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a  b  s  t  r a  c t

Infectious  diseases  are  a health problem  today  and  have  high  mortality  rates  with  a  wide  diversity  of

potentially  pathogenic  microorganisms.  Research that  is based  either on the  search for  new  drugs  from

plants  or  on the  improvement  of phytotherapeutics  is prominent  and continues  to play an  important

role  nowadays.  From this perspective,  use  of in silico studies  to carry  out investigations of  new molecules

potentially  active for methicillin-resistant  Staphylococcus  aureus and Escherichia  coli  using  an  in-house

database  with  421 different secondary metabolites  selected  from  the literature  from  Solanum  genus

was  performed.  We also realized  an  in vitro  study  with  strains  of  S. aureus and  E. coli  and  compared

the  results.  Two databases  from  ChEMBL  were  selected,  the  first  one  with  activity against  methicillin-

resistant  S.  aureus and  another against  E. coli.  The compounds  were classified  according  to the  pIC50

values  to generate  and validate the  model  using  a  “Random  Forest”.  The “Random  Forest”  prediction

model  for  methicillin-resistant  S.  aureus  obtained  an  accuracy  of 81%,  area  under  the  Receiver  Operating

Characteristic  curve  of 0.885,  selecting  eight molecules  with  an  active potential  above  60%. The prediction

model  for  E.  coli obtained  an accuracy  rate  of 88%,  area under  the  Receiver  Operating Characteristic  curve

of  0.932,  selecting  four molecules  with potential  probability  above  84%.  Rutin proved to be potentially

active  in the  in  silico  study for  S. aureus and  E. coli.  Microbiological  tests  have  shown  that  rutin has  activity

only  for  E. coli.  An  interaction  study with  strains  of S. aureus  ATCC  25923, a standard strain sensitive  to  all

antibiotics,  and  SAM-01,  a multidrug-resistant  strain,  was  designed.  There  was  interaction  only  between

rutin  and  oxacillin, one  of the  three antibiotics  studied  in  the  interaction,  for  the  strain SAM-01,  reducing

the  resistance  of this strain.

©  2018 Sociedade  Brasileira  de  Farmacognosia.  Published by  Elsevier Editora Ltda.  This  is  an open

access article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Research that is based on the search for new medicines from

plants or in the improvement of already existing phytotherapy has

been prominent and continues to  play an important role these days.

In accordance with research realized by  Newman and Cragg (2016)

between the years 1981 and 2014, the area of natural products still

produces or is involved in roughly 50.6% of all new drugs approved

by the FDA and similar organizations.

Solanum is the biggest genus of the Solanaceae family, with 1500

species and roughly 5000 epithets described (Melo et al., 2011;

Vorontsova and Knapp, 2012). The genus has a  wide distribution

in the world; Brazil is represented by  260 species, of which 127 are

endemic (Agra et al., 2009).

∗ Corresponding author.

E-mail: mtscotti@ccae.ufpb.br (M.T. Scotti).

The Solanum genus presents great wealth and diversity of

properties; between them, they show the ability to biosynthe-

size steroids and free or glycosylated alkaloids, flavonoids, that

are of interest therapeutically, which present a big  variety of

pharmacological activities, like cytotoxic activity, anticancer, anti-

inflammatory, antiulcerogenic and antimicrobial (Pinto et al., 2011;

Ordaz et al., 2011).

Infectious diseases are a  world health problem today and

have high mortality rates. There is  a  wide diversity of poten-

tially pathogenic microorganisms, including Staphylococcus aureus,

Escherichia coli, Pseudomonas aeruginosa, and their ability to

become resistant to  the antibiotics available on the market reduces

the chances of infection prevention and control (Ventola, 2015; Das

et al., 2016).

Currently, there is  a  series of tools for studying the effects

of diverse substances on an organism. The techniques of  vir-

tual screening represent a  major advance in drug planning today,

through the use of in silico methods, large banks of  molecules are

https://doi.org/10.1016/j.bjp.2018.08.003
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automatically analyzed. Beyond identification of new potentially

active molecules, the virtual screening also aims at the removal

of molecules identified as toxic or having unfavorable pharma-

cokinetic and pharmacodynamic properties (Song et  al., 2009;

Prado-Prado et al., 2007, 2009; Speck-Planche and Cordeiro, 2014;

Kleandrova et al., 2016).

In this study, was realized a  bibliographic survey of secondary

metabolites isolated from the Solanum genus, creating a  bank of

molecules. From the molecule bank created, two prediction mod-

els of  molecules potentially active against pathogenic bacterium

methicillin-resistant S. aureus (MRSA) and E. coli were generated.

In addition, a  study in vitro with strains of these bacterial species

was realized and the results compared.

Experimental

Dataset

From the ChEMBL database, we selected two sets of chemi-

cal structures for construction of two predictive models. The first

set had 1032  diverse chemical structures that had been studied

(in vitro) and had inhibited strains of  S. aureus. The compounds

were classified using values of −log IC50 (mol/l) =  pIC50,  which led

us to assign 470 actives (pIC50 ≥ 5) and 562 inactives (pIC50 <  5).

In this case, IC50 represented the concentration required for 50%

inhibition of strains of S. aureus.

The second set of chemical structures was composed of 1325

molecules that had inhibited strains of E. coli. The compounds were

also classified using the value of pIC50,  which led  us to assign 777

actives (pIC50 ≥ 4.6) and 548 inactives (pIC50 <  4.6). The classifica-

tion of pIC50 was different from the set of S. aureus because it was

attempted to divide the amounts of active and inactive molecules

close to half.

Another  dataset of molecules isolated from the Solanum genus

was built from a  bibliographic survey in  the research base Web

of Science, covering a total of 550 published papers between the

years 2016 and 1991. In this bank, 421 chemical structures of dif-

ferent classes of secondary metabolites (highlighting steroids and

steroidal alkaloids) of many species of the Solanum genus were

cataloged (Scotti et al., 2018).

For all structures, Smiles codes were used as input data in  a

Marvin 14.9.1.0, 2014, ChemAxon (http://www.chemaxon.com).

We  used Standardizer software [JChem 14.9.1.0, 2014; ChemAxon

(http://www.chemaxon.com)] to  canonize structures, add hydro-

gens, perform aromatic form conversions, clean the molecular

graph in  three dimensions, and save compounds in sdf format.

Three-dimensional (3-D) structures were used as input data

in the software Dragon 7.0 (Kode, 2016) to  generate descriptors,

where it is  possible to predict the biological and physicochemical

properties of the molecules. This calculus was realized for both sets

of chemical structures with knowledge of the activity for MRSA and

E. coli.

Prediction model

The  Knime 3.4.0 software (Knime 3.4.0 the Konstanz Infor-

mation Miner Copyright, 2003–2014, www.knime.org)  was  used

to perform all the following analyses. The descriptors and class

variables were imported from the software Dragon 7.0, and for

each one the data were divided using the “Partitioning” node with

the “stratified sample” option to create a training set and a  test

set, encompassing 80% and 20% of the compounds, respectively.

Although the compounds were selected randomly, the same pro-

portion of active and inactive samples was maintained in both sets.

However, for the E. coli model, the data were divided into 70% for

the training set and 30% for the test set; due to the greater number of

molecules in the E. coli  bank it was  possible to  put more molecules

into the training set.

For  internal validation, we employed cross-validation using ten

randomly selected, stratified groups, and the distributions accord-

ing to activity class variables were found to  be maintained in all

validation groups and in  the training set. Descriptors were selected,

and a  model was  generated using the training set and the Random

Forest algorithm (RF) (Salzberg, 1994), using the WEKA nodes (Hall

et al.,  2009). The parameters selected for RF included the following

settings: number of trees to  build =  100,  seed for random number

generator =  1,  for the S. aureus model, and 50 the number of trees

to build and two seeds for the E. coli model.

The internal and external performances of the selected mod-

els were analyzed for sensitivity (true positive rate, i.e., active

rate), specificity (true negative rate, i.e., inactive rate), and accuracy

(overall predictability). In addition, the sensitivity and specificity

of the Receiver Operating Characteristic (ROC) curve were found to

describe true performance with more clarity than accuracy.

Biological activity

For  the antimicrobial activity screening, one clinical strain of

S. aureus was used, SAM-01 (MRSA), belonging to the Laborato-

rio de Microbiologia da Universidade Estadual da Paraíba, and two

reference strains, S. aureus ATCC 25923 and E. coli ATCC 25922.

For the inoculum preparation, isolated colonies of new cultures

(24 h)  were selected, and with the aid of an inoculation loop, they

were transferred to a tube containing 5 ml  of  0.85% NaCl. They

were homogenized, comparing their turbidity with a 0.5 tube of

the McFarland scale (1.5 × 108 UFC/ml).

Antibiograms were carried out by disk diffusion in a  solid

medium according to  CLSI, 2010, for the determination of  the sen-

sitivity profile of strain SAM-01.

For determination of the antimicrobial activity and the mini-

mum inhibitory concentration (MIC), sterile microplates were used

containing 96 wells with flat bottoms, where 100 �l of Brain Heart

Infusion (BHI) broth was  poured into each well. Rutin was  used in a

concentration of 6674 �M and 100 �l transferred to the first well.

Dilutions were then performed to  obtain concentrations between

10 and 6.55 �M.  BHI broth with inoculum was  used as  the positive

control and just the BHI broth was used as  the negative control. In

addition, the solvent control used for the dissolution of the prod-

ucts, DMSO, was  inserted.

The  experiment was realized with rutin diluted in distilled water

and 5%  v/v aqueous solution of DMSO, which in the first well

became 2.5%. 10 �l  of the inoculum in  that concentration was also

dispensed 1.5 × 108 CFU/ml. The plates were incubated at 35–37 ◦C

for 24 h, and the experiments were performed in triplicate.

Bacterial viability was detected by adding 20 �l of resazurin

(0.01%) in  aqueous solution. The plates were reincubated at 37 ◦C

for 2 h, and in those wells where bacterial growth occurred the

resazurin changed to pink. MIC  was defined as the lowest con-

centration of antibacterial agents that inhibited visible growth, as

indicated by resazurin staining.

The analysis of rutin interference over the effectiveness of con-

ventional antibiotics, oxacillin, penicillin, and amoxicillin + Ac  was

performed. Clavulanic, for the strains of S. aureus, was  performed

by disk diffusion. For the interaction test, 50 �l  of rutin at a  concen-

tration of  6674 �M, i.e., 2048 �g/ml, was added to each antibiotic

used as well as to sterile disks to  observe comparatively whether

the addition of the product caused some change in  the size of  the

inhibition halos. The disks of each antibiotic were also inserted in

the plate for visualization of the sensitivity profile of the strains and

the occurrence of synergism or antagonism with rutin use. Sterile
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Fig. 1. Classes and subclasses of  metabolites isolated from the Solanum genus.

disks were further filled with the diluent used to dilute rutin, 2.5%

DMSO and sterile distilled water.

It was regarded as an interactive effect when there was  a  change

in diameter of  the inhibition zones (halo) of microbial growth

after this process, a  synergistic interactive effect if the antibacterial

showed an increase of ≥2 mm when compared with the inhibition

zones formed by the tested alone. If it showed a  smaller diame-

ter than the one formed by  isolated activity, an antagonistic effect

was considered. These tests were performed in  triplicate and the

results were obtained by  the mean of the inhibition zones formed

(Oliveira, 2006).

Results  and discussion

The  secondary metabolites’ dataset was composed of 734

molecules, with 421 different chemical structures, from 110 species

of the Solanum genus. These 421 structures were classified into 54

classes of secondary metabolites, highlighting: steroidal glycoalka-

loid (93), steroidal alkaloid (54), saponin (49), steroid (40), flavones

(21), among others represented in Fig. 1. This dataset is available in

Sistemat X (Scotti et al., 2018).

In accord with these results, it is  possible to observe that the

main classes are the steroidal glycoalkaloids, alkaloids, saponin,

steroids, and flavones, which are considered chemotaxonomic

markers of this genus (Pereira et al., 2016).

The Dragon 7.0  (Kode, 2016) software generated 1232 descrip-

tors for 1033 molecules of known activity against MRSA. These

descriptors were used as input data to  the Knime software for

generation of the predictive model.

The Dragon 7.0  (Kode, 2016) calculation gave roughly 5270

molecular descriptors covering most of the theoretical approaches.

These descriptors are organized into thirty logical blocks. The

descriptors’ list  includes the simplest types of atoms, functional

groups and fragment counting, topological and geometric descrip-

tors, three-dimensional descriptors, but also several estimates of

properties such as log P and Lipinski (Kode, 2016).

The  molecular descriptors with the information of  qualita-

tive biological activity were used for model generation with the

RF  machine learning. The S. aureus model with molecules with

pIC50 ≥ 5 were considered as active, with a  total of 470 molecules,

and the molecules with pIC50 <  5 were considered as inactive,

totaling 562 molecules. For the E. coli model, the molecules with

pIC50 ≥ 4.6 were considered as active, with a  total of 777 molecules,

and the molecules with pIC50 < 4.6 were considered as inactive,

totaling 548 molecules.

Analyzing  the S.  aureus model, you can see that  the

cross-validation and the test demonstrated similar statistical per-

formance, with hit rates higher than 74%, while the E. coli model

had hit rates higher than 83%. The training had an  almost perfect

performance, on both models, with hit rates of 99%, as can be  seen

in Tables 1 and 2, which summarize the statistical rates of  the RF

model.

For the training and test, the S.  aureus RF model had similar rates

for the active and inactive molecules (99% and 81%, respectively),

but for the cross-validation, there was  a  higher hit rate for the inac-

tive compounds, 78%, while the hit rate for active compounds was

74%. In  addition, for the cross-validation and test, the E. coli RF

model had similar rates for the active molecules greater than 88%,

but for the inactive, they were slightly smaller, 74% cross-validation

and 80% in  the test.

With  these results, it was  possible to  calculate the Matthews cor-

relation coefficient (MCC) for general evaluation of the two  models.

The MCC  correlates the observed and predicted binary classifica-

tions, resulting in  a  value between −1  and +1, where +1 is a  perfect

prediction and −1 indicates a  complete disagreement between pre-

diction and observation. For the test, the value obtained for the S.

aureus model was  0.68 and 0.62 in the cross-validation, and for the

E. coli model was  0.71 in the test set and 0.70 in  the cross-validation,

revealing the good prediction of the two models.

The ROC graph that analyzes the model performance was  gener-

ated for the test set for the two models and the area under the curve

obtained for the S.  aureus model was 0.885, Fig. 2. The area under

the curve obtained for the E. coli model was 0.9329, Fig. 3. Knowing

that a perfect model has an area under the curve equal to 1,  it is

possible to state that the models above are capable of performing

a high classification rate for this RF method.

The two models were used to triage the secondary metabo-

lites’ bank of  the Solanum genus for investigating possible bioactive

molecules against MRSA and E. coli. Molecules with probability

greater than 50%, pIC50 ≥ 5 for the S.  aureus model and pIC50 ≥ 4.5

for the E. coli model, were considered active, totaling 30 molecules

selected by  the S.  aureus model and 221 molecules selected by the

E. coli model.

On  the S. aureus model, molecules with probability greater than

60% were selected for this study, to increase the restriction, total-

ing eight potentially active molecules against MRSA. Table 3 shows

the molecules selected and their respective classes of  secondary

metabolites and species from which they were isolated.

Of the 221 active molecules on  the E. coli model, 26 are

likely to be active between 80 and 88%, 77 with potential

activity between 70 and 79% probability, 64 molecule with

a probability of activity between 60 and 69%, and finally,

54 molecules between 50 and 59% of active potential. The

molecules with the highest active potential, of 84–88% probability,

Table 1
Summary of cross-validation and test for the chemical compounds of the activity known as methicillin-resistant Staphylococcus aureus (MRSA) using the Random Forest

model.

Cross validation Test

Sample Predict %Hit  Sample Predict %Hit rate

Active 376 280 74  94 77 81

Inactive 410 322 78  102 82 80

General  786 602 76  196 159 81
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Table 2
Summary of cross-validation and test for chemical compounds of known activity for multidrug-resistant Escherichia coli using the Random Forest model.

Cross validation Test

Sample Predict %Hit Sample Predict %Hit rate

Active 544 486 89  233 206 88

Inactive 383 285 74  165 127 80

General 927 771 83  398 398 83
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Fig. 2. ROC plot with the  area under a  curve for the MRSA model test set obtained with Random Forest.
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Table 3
Molecules selected with higher active potential, on the Staphylococcus aureus model,

and their respective classes of secondary metabolites and species from which they

were isolated.

Chemical structures Class Species

Melongenamide D Lignanamide Solanum melongena

Grossamide Lignanamide Solanum melongena

N-cis-Grossamide Lignanamide Solanum tuberosum

N-trans-Grossamide Lignanamide Solanum tuberosum

Melongenamide B Lignanamide Solanum melongena

Tiliroside Flavone Solanum crinitum

Melongenamide A Lignanamide Solanum melongena

Cannamisin A Lignanamide Solanum melongena

Rutin  Flavone Solanum lycopersicum

Table 4
Molecules selected with higher active potential, on the Escherichia coli model, and

their respective classes of secondary metabolites and species from which they were

isolated.

Chemical structures Class Species

Abutiloside J  Glycosteroid Solanum abutiloside

Abutiloside A Glycosteroid Solanum abutiloside

Solasodoside E Glycosteroid Solanum sodomaeum L.

Abutiloside R  Glycosteroid Solanum abutiloside

Rutin Flavone Solanum lycopersicum

are available in Table 4,  as well as  the class of secondary

metabolites to which they belong and the species from which

these molecules have been isolated and reported in  the litera-

ture.

The rutin molecule is also present in Tables 3 and 4; it has 53%

and 56% probability of being potentially active on the S. aureus and

E. coli models, respectively, and it was chosen for the in vitro studies

because of its availability.

Rutin  diluted in sterile distilled water or in  2.5% DMSO showed

no activity against the two strains of S.  aureus, ATCC 25923 and

SAM-01. However, for the E. coli standard strain, ATCC 25922, rutin

exhibited activity when diluted in  2.5% DMSO with MIC  value of

455 �M (256 �g/ml). These results can be seen in Fig. 4.

Souza (2009) and Oliveira (2014) found similar results when

evaluating rutin’s antimicrobial effect (Sigma-Aldrich) against

Salmonella enterica, E. coli, S.  aureus, and P. aeruginosa. In

these studies, different concentrations between 15.625 �g/ml and

10000 �g/ml and different ways of solubilizing rutin, e.g.,  in

methanol, distilled water, 3% DMSO, were used.

Those results differ from that of  this research regarding rutin

activity for E. coli. These differences in  results can be attributed to

the way it was  diluted, as  well as the product brand (rutin).

Rutin  is  a  glycosidic flavonol and has great therapeutic impor-

tance for improving the resistance and permeability of capillary

vessels, with antioxidant activities, anti-inflammatory, anticarcino-

genic properties, among others (Brecho et al.,  2009). According to

Martini et al. (2009), rutin has an activity for some Gram-positive

and Gram-negative bacteria.

Rutin  showed activity against E. coli, corroborating with the

result obtained in  the predictive model of E. coli where rutin had

56% probability of active potential. However, in the predictive

model of S. aureus, rutin had an active potential of 53%, which dis-

agrees with the in vitro results because rutin showed no activity for

any of the S.  aureus, ATCC 25923 and SAM-01 strains.

A fact to  be observed is that for the generation of the models, the

IC50 was considered, and in  the in vitro tests, MIC was considered.

A  study was  also carried out of the interaction between rutin and

three of the antibiotics that the MRSA strain, SAM-01, is resistant

to, namely, oxacillin (which is  equivalent to  methicillin), amoxi-

cillin + clavulanic acid, and penicillin, to  observe if rutin has the

capacity to  interact with some of these antimicrobials and alter the

final response in  the bacterium.

Only rutin diluted in sterile distilled water presented an interac-

tive effect for one the MRSA strains, SAM-01. This strain is  resistant

to oxacillin, there is no inhibition halo formation; when evaluating

the effect of  rutin on it, a 14 mm  inhibition halo was formed (Fig. 5).

The presence of this halo, according to  the sensitivity values in the

literature, is not  sufficient to make the strain sensitive to  the action

of this interaction, but it was  enough to decrease the resistance of

this strain to oxacillin.

Conclusion

Through  the in silico tools used in this work, it was possi-

ble to generate models to trace virtually the database of the

Solanum genus. The S. aureus model selected thirty molecules with

potential effect against MRSA, where eight molecules have a prob-

ability greater than 60%. With the E. coli model, it was possible to

1 2 3 4 5 6 7 8 9 10 + -

1 2 3 4 5 6 7 8 9 10 + -

1 2 3 4 5 6 7 8 9 10 + -

Rutin diluted in
sterile distilled
water

Rutin diluted in
sterile distilled
water

Rutin diluted in
DMSO 2.5%

Rutin diluted in
DMSO 2.5%

DMSO 2,5%
control

DMSO 2,5%
control

Control sterility
of rutin

Control sterility
of rutin

S.aureus ATCC 25923

P. aeruginosa ATCC
27853 - rutin DMSO

E. coli  ATCC 25922 -
rutin DMSO 2,5%

DMSO 2,5% control
in s. aureus

- Rutin DMSO 2,5%

Staphilococcus aureus  − SAM-01 Staphilococcus aureus  − ATCC 25923

Control sterility of
rutin

DMSO 2,5% control
in p. aeruginosa

DMSO 2,5% control
in E. coli

Legends: 1- [3,337 μM], 2- [1,678  μM],
3- [830 μM], 4- [410 μM], 5- [201 μM], 
6- [105 μM], 7- [52.14 μM], 8- [26.2  μM],
9- [13.1 μM], 10- [6.55 μM],  (+): positive
control of

Fig. 4. Analysis of  the  antimicrobial activity of rutin solution (diluted in 2.5% DMSO and another solution diluted in sterile distilled water) for S. aureus strain ATCC 25923

and SAM-01 and E. coli ATCC 25922.
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Fig. 5. Interactive effect of rutin solution, diluted in sterile distilled water, with

the  antibiotics oxacillin, amoxicillin + ac.  clavulanic acid, and penicillin, against the

strain SAM-01 by means of the disk diffusion technique. First  line – sterile disk

imbibed with  rutin solution; from left to right we have: second line  –  oxacillin disk

(OXI), OXI disk soaked with rutin solution, OXI disk soaked with sterile distilled

water; third line – penicillin disk (PEN), PEN disk imbibed with  rutin solution, PEN

disk soaked with  sterile distilled water; fourth line – amoxicillin +  ac. clavulanic acid

(AMC), AMC  disk soaked with rutin solution, AMC  disk soaked in sterile distilled

water.

identify 221 molecules potentially active for this bacterium from

the database of the Solanum genus. Among these molecules, 26

molecules had an active potential between 80 and 88% probabil-

ity. The in vitro tests performed revealed that rutin had no activity

for S.  aureus strains, being active just for the E. coli strain. Rutin was

able to interact with the oxacillin antibiotic in the SAM-01 (MRSA)

strain, being able to  reduce the resistance of this bacterium to this

antibiotic.
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