inclusion in the half-
plane with the classical solution [33] (y =0), it is observed that
more equilibrium positions of the dislocation may be avail-
able when the dislocation is near the nanoscale inclusion and
is close to the bimaterial interface, respectively. On the other
hand, the image force exerted on the dislocation may be more
complicated than in the half-plane case which is dependent
on the attraction of half-plane to the screw dislocation.

The variation of normalized image force f,o versus param-
eter R; is depicted in Fig. 6 with the selected material con-
stants of h=50nm, 8 =0.8, zo =41 nm, and different relative
shear moduli and intrinsic lengths. Fig. 6 shows that, with the
increase of Ry, the screw dislocation will first be slightly af-
fected by the relative shear modulus and then be increasingly
influenced by the interface stress.
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The variation of normalized image force fyo versus param-
eter h is depicted in Fig. 7 with the selected material con-
stants of y = 0.1 nm, R; = 10 nm, zo = 43 nm and different rela-
tive shear moduli. Fig. 7 indicates that, with the increase of
h, the normalized image force acting on the screw disloca-
tion will decrease slowly and reach the critical value, which
is closely related to the relative shear modulus 8.

The variation of normalized image forces fyo and
fyo (fyo=27fy/(usb;2)) versus parameter z, is depicted in
Figs. 8 and 9 with the selected material constants of g =1.2,
R1=10nm, h=10nm and different relative shear moduli
and intrinsic lengths when the dislocation is located at
the straight line x=13nm. In Fig. 8, it can be seen that the
normalized image force fyo acting on the screw dislocation is
axisymmetric about the x-axis, and the screw dislocation will
be repelled by Material 3 when the dislocation is located away
from the x-axis. Especially, the repellent force or attractive
force exerted on the dislocation reaches maximum when the
dislocation lies on the x-axis. Fig. 9 demonstrates that, the nor-
malized image force fyo acting on the screw dislocation is the

center of symmetry at point (0, 0), and the negative interface
stress shows a stronger impact on the image force fyo than the
positive interface stress. Comparing with the solution to the
problem with a screw dislocation and a nano-inclusion in the
half-plane, we can observe that the equilibrium positions of
the dislocation only exist on the x-axis, when the dislocation
is close to the inclusion with interface effect.

5. Conclusions

A study on the elastic interaction between a screw dislocation
and a circular nano-inclusion near a bimaterial interface is
carried out. The stress boundary condition at the interface
between the nano-inhomogeneity and the matrix is modified
by incorporating the surface/interface stress. The solution
to the problem is derived analytically by combining the
complex variable method of Muskhelishvili, the conformal
mapping function and Laurent series expansion techniques.
The image force and the equilibrium position of a screw
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Fig. 9 - Normalized force fyo versus y with x=13nm, §=1.2, R; =10 nm, h = 10 nm for different «, y.

dislocation near a bimaterial interface are presented by
numerical calculations and discussed in detail. It is found
that the dislocation can be attracted by the negative interface
tresses, and repelled by the positive interface stresses, which
is due to the local hardening/softening on interfaces; while
the classical solutions are that the screw dislocation can be
attracted by the softer matrix or rejected by the harder matrix
when the dislocation is near the inclusion. In fact, the stability
of the dislocations is closely linked to plastic deformations of
nanocrystalline materials. Therefore, ultra-fine second phase
particles involving nano-inhomogeneity are often introduced
for improving the strengthening and hardening properties of
nanomaterials such as alloys and composites. On the other
hand, when the inclusion and Material 3 are both stiffer than
the matrix (u1 > pp and us > pp), @ new stable equilibrium
position for the screw dislocation in the matrix appears near
the bimaterial interface. When the inclusion and Material 3
are both softer than the matrix (11 < uo and us < pp), a new
unstable equilibrium position can exist close to the bimaterial
interface. Furthermore, in certain situations, there is always
a new stable or unstable equilibrium position of dislocation
near the nanoscale inclusion depending on different material
combinations.
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