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a b s t r a c t 

The problem of a screw dislocation interacting with a circular nano-inhomogeneity near a 

bimaterial interface is investigated. The stress boundary condition at the interface between 

the inhomogeneity and the matrix is modified by incorporating surface/interface stress. 

The analytical solutions to the problem in explicit series are obtained by an efficient com- 

plex variable method associated with the conformal mapping function. The image force 

exerted on the screw dislocation is also derived using the generalized Peach–Koehler for- 

mula. The results indicate that the elastic interference of the screw dislocation and the 

nano-inhomogeneity is strongly affected by a combination of material elastic dissimilarity, 

the radius of the inclusion, the distance from the center of inclusion to the bimaterial inter- 

face, and the surface/interface stress between the inclusion and the matrix. Additionally, it 

is found that when the inclusion and Material 3 are both harder than the matrix ( μ1 > μ2 

and μ3 > μ2 ), a new stable equilibrium position for the screw dislocation in the matrix ap- 

pears near the bimaterial interface; when the inclusion and Material 3 are both softer than 

the matrix ( μ1 < μ2 and μ3 < μ2 ), a new unstable equilibrium position exists close to the 

bimaterial interface. 

© 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied 

Mechanics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Nanocomposite solids with special physical properties (high
strength, high toughness, high heat, high conductivity, etc.)
serve as key materials and are widely used in high techno-
logical fields. For the purpose of acquiring better performance
of nanomaterials, it is essential to study the interaction be-
tween nanoscale structure and crystal lattice defects such as
dislocations, disclinations and twins in detail. Its effect plays
an extremely great part in the material stability, physical and
mechanical performance—strength and plastic deformation.
∗ Corresponding author. 
E-mail address: xwshndc@126.com (Wanshen Xiao). 
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In view of their importance, a great number of contributions
have been conducted toward the problem concerning materi-
als science, solid state physics and nanomechanics during the
last several decades [1–7] . 

For a nanoscale inclusion embedded in a matrix, the in-
terface condition in researching the mechanical behavior of
the matrix is an important factor. To our knowledge, when
the size of inclusion is reduced to nanometer scale, atoms
at the surface/interface possess their own unique environ-
ment and differ from the atoms in the surrounding mate-
rial. As a result of the equilibrium lattice spacing at the sur-
face/interface, the surface/interface stress emerges, which
needs to be taken into consideration [8] . Gurtin and his co-
workers [9,10] firstly presented a classical continuum model
for the surface/interface stress problems on elastic solid. At
y of Theoretical and Applied Mechanics. 
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Fig. 1 – (a) Schematic diagram of a screw dislocation. (b) The ζ-plane after conformal mapping in the current nanocomposite 
model. 
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resent, the surface/interface stress model has been widely 
mployed to theoretically describe some unusual behavior re- 
ated to the interface stress in nanomaterials [11–17] . 

The interaction between a dislocation and a nano- 
nclusion is an important topic in studying the mechanical 
ehavior of materials. Based on the above-mentioned sur- 
ace/interface stress model, Fang and Liu [18–20] dealt with the 
lastic interaction between a screw dislocation and a circu- 
ar nano-inhomogeneity or a nano-hole with interface stress.
utkin et al. [21] considered the elastic behavior of an edge 
islocation located in the shell of nanowire by applying the 
heory of surface/interface elasticity. Tian [22] investigated the 
lastic field with a nanoscale elliptical inhomogeneity embed- 
ed in an infinite matrix under far-field loading and a uniform 

igenstrain. Subsequently, the problem of a dislocation inter- 
cting with an elliptical nano-inhomogeneity is carried out by 
uo [23,24] with different kinds of dislocations. Li [25] exam- 
ned the elastic interaction between a screw dislocation and a 
anoscale cylindrical inclusion in a half-plane. 

The references mentioned above are mainly focused on 

wo-phase materials. Nevertheless, most materials for en- 
ineering application consist of multiphase systems. Fortu- 
ately, Christensen and Lo [26] introduced a reasonably sim- 
lified three-phase model consisting of three concentric re- 
ions to describe the behavior of these interactions. Applying 
he simplified three-phase model, the exact solution for the 
tress field with an edge dislocation located in a three-phase 
omposite cylinder was then derived by Luo and Chen [27] .
ater on, Xiao and Chen [28] analyzed the problem for elastic 
nteraction between a screw dislocation and nearby inclusions 
n a fiber-reinforced composite material. In addition, plenty of 
nvestigations have been conducted based on the three-phase 

odel [29–32] . 
However, composite materials with multiphase systems 

re in general combined with different shapes, sizes and other 
tyles. The elastic interaction between a screw dislocation and 

 circular inhomogeneity with a bimaterial interface and in- 
erface stress has not been studied. In the present paper, we 
ddress the elastic interaction between a screw dislocation 

nd a circular inhomogeneity with interface stress near a bi- 
aterial interface by using the conformal mapping technique.

he surface/interface stress model is utilized at the interface 
etween the inhomogeneity and the matrix. The explicit so- 
utions of image force acting on the screw dislocation located 

n Material 2 and Material 3 are calculated using the Peach–
oehler formula. The stability of a screw dislocation located in 

aterial 2 with interface stress is evaluated in detail. Finally,
he influence of variable parameters (interface stress and ma- 
erial mismatch) on the image force is examined by several 
umerical examples. 

. Basic formulations 

here is a nano-inclusion (Material 1) near a bimaterial inter- 
ace, as shown in Fig. 1 , where R 1 and h are the inclusion ra-
ius and the distance between the center of inclusion and the 
imaterial interface, respectively. Material 2 and Material 3 oc- 
upy the regions denoted by S 2 and S 3 , respectively. The inclu- 
ion, with its center at the origin of the Cartesian coordinate 
ystem, occupies a region denoted by S 1 , and the bimaterial 
nterface is perpendicular to the x -axis. The shear moduli of 
 1 , S 2 , and S 3 are respectively μ1 , μ2 , and μ3 . “�” and “�” repre-
ent the Material 2/inhomogeneity interface and the bimate- 
ial interface, respectively. It is assumed that Material 2, Mate- 
ial 3 and the nano-inhomogeneity are all homogeneous and 

sotropic. 
For the convenience of analysis, the following conformal 

apping function is adopted [33,34] 

 = ω(ζ ) = 

R 2 ζ + R 1 
2 

ζ + R 2 
(1) 

here R 2 = h + 

√ 

h 2 − R 1 
2 and z = x + i y , ζ = ξ + i η. Utilizing the

apping function, regions of S 1 , S 2 and S 3 in the z -plane are
ransformed onto the domain S ′ 1 (| ζ | < R 1 ),S ′ 2 ( R 1 < | ζ | < R 2 ), and
 

′ 
3 (| ζ | > R 2 ) in the ζ -plane correspondingly. The coordinate ori-
in o , the point at infinity and z 0 in the z -plane are mapped to
 

′ ( ζ = −R 1 
2 / R 2 ), K ( ζ = −R 2 ) and ζ 0 in the ζ -plane, as depicted in

ig. 1 (b). 
For the current anti-plane problem, the constitutive equa- 

ions of displacement and stress are presented as follows 
9,35] 
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∂ 2 w j 

∂ x 2 
+ 

∂ 2 w j 

∂ y 2 
= 0 (2)

τrz j = 2 μ j ε rz j , τθz j = 2 μ j ε θz j (3)

where w j ( j = 1, 2, 3) refers to the anti-plane displacements in
nano-inhomogeneity, Material 2 and Material 3, respectively;
μj are shear moduli, and τ rzj ( εrzj ) and τ θzj ( εθzj ) are the stress
(strain) components in polar coordinates system ( r , θ ). Never-
theless, the interface showing interface stress owns its intrin-
sic constants and is expressed by a new constitutive equation
as below [11,29,36,37] 

τ�
θz = 2( μ� − τ� ) ε �θz , [ τrz (t)] = 

1 
R 

∂τ�
θz 

∂θ
(4)

where the superscript “�” denotes the interface between Ma-
terial 2 and the inhomogeneity, τ�

θz and ε �θz are the interface
stress and strain components, μ� is the interfacial/face elastic
constant, τ�denotes the residual interface/face tension, and
t = Re i θ refers the points on the circular interface �. Besides,
[ τ rz ( t )] represents the discontinuity of the stress across the in-
terface �. 

For a coherent interface, the interfacial strain ε �θz is equal
to the associated tangential strain abutting the bulk materials.
For semi-coherent or incoherent interfaces, additional condi-
tions in the interfacial strain are required. The case for a co-
herent interface will be considered in what follows. 

Allowing for the relation of ε �θz (t) = ε θz (t) , then combining
Eqs. (3) and (4) , we can get 

[ τrz (t)] = 

( μ� − τ� ) 
Rμ

∂ τθz (t) 
∂θ

(5)

With the help of Eqs. (1) –(5) , the boundary conditions at dif-
ferent interfaces can be obtained as follows 

w 1 ( z � ) = w 2 ( z � ) , τrz 2 ( z � ) − τrz 1 ( z � ) = 

μ� − τ�

R 1 μ2 

∂ τθz 2 ( z � ) 
∂θ

, z � ∈ �

(6)

w 2 ( z � ) = w 3 ( z � ) , τrz 2 ( z � ) = τrz 3 ( z � ) , z � ∈ � (7)

where the subscripts “1”, “2” and “3” denote regions of the in-
clusion, Material 2 and Material 3, respectively, and z � and z �
denote the points at the � interface and at the � interface,
respectively. 

For anti-plane problems, the displacement w , shear
stresses τ rz and τ θz can be given in terms of an analytical func-
tion f ( z ) of the complex variable z = x + i y as follows: 

w = [ f (z ) + f (z ) ] / 2 (8)

τrz − i τθz = μe i α f ′ (z ) (9)

where μ is shear modulus of the material, the “–” shows the
complex conjugate, and f ′ ( z ) denotes the differentiation with
respect to the argument z . 

The next step is to calculate the complex potentials f 1 ( z ),
f 2 ( z ), and f 3 ( z ) in the inclusion, Material 2 and Material 3 with
the aid of Eqs. (6) –(9) , respectively. 
2.1. A screw dislocation in Material 2 

Considering a screw dislocation with the Burgers vector
b (0, 0, b z ), which is assumed to be straight and infinite along
the direction perpendicular to the x –y plane and is located at
an arbitrary point z 0 =x 0 + i y 0 in Material 2, the complex po-
tential in the Material 2 region can be written in the following
form [38,39] 

f 1 (z ) = f 10 (z ) , z ∈ S 1 (10)

f 2 (z ) = 

b z 
2 π i 

ln (z − z 0 ) + f 20 (z ) , z ∈ S 2 (11)

where f 20 ( z ) is analytical in the region of S 2 . Ignoring the con-
stant terms representing the rigid body displacement and tak-
ing into account Eq. (1), Eqs. (10) and (11) can lead to 

f 1 (ζ ) = f 10 (ζ ) , | ζ | < R 1 (12)

f 2 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

∞ ∑ 

k =0 

a k ζ
−k −1 

+ 

∞ ∑ 

k =0 

b k ζ
k +1 , R 1 < | ζ | < R 2 (13)

where ζ0 = ( R 2 z 0 − R 

2 
1 ) / ( R 2 − z 0 ) . 

In order to solve the current problem more easily, the fol-
lowing new auxiliary functions are recommended in the corre-
sponding regions based on the Schwarz symmetry principle. 

F 2 (ζ ) = ζ f ′ 2 (ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
−

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 , R 1 < | ζ | < R 2 (14)

F 2 
∗(ζ ) = F 2 ( R 1 

2 /ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ1 
∗ − ζ

ζ + ζ2 
∗

)

−
∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 1 
2 k +2 

+ 

∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 
, 

R 1 
2 

R 2 
< | ζ | < R 1 (15)

F 2 
∗∗(ζ ) = F 2 ( R 2 

2 /ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)

−
∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

+ 

∞ ∑ 

k =0 

b k (k + 1) 
R 2 

2 k +2 

ζ k +1 
, R 2 < | ζ | < 

R 2 
2 

R 1 
(16)

where ζ1 
∗ = R 1 

2 / ζ0 , ζ2 
∗ = R 1 

2 / R 2 and ζ2 
∗∗ = R 2 

2 / ζ0 . 
On the basis of the equilibrium condition at the interface

� between Material 2 and Material 3, the analytical function
F 3 ( ζ ) in the Material 3 region is given by 

F 3 (ζ ) = ζ f ′ 3 (ζ ) = 

b z 
2 π i 

+ F 30 (ζ ) , | ζ | > R 2 (17)

where F 30 ( ζ ) is an analytical function in the Material 3 region.
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In view of Eq. (17) , we have 

 3 
∗(ζ ) = F 3 ( R 2 

2 /ζ ) = − b z 
2 π i 

+ F 30 
∗(ζ ) , | ζ | < R 2 (18) 

According to Eq. (9) , the following expressions can be ob- 
ained 

σrz = 

μe i α f ′ (z ) + μe −i α f ′ (z ) 
2 

θz = −μe i α f ′ (z ) − μe −i α f ′ (z ) 
2i 

(19) 

here f ′ (z ) = f ′ (ζ ) / ω 

′ (ζ ) . 
Following England [40] , Tian and Rajapakse [22] , we have 

 

i α = 

ζω 

′ (ζ ) ∣∣ζω 

′ (ζ ) 
∣∣ , e −i α = 

ζω 

′ (ζ ) ∣∣ζω 

′ (ζ ) 
∣∣ (20) 

The partial differentiation of the tangential direction α in 

q. (6) can be written as 

∂�

∂θ
= 

∂�

∂ζ

∂ζ

∂z 
∂z 
∂θ

+ 

∂�

∂ ζ

∂ ζ

∂ z 
∂ z 
∂θ

, 
∂z 
∂θ

= i e i α, 
∂ z 
∂θ

= −i e −i α (21) 

here � = 

ζ f ′ 2 (ζ ) −ζ f ′ 2 (ζ ) 
| ζω ′ (ζ ) | . 

From Eqs. (19) –(21) , the displacement and stress boundary 
onditions in Eq. (6) can be obtained as 

 F 1 (t) + F 2 
∗(t)] (1) = [ F 2 (t) + F 1 

∗(t)] (2) , | t | = R 1 (22) 

 μ1 F 1 (t) − ( μ2 + M ) F 2 
∗(t) − Nt F ′ 2 ∗(t)] (1) 

= [( μ2 − M ) F 2 (t) − μ1 F 1 
∗(t) − Nt F ′ 2 (t)] (2) , | t | = R 1 (23) 

here N = ( μ� − τ� )( R 1 
2 + R 2 

2 + 2 R 1 R 2 cos α) / [ R 1 
2 ( R 2 

2 − R 1 
2 )] ,

 = 4i sin α( μ� − τ� ) R 2 / [ R 1 ( R 2 
2 − R 1 

2 )] , the superscripts (1), (2),
nd (3) refer to the boundary values as approached from the 
espective regions occupied by Material 1, Material 2 and Ma- 
erial 3, respectively. 

Combining Eq. (14) with Eq. (15) , and according to the gen- 
ralized Liouville theorem [35] , Eqs. (22) and (23) result in 

(ζ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

F 1 (ζ ) + F 2 
∗(ζ ) , 

R 1 
2 

R 2 
< | ζ | < R 1 

F 2 (ζ ) + F 1 
∗(ζ ) , R 1 < | ζ | < R 2 

(24) 

 (ζ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μ1 F 1 (ζ ) − ( μ2 + M ) F 2 
∗(ζ ) − ζN F ′ 2 ∗(ζ ) , 

R 1 
2 

R 2 
< | ζ | < R 1 

( μ2 − M ) F 2 ( ζ ) − μ1 F 1 
∗( ζ ) − ζN F ′ 2 (ζ ) , R 1 < | ζ | < R 2 

(25) 

here 

(ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
+ 

b z 
2 π i 

(
ζ

ζ − ζ1 
∗ − ζ

ζ + ζ2 
∗

)

+ 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 + 

∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 
(26) 

 (ζ ) = ( μ2 − M + N) 
b z 

2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)

+ ( μ2 − M − N(k + 1)) 
∞ ∑ 

k =0 

b k (k + 1) ζ k +1 

− ( μ2 + M − J 2 ) 
b z 

2 π i 

(
ζ

ζ − ζ1 
∗ − ζ

ζ + ζ2 
∗

)

− ( μ2 + M − N(k + 1)) 
∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 

+ N 

b z 
2 π i 

[ 

ζ0 
2 

(ζ − ζ0 ) 
2 

− R 2 
2 

(ζ + R 2 ) 
2 

+ 

ζ1 
∗2 

(ζ − ζ1 
∗ ) 2 

− ζ2 
∗2 

(ζ + ζ2 
∗ ) 2 

] 

(27) 

It is found from Eqs. (24) and (25) that 

 2 (ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)

− μ2 − μ1 + M 

μ1 + μ2 − M 

b z 
2 π i 

(
ζ

ζ − ζ1 
∗ − ζ

ζ + ζ2 
∗

)

−μ2 − μ1 + M − N(k + 1) 
μ1 + μ2 − M 

∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 

+ 

N(k + 1) 
μ1 + μ2 − w 2 

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

N 

μ1 + μ2 − M 

b z 
2 π i 

[ 

ζ1 
∗ζ

(ζ − ζ1 
∗ ) 2 

+ 

ζ2 
∗ζ

(ζ + ζ2 
∗ ) 2 

] 

+ 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 (28) 

The displacement and stress boundary conditions in 

q. (7) can be rewritten as 

 F 2 (t) + F 3 
∗(t)] (2) = [ F 3 (t) + F 2 

∗∗(t)] (3) , | t | = R 2 (29) 

 μ2 F 2 (t) − μ3 F 3 
∗(t)] (2) = [ μ3 F 3 (t) − μ2 F 2 

∗∗(t)] (3) , | t | = R 2 (30) 

Similarly, following the generalized Liouville theorem 

35] and considering Eqs. (14) , (16) and (17) , the solutions of
qs. (29) and (30) are explicitly obtained as 

p(ζ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

F 2 (ζ ) + F 3 
∗(ζ ) , R 1 < | ζ | < R 2 

F 3 (ζ ) + F 2 
∗∗(ζ ) , R 2 < | ζ | < 

R 2 
2 

R 1 

(31) 

 (ζ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

μ2 F 2 (ζ ) − μ3 F 3 
∗(ζ ) , R 1 < | ζ | < R 2 

μ3 F 3 (ζ ) − μ2 F 2 
∗∗(ζ ) , R 2 < | ζ | < 

R 2 
2 

R 1 

(32) 

here 

p(ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
−

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)
−

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

(33) 

 (ζ ) = μ2 
b z 

2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
− μ2 

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

−μ2 
b z 

2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)

+ μ2 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

+ 2 μ3 
b z 

2 π i 
(34) 
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Considering Eqs. (31) –(34) , the analytical function F 2 ( ζ ) is
derived as 

F 2 (ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
−

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

2 μ3 

μ2 + μ3 

b z 
2 π i 

− μ2 − μ3 

μ2 + μ3 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)

+ 

μ2 − μ3 

μ2 + μ3 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

(35)

In order to simultaneously satisfy all the boundary condi-
tions on the interfaces � and �, the analytical function F 2 ( ζ )
expressed by Eqs. (28) and (35) must be compatible to each
other [30] . Physically, the compatibility conditions F 2 ( ζ ) mean
that the stress field and displacement field in the intermedi-
ate region ( R 1 < | ζ | < R 2 ) are unique. From Eqs. (28) and (35) , the
following equation is derived to deduce the undetermined co-
efficients a k and b k . 

− μ2 − μ1 + M 

μ1 + μ2 − M 

b z 
2 π i 

(
ζ

ζ − ζ1 
∗ − ζ

ζ + ζ2 
∗

)

− μ2 − μ1 + M − N(k + 1) 
μ1 + μ2 − M 

∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 

+ 

N(k + 1) 
μ1 + μ2 − M 

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

N 

μ1 + μ2 − M 

b z 
2 π i 

[ 

ζ1 
∗ζ

(ζ − ζ1 
∗ ) 2 

+ 

ζ2 
∗ζ

(ζ + ζ2 
∗ ) 2 

] 

+ 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 = 

2 μ3 

μ2 + μ3 

b z 
2 π i 

− μ2 − μ3 

μ2 + μ3 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)

+ 

μ2 − μ3 

μ2 + μ3 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

−
∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 (36)

Comparing the coefficients in the same power terms yields

a k = 

b z 
2 π i(k + 1) 

{ 

R 2 
2 k +2 ( μ2 + μ3 )[ μ2 − μ1 + M − N(k 

( μ2 + μ3 )[ μ1 + μ2 − M + N(k + 1)] R 2 
2 k +2 − ( μ2 −

+ 

R 1 
2 k +2 ( μ2 − μ3 )[ μ2 − μ1 + M − N(k + 1)][ R 2 

2 k +2 / (−R 2 )

( μ2 + μ3 )[ μ1 + μ2 − M + N(k + 1)] R 2 
2 k +2 − ( μ2 − μ3 )[ μ2 −

b k = − b z 
2 π i(k + 1) 

⎧ ⎨ 

⎩ 

( μ2 − μ3 )[ μ2 − μ1 − M − N(k +
( μ2 + μ3 )[ μ1 + μ2 + M + N(k + 1)] R 2 

2 k +2 − ( μ

+ 

( μ2 − μ3 )[ μ1 + μ2 + M + N(k + 1)][ R 2 
2 k +2 / (−R 2 ) 

k +1

( μ2 + μ3 )[ μ1 + μ2 + M + N(k + 1)] R 2 
2 k +2 − ( μ2 − μ3 )[ μ2 −

By substituting Eqs. (37) and (38) into Eq. (14) , the analytical
expression of function F 2 ( ζ ) is determined 

F 2 (ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
−

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 

+ 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 (39)

Finally, together with the relations of f k ( ζ ) = ∫ [ F k ( ζ )/ ζ ] d ζ ( k =
1, 2, 3), the closed-form solutions of stress and displacement
fields for a screw dislocation interacting with a circular nano-
inhomogeneity near a bimaterial interface can be obtained
[ ζ1 
∗k +1 − (−ζ2 

∗ ) k +1 ] 

[ μ2 − μ1 + M − N(k + 1)] R 1 
2 k +2 

R 2 
2 k +2 / ( ζ2 

∗∗ ) 
k +1 

] 

 M − N(k + 1)] R 1 
2 k +2 

⎫ ⎬ 

⎭ 

(37) 

1 
∗k +1 − (−ζ2 

∗ ) 
k +1 

] 

3 )[ μ2 − μ1 − M − N(k + 1)] R 1 
2 k +2 

 

2 k +2 / ( ζ2 
∗∗ ) k +1 ] 

M − N(k + 1)] R 1 
2 k +2 

} 

(38) 

from Eqs. (8) and (9) . Here, the explicit expressions of complex
potentials f 1 ( ζ ), f 2 ( ζ ) and f 3 ( ζ ) are given as follows 

f 1 (ζ ) = 

2 μ2 

μ1 + μ2 + M 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] 

− N 

μ1 + μ2 + M 

b z 
2 π i 

(
ζ0 

ζ − ζ0 
+ 

R 2 

ζ + R 2 

)

− N 

μ1 + μ2 + M 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 1 
2 k +2 

− N 

μ1 + μ2 + M 

×
∞ ∑ 

k =0 

b k (k + 1) ζ k +1 + 

2 μ2 

μ1 + μ2 + M 

∞ ∑ 

k =0 

b k ζ
k +1 (40)

f 2 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

∞ ∑ 

k =0 

a k ζ
−k −1 + 

∞ ∑ 

k =0 

b k ζ
k +1 (41)

f 3 (ζ ) = 

2 μ3 

μ2 + μ3 

b z 
2 π i 

ln ζ + 

2 μ2 

μ2 + μ3 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] 

+ 

2 μ2 

μ2 + μ3 

∞ ∑ 

k =0 

a k ζ
−k −1 (42)

In order to validate the analytical results derived in this pa-
per, the reduced results are given. When the interface stresses
vanish ( μ�= τ�= 0 ), the solutions shown in Eqs. (40) –(42) can be
reduced to 

f 1 (ζ ) = 

2 μ2 

μ1 + μ2 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

2 μ2 

μ1 + μ2 

∞ ∑ 

k =0 

b k ζ
k +1

(43)

f 2 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

∞ ∑ 

k =0 

a k ζ
−k −1 + 

∞ ∑ 

k =0 

b k ζ
k +1 (44)

f 3 (ζ ) = 

2 μ3 

μ2 + μ3 

b z 
2 π i 

ln ζ + 

2 μ2 

μ2 + μ3 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] 

+ 

2 μ2 

μ2 + μ3 

∞ ∑ 

k =0 

a k ζ
−k −1 (45)

where 

a k = 

b z 
2 π i(k + 1) 

×
{ 

R 2 
2 k +2 ( μ2 + μ3 )( μ2 − μ1 )[ ζ1 

∗k +1 − (−ζ2 
∗ ) k +1 ] 

( μ2 + μ3 )( μ1 + μ2 ) R 2 
2 k +2 − ( μ2 − μ3 )( μ2 − μ1 ) R 1 

2 k +2 

+ 

R 1 
2 k +2 ( μ2 −μ3 )( μ2 −μ1 )[ R 2 

2 k +2 / (−R 2 ) 
k +1 −R 2 

2 k +2 / ( ζ2 
∗∗ ) 

k +1 
] 

( μ2 + μ3 )( μ1 + μ2 ) R 2 
2 k +2 − ( μ2 − μ3 )( μ2 − μ1 ) R 1 

2 k +2 

⎫ ⎬ 

⎭ 

and 
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 k = − b z 
2 π i(k + 1) 

×
⎧ ⎨ 

⎩ 

( μ2 − μ3 )( μ2 − μ1 )[ ζ1 
∗k +1 − (−ζ2 

∗ ) 
k +1 

] 

( μ2 + μ3 )( μ1 + μ2 ) R 2 
2 k +2 − ( μ2 − μ3 )( μ2 − μ1 ) R 1 

2 k +2 

+ 

( μ2 − μ3 )( μ1 + μ2 )[ R 2 
2 k +2 / (−R 2 ) 

k +1 − R 2 
2 k +2 / ( ζ2 

∗∗ ) k +1 ] 

( μ2 + μ3 )( μ1 + μ2 ) R 2 
2 k +2 − ( μ2 − μ3 )( μ2 − μ1 ) R 1 

2 k +2 

} 

As expected, the solutions of complex potentials f j ( ζ ) are 
n agreement with the results by Chai et al. [33] for the case 
f coupling interaction between a screw dislocation and a cir- 
ular inclusion with a bimaterial interface. In addition, if we 
ake μ3 =0, the new solutions are similar to the case derived 

y Li [25] for the interaction between a screw dislocation and a 
ircular nano-inclusion in the half-plane model. The current 
educed solutions are presented as follows 

f 1 (ζ ) = 

2 μ2 

μ1 + μ2 + M 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] 

− N 

μ1 + μ2 + M 

b z 
2 π i 

(
ζ0 

ζ − ζ0 
+ 

R 2 

ζ + R 2 

)

− N 

μ1 + μ2 + M 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 1 
2 k +2 

− N 

μ1 + μ2 + M 

×
∞ ∑ 

k =0 

b k (k + 1) ζ k +1 + 

2 μ2 

μ1 + μ2 + M 

∞ ∑ 

k =0 

b k ζ
k +1 (46) 

f 2 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

∞ ∑ 

k =0 

a k ζ
−k −1 + 

∞ ∑ 

k =0 

b k ζ
k +1 (47) 

here 

 k = 

b z 
2 π i(k + 1) 

×
{ 

R 2 
2 k +2 [ μ2 − μ1 + M − N(k + 1)][ ζ1 

∗k +1

[ μ1 + μ2 − M + N(k + 1)] R 2 
2 k +2 − [ μ2 − μ1 + 

+ 

R 1 
2 k +2 [ μ2 − μ1 + M − N(k + 1)][ R 2 

2 k +2 / (−R 2 ) 
k +1 − R 2 

2 k +2 /

[ μ1 + μ2 − M + N(k + 1)] R 2 
2 k +2 − [ μ2 − μ1 + M − N(k + 1

nd 

 k = − b z 
2 π i(k + 1) 

×
⎧ ⎨ 

⎩ 

[ μ2 − μ1 − M − N(k + 1)][ ζ1 
∗k +1 −

[ μ1 + μ2 + M + N(k + 1)] R 2 
2 k +2 − [ μ2 − μ1 −

+ 

[ μ1 + μ2 + M + N(k + 1)][ R 2 
2 k +2 / (−R 2 ) 

k +1 − R 2 
2 k +2 / ( ζ2 

∗

[ μ1 + μ2 + M + N(k + 1)] R 2 
2 k +2 − [ μ2 − μ1 − M − N(k + 1

.2. A screw dislocation in Material 3 

etting a screw dislocation with Burgers vector b z lie at point 
 0 in Material 3, the complex function vectors can be written 

s: 

f 1 (z ) = f 10 (z ) , z ∈ S 1 (48) 

f 2 (z ) = f 20 (z ) , z ∈ S 2 (49) 

f 3 (z ) = 

b z 
2 π i 

ln (z − z 0 ) + f 30 (z ) , z ∈ S 3 (50) 

here the complex function vectors f 10 ( z ), f 20 ( z ) and f 30 ( z ) are
olomorphic in the regions where they are defined, respec- 

ively. 
By noting Eq. (1), Eqs. (48) –(50) can lead to 

f 1 (ζ ) = f 10 (ζ ) , ζ ∈ S ′ 1 (51) 
ζ2 
∗ ) k +1 ] 

(k + 1)] R 1 
2 k +2 

) 
k +1 

] 
 k +2 

⎫ ⎬ 

⎭ 

2 
∗ ) 

k +1 
] 

N(k + 1)] R 1 
2 k +2 

 ] 
 +2 

} 

f 2 (ζ ) = 

∞ ∑ 

k =0 

c k ζ
−k −1 + 

∞ ∑ 

k =0 

d k ζ
k +1 , ζ ∈ S ′ 2 (52) 

f 3 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + f 30 (ζ ) , ζ ∈ S ′ 3 (53) 

Referring to Eqs. (14) –(16) , the following complex function 

ectors can be written as 

 2 (ζ ) = ζ f ′ 2 (ζ ) = −
∞ ∑ 

k =0 

c k (k + 1) ζ−k −1 

+ 

∞ ∑ 

k =0 

d k (k + 1) ζ k +1 , R 1 < | ζ | < R 2 (54) 

 2 
∗(ζ ) = F 2 ( R 1 

2 /ζ ) = −
∞ ∑ 

k =0 

c k (k + 1) 
ζ k +1 

R 1 
2 k +2 

+ 

∞ ∑ 

k =0 

d k (k + 1) 
R 1 

2 k +2 

ζ k +1 
, 

R 1 
2 

R 2 
< | ζ | < R 1 (55) 

 2 
∗∗(ζ ) = F 2 ( R 2 

2 /ζ ) = −
∞ ∑ 

k =0 

c k (k + 1) 
ζ k +1 

R 2 
2 k +2 

+ 

∞ ∑ 

k =0 

d k (k + 1) 
R 2 

2 k +2 

ζ k +1 
, R 2 < | ζ | < 

R 2 
2 

R 1 
(56) 

 3 
∗(ζ ) = F 3 ( R 2 

2 /ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)
+ F 30 

∗(ζ ) , | ζ | < R 2 

(57) 
Using the similar method in Section 2.1 , the relations of the 

omplex potentials F 1 ( ζ ) and F 3 ( ζ ) can be obtained 

 1 (ζ ) = 

2 μ2 − N(k + 1) 
μ1 + μ2 + M 

∞ ∑ 

k =0 

d k (k + 1) ζ k +1 

− N(k + 1) 
μ1 + μ2 + M 

∞ ∑ 

k =0 

c k (k + 1) 
ζ k +1 

R 1 
2 k +2 

(58) 

 3 (ζ ) = 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)

+ 

μ2 − μ3 

μ2 + μ3 

b z 
2 π i 

(
ζ

ζ − ζ2 
∗∗ − ζ

ζ + R 2 

)

− 2 μ2 

μ2 + μ3 

∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 (59) 

The complex potential f 2 ( ζ ) is determined by the following 
quation 

−
∞ ∑ 

k =0 

a k (k + 1) ζ−k −1 + 

μ2 − μ3 

μ2 + μ3 

∞ ∑ 

k =0 

a k (k + 1) 
ζ k +1 

R 2 
2 k +2 

+ 

2 μ3 

μ2 + μ3 

b z 
2 π i 

(
ζ

ζ − ζ0 
− ζ

ζ + R 2 

)
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Table 1 – Material constants for typical metals [44,45] . 

Al Cu Ni α-Fe W 

μ (GPa) 28 33 95 85 160 
b z (nm) 0.286 0.256 0.249 0.248 0.274 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 

∞ ∑ 

k =0 

b k (k + 1) ζ k +1 − μ2 − μ1 + M − N(k + 1) 
μ1 + μ2 − M 

∞ ∑ 

k =0 

b k (k + 1) 
R 1 

2 k +2 

ζ k +1 

+ 

N(k + 1) 
μ1 + μ2 − M 

∞ ∑ 

k =0 

a k (k + 1) 
1 

ζ k +1 
(60)

Comparing the coefficients of the same power terms in
Eq. (60) yields 

c k = 

b z 
2 π i(k + 1) 

× 2 μ3 [ μ2 − μ1 + M − N(k + 1)][ R 2 
2 k +2 / ζ0 

( μ2 + μ3 )[ μ1 + μ2 − M + N(k + 1)] R 2 
2 k +2 − ( μ2 

d k = 

b z 
2 π i(k + 1) 

× −2 μ3 [ μ1 + μ2 + M + N(k + 1)][ R 2 
2 k +

( μ2 + μ3 )[ μ1 + μ2 + M + N(k + 1)] R 2 
2 k +2 − ( μ2

Now the complex function vectors f 1 ( ζ ), f 2 ( ζ ) and f 3 ( ζ ) can
be obtained using Eqs. (51) –(62) . 

f 1 (ζ ) = 

2 μ2 − N(k + 1) 
μ1 + μ2 + M 

∞ ∑ 

k =0 

d k ζ
k +1 − N(k + 1) 

μ1 + μ2 + M 

∞ ∑ 

k =0 

c k 
ζ k +1 

R 1 
2 k +2 

(63)

f 2 (ζ ) = 

∞ ∑ 

k =0 

c k ζ
−k −1 + 

∞ ∑ 

k =0 

d k ζ
k +1 (64)

f 3 (ζ ) = 

b z 
2 π i 

[ ln (ζ − ζ0 ) − ln (ζ + R 2 )] + 

μ2 − μ3 

μ2 + μ3 

b z 
2 π i 

× [ ln (ζ − ζ2 
∗∗ ) − ln (ζ + R 2 )] + 

2 μ2 

μ2 + μ3 

∞ ∑ 

k =0 

c k ζ
−k −1 (65)

It is worth pointing out that from Eqs. (63) –(65) , when μ1 =0,
μ2 =μ3 , and the distance h between the center of inclusion
and the bimaterial interface approaches infinity, the solutions
of complex potentials are in line with the results of Fang and
Liu [20] for the case of size-dependent elastic interaction be-
tween a screw dislocation and a circular nano-hole with sur-
face stress, and the reduced results are written as follows 

f (ζ ) = 

b z 
2 π i 

ln (ζ − ζ0 ) + 

∞ ∑ 

k =0 

c k ζ
−k −1 (66)

where μ2 =μ3 =μ, f ( ζ )= f 2 ( ζ )= f 3 ( ζ ) and c k = 

b z 
2 π i(k +1) 

μ−( μ�−τ� )(k +1) 
μ+( μ�−τ� )(k +1) ( 

R 2 

ζ0 
) k +1 

3. Image forces on screw dislocations 

The image forces exerted on dislocations will be evaluated in
this section, which is of primary importance in analyzing the
physical and mechanical behaviors in mobility and the so-
called trapping mechanism of dislocations. Associated with
the Peach–Koehler formula [30,41] , the image force acting on
a screw dislocation at point z 0 can be expressed as 

f x − i f y = i b z [ τ ∗
xz 2 ( z 0 ) − i τ ∗

yz 2 ( z 0 )] (67)

where f x and f y are the force components in the x -axis and y -
axis directions, respectively, and τ ∗

xz 2 and τ ∗
yz 2 denote the per-

turbation stress components at the dislocation point, which
can be derived by subtracting those attributions to the disloca-
tion in the corresponding infinite homogeneous medium from
the stresses obtained currently. 
R 2 
2 k +2 / (−R 2 ) 

k +1 ] R 1 
2 k +2 

 

)[ μ2 − μ1 + M − N(k + 1)] R 1 
2 k +2 

(61) 

 +1 − R 2 
2 k +2 / (−R 2 ) 

k +1 ] 

 

)[ μ2 − μ1 − M − N(k + 1)] R 1 
2 k +2 

(62) 

By noting Eq. (9) , we have 

τ ∗
xz ( z 0 ) − i τ ∗

yz ( z 0 ) = μ
f ′ (ζ ) 
ω 

′ (ζ ) 

∣∣∣∣
ζ= ζ0 

(68)

Referring to the work of Lee [42] , the explicit expression of
the image force acting on the screw dislocation for the present
problem can be written as 

f x −i f y = 

i b z μ2 (ζ + R 2 ) 
2 

R 2 
2 − R 1 

2 

⎡ 

⎣ −
∞ ∑ 

k =0 

a k (k + 1) ζ−k −2 + 

∞ ∑ 

k =0 

b k (k + 1) ζ k 

⎤
⎦

(69)

for the dislocation in Material 2, and 

f x − i f y = 

i b z μ3 (ζ + R 2 ) 
2 

R 2 
2 − R 1 

2 

[ 

μ2 − μ3 

μ2 + μ3 

b z 
2 π i 

(
1 

ζ − ζ2 
∗∗ − 1 

ζ + R 2 

)

− 2 μ2 

μ2 + μ3 

∞ ∑ 

k =0 

c k (k + 1) ζ−k −2 

] 

(70)

for the dislocation in Material 3. 

4. Numerical examples and discussion 

Having the expressions of the image forces given in Eqs.
(69) and (70) , the influence of various parameters (the mate-
rial elastic mismatch, the interface stress, the distance be-
tween the center of inclusion and the bimaterial interface,
and the location of the screw dislocation) upon image force
acting on the screw dislocation can be well calculated. In sub-
sequent numerical calculation, the relative shear moduli are
defined as α=μ1 / μ2 and β =μ3 / μ2 , and the intrinsic length
γ = ( μ� − τ� ) / μ2 [23,43] . Former studies have shown that μ�

and τ� are on the order of 1 N/m and their values can be posi-
tive or negative depending upon the crystallographic orienta-
tion [8] . According to the results of Miller and Shenoy [8] , the
absolute value of the intrinsic length γ = ( μ� −τ� ) / μ2 is nearly
0.1 nm. In addition, the magnitude of Burgers vector b z is not
constant but depends on the specific materials. The material
constants of Material 2 are taken from metal Cu ( μ2 =33 GPa,
b z = 0.256 nm) listed in Table 1 . 

In this section, we will just focus on the case that a screw
dislocation is located in Material 2 in detail, and the case in
Material 3 is omitted to save space. Supposing that the screw
dislocation lies at point x 0 on the x -axis ( R 1 < x 0 < R 2 ), in
this case, f y = 0 and the component of normalized image force
along the x -axis direction is defined as f x 0 =2 π f x /( μ2 b z 2 ). In
Figs. 2 –5 , we illustrate the variation of the values of f x 0 with
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Fig. 2 – Normalized force f x 0 versus z 0 for α = 1.2, β = 0.8, R 1 = 10 nm and h = 10 nm. 

Fig. 3 – Normalized force f x 0 versus z 0 for α = 1.2, β = 1.2, R 1 = 10 nm and h = 10 nm. 

Fig. 4 – Normalized force f x 0 versus z 0 for α = 0.8, β = 0.8, R 1 = 10 nm and h = 10 nm. 
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Fig. 5 – Normalized force f x 0 versus z 0 for α = 0.8, β = 1.2, R 1 = 10 nm and h = 10 nm. 

Fig. 6 – Normalized force f x 0 versus R 1 with β = 0.8, z 0 = 41 nm, h = 50 nm for different α, γ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respect to parameter z 0 for the selected material constants
and the intrinsic length γ ( R 1 = 10 nm, h = 10 nm). It is shown
from Figs. 2–5 that, if the interface stresses are positive, with
the increase of γ , the screw dislocation will be repelled more
strongly by the inclusion (Material 1), and there may be zero
( β = 0.8), or a stable equilibrium position point ( β = 1.2) in Ma-
terial 2 when the matrix (Material 2) is softer than the inclu-
sion; while if the interface stresses are negative, the screw dis-
location will be first attracted then repelled by the inclusion,
and there may be a non-stable ( β = 0.8), or a stable equilibrium
position point ( β = 1.2) in Material 2. At the same time, if the
interface stresses are negative, the screw dislocation will be
attracted toward the inclusion, and there may be zero ( β = 1.2),
or a non-stable equilibrium position ( β = 0.8) when the ma-
trix is stiffer than the inclusion; while the positive interface
stresses are likely to give rise to a non-stable ( β = 1.2), or a
stable equilibrium position point ( β = 0.8) in Material 2. The
same as those shown by Fang and his groups [18,29,30,37] , the
mechanical behavior of interface effect revealed in this study
shows that the dislocation can be attracted by the negative in-
terface stresses and repelled by the positive interface stresses,
which differs from the classical cases under the same condi-
tions that the screw dislocation can be attracted by the stiffer
matrix or repelled by the softer matrix when the dislocation
approaches the nano-inclusion. Comparing with the solution
[25] for a screw dislocation and a nano-inclusion in the half-
plane with the classical solution [33] ( γ = 0), it is observed that
more equilibrium positions of the dislocation may be avail-
able when the dislocation is near the nanoscale inclusion and
is close to the bimaterial interface, respectively. On the other
hand, the image force exerted on the dislocation may be more
complicated than in the half-plane case which is dependent
on the attraction of half-plane to the screw dislocation. 

The variation of normalized image force f x 0 versus param-
eter R 1 is depicted in Fig. 6 with the selected material con-
stants of h = 50 nm, β = 0.8, z 0 = 41 nm, and different relative
shear moduli and intrinsic lengths. Fig. 6 shows that, with the
increase of R 1 , the screw dislocation will first be slightly af-
fected by the relative shear modulus and then be increasingly
influenced by the interface stress. 
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Fig. 7 – Normalized force f x 0 versus h with α = 1.2, γ = 0.1 nm, z 0 = 15 nm, R 1 = 10 nm for different β. 

Fig. 8 – Normalized force f x 0 versus y with x = 13 nm, β = 1.2, R 1 = 10 nm, h = 10 nm for different α, γ. 
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The variation of normalized image force f x 0 versus param- 
ter h is depicted in Fig. 7 with the selected material con- 
tants of γ = 0.1 nm, R 1 = 10 nm, z 0 = 43 nm and different rela-
ive shear moduli. Fig. 7 indicates that, with the increase of 
 , the normalized image force acting on the screw disloca- 
ion will decrease slowly and reach the critical value, which 

s closely related to the relative shear modulus β. 
The variation of normalized image forces f x 0 and 

 y 0 ( f y 0 =2 π f y /( μ2 b z 2 )) versus parameter z 0 is depicted in
igs. 8 and 9 with the selected material constants of β = 1.2,
 1 = 10 nm, h = 10 nm and different relative shear moduli 
nd intrinsic lengths when the dislocation is located at 
he straight line x = 13 nm. In Fig. 8 , it can be seen that the
ormalized image force f x 0 acting on the screw dislocation is 
xisymmetric about the x -axis, and the screw dislocation will 
e repelled by Material 3 when the dislocation is located away 
rom the x -axis. Especially, the repellent force or attractive 
orce exerted on the dislocation reaches maximum when the 
islocation lies on the x -axis. Fig. 9 demonstrates that, the nor- 
alized image force f y 0 acting on the screw dislocation is the 
enter of symmetry at point (0, 0), and the negative interface 
tress shows a stronger impact on the image force f y 0 than the 
ositive interface stress. Comparing with the solution to the 
roblem with a screw dislocation and a nano-inclusion in the 
alf-plane, we can observe that the equilibrium positions of 

he dislocation only exist on the x -axis, when the dislocation 

s close to the inclusion with interface effect. 

. Conclusions 

 study on the elastic interaction between a screw dislocation 

nd a circular nano-inclusion near a bimaterial interface is 
arried out. The stress boundary condition at the interface 
etween the nano-inhomogeneity and the matrix is modified 

y incorporating the surface/interface stress. The solution 

o the problem is derived analytically by combining the 
omplex variable method of Muskhelishvili, the conformal 
apping function and Laurent series expansion techniques.

he image force and the equilibrium position of a screw 
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Fig. 9 – Normalized force f y 0 versus y with x = 13 nm, β = 1.2, R 1 = 10 nm, h = 10 nm for different α, γ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dislocation near a bimaterial interface are presented by
numerical calculations and discussed in detail. It is found
that the dislocation can be attracted by the negative interface
tresses, and repelled by the positive interface stresses, which
is due to the local hardening/softening on interfaces; while
the classical solutions are that the screw dislocation can be
attracted by the softer matrix or rejected by the harder matrix
when the dislocation is near the inclusion. In fact, the stability
of the dislocations is closely linked to plastic deformations of
nanocrystalline materials. Therefore, ultra-fine second phase
particles involving nano-inhomogeneity are often introduced
for improving the strengthening and hardening properties of
nanomaterials such as alloys and composites. On the other
hand, when the inclusion and Material 3 are both stiffer than
the matrix ( μ1 > μ2 and μ3 > μ2 ), a new stable equilibrium
position for the screw dislocation in the matrix appears near
the bimaterial interface. When the inclusion and Material 3
are both softer than the matrix ( μ1 < μ2 and μ3 < μ2 ), a new
unstable equilibrium position can exist close to the bimaterial
interface. Furthermore, in certain situations, there is always
a new stable or unstable equilibrium position of dislocation
near the nanoscale inclusion depending on different material
combinations. 
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