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a  b  s  t  r a  c t

Natural  marine  products  can  help increase the  quality of life in patients with  neurological  diseases. A
large  number  of marine  products  act  against  Alzheimer’s  disease through  varying pathways.  Accord-
ing  to structure- and ligand-based  analyses,  caulerpin,  an  alkaloid primarily  isolated  from  the  genus
Caulerpa,  possesses  activity against  monoamine oxidase  B.  To predict  the  activity of caulerpin,  we
employed  Volsurf descriptors and the  machine  learning  Random  Forest  algorithm  in parallel with  a
structure-based  methodology  that  included  molecular  docking.  Using  caulerpin  as  a lead compound,
a  database  containing  108 analogs  was  evaluated, and nine  were  selected  as  active. The structures
selected  as active exhibited  polar and  non-polar  substitutions  on the  caulerpin  skeleton,  which  were
relevant  for  their  activity. Dragon consensus  drug-like scoring  was applied to  identify  the  active analogs
that  might  serve  as  good drug  candidates,  and  the  entire  group  presented satisfactory performance.
These  results  indicate the  possibility  of using these  analogs  as  potential  leads against  Alzheimer’s
disease.

©  2015 Sociedade  Brasileira  de  Farmacognosia.  Published  by  Elsevier  Editora Ltda.  All  rights  reserved.

Introduction

Alzheimer’s disease (AD) has emerged as the most prevalent
type of late-life disorder in humans, afflicting 45% of people over
85 years old (Liu  et al., 2013). This burden is  increasing as the elderly
population continues to grow. In general, AD is  associated with
neuronal loss, synaptic dysfunction and functional abnormalities
of mitochondrial structures (LaFerla and Oddo, 2005). In the litera-
ture, different methods of controlling AD have been reported, which
offer alternative mechanisms of action (Tian et al., 2014; Riediger
et al., 2009). In an attempt to  improve the quality of life for AD
patients, numerous studies are being conducted to  develop more
efficient drugs.

The  marine environment covers 70% of the earth’s surface and
provides a fascinating variety of biodiversity that exceeds that
of the terrestrial environment. The biodiversity of the marine
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environment and its associated chemical diversity constitute
a practically unlimited resource of new active substances that
may potentially be developed into novel bioactive products
(Souza et al., 2009a,b). The exploration of this biodiversity to
identify new chemical compounds has only just begun. Marine
organisms synthesize a  plethora of small molecules with fas-
cinating chemical structures and potent biological properties.
The variety of marine organisms that have been discovered
to date offers a  dramatic potential pool of resources for drug
discovery, and many new discoveries remain to  be  made (Bidon-
Chanal et al., 2013; Schumacher et al., 2011; Gerwick and Moore,
2012).

Natural marine products play an important role in increasing
the quality of life for patients with neurological diseases. These
products include fatty acids (such as n-3 fatty acid, which delays
the onset of AD), terpenes, alkaloids and varying other secondary
metabolites, all of which act through different pathways (Choi et al.,
2007; Gul and Hamann, 2005).

Several phlorotannins, such as eckstolonol [639514-05-9] (1),
eckol [99798-74-7] (2)  and phlorofucofuroeckol-A [128129-56-6]
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(3), may  represent useful nutraceuticals for the prevention of
AD due to their inhibitory activities against acetylcholinesterase
(AChE)  and butylcholinesterase (BChE), which have been demon-
strated in vitro (Thomas and Kim, 2011; Yoon et al., 2009). Hexane
extracts of Tetraselmis chuii, Chlorella minutissima and Rhodomonas
salina also exhibited cholinesterase inhibitory activity toward
AChE (Custódio et al., 2012). Additional kinase inhibitors that
are useful for the treatment of AD include steroidal alkaloid
4-acetoxy-plakinamine B [1003045-50-8] (4)  (Langjae et al.,
2007), sargaquinoic acid [70363-87-0] (5) and sargachromenol
[70363-89-2]; the latter two are meroditerpenes (6) (Choi et al.,
2007). Sargaquinoic acid was found to  potently inhibit BChE, a
novel target for the treatment of AD, with potency comparable to
or greater than the anticholinesterases that are in current clinical
use (Mayer et al., 2011). Potential AChE inhibitors have been
discovered in  extracts from Latrunculia lendenfeldi and Latrunculia
bocagei sponges (Turk et al., 2013).
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Additional studies have reported discoveries of novel glycogen
synthase kinase 3� (GSK-3�) inhibitors in  natural marine products
(Jin et al., 2006). Examples of these active marine-derived com-
pounds include palinurim [71947-64-3] (7) (Bidon-Chanal et al.,
2013), lamellarin E [115982-19-9] (8)  (Baunbaek et al., 2008),
hymenialdisine [82005-12-7] (9)  (Meijer et al., 2000), merid-
ianine E [213473-03-1] (10) (Radwan and El-Sherbiny, 2007),
manzamine A [104196-68-1] (11) (Hamann et al., 2007) and 6-
Bromoindirubin [200273-66-1] (12) (Meijer et al., 2003). Palinurin,
a furanosesquiterpene, inhibits GSK-3� activity through a  novel
mechanism of action (Bidon-Chanal et al., 2013). Debdab and col-
laborators have also reported the kinase inhibitory activities of
derivatives of the marine alkaloid leucettamine B [147395-96-8]
(13) (Debdab et al., 2010).
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Tumescenamide A [1335094-05-7] (14) induces reporter gene
expression under the control of the insulin-degrading enzyme (IDE)
promoter, which suggests that it may  have promise as a potential
treatment for AD (Motohashi et al., 2010). The 3,5-dibromo-4-
methoxyphenyl-pyruvic acid [1356930-31-8] (15), isolated from
sponge Callyspongia sp., is able to  modulate apolipoprotein E
(ApoE) (Tian et al., 2014). Dragmacidin D [142979-34-8] (16)
inhibits neural nitric oxide synthase, which may  prove to be
an option for the treatment of Huntington’s, Parkinson’s and
Alzheimer’s diseases (Yang et al., 2002).
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Monoamine oxidase (MAO) is a  FAD-containing enzyme that
catalyzes the oxidative deamination of a  variety of  biogenic and
xenobiotic amines including monoamine neurotransmitters such
as serotonin, noradrenaline and dopamine (Binda et al., 2011; Bolea
et al., 2013). MAO  plays an important role in the metabolism of
several neurotransmitters and could therefore be useful in  the
treatment of a number of psychiatric and neurological diseases.
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MAO  activity helps to ensure that neuron firing rates through-
out the body remain within homeostatic limits. MAO-B inhibitors,
such as selegiline (R-(−)-deprenyl) [14611-52-0] (17) and rasagi-
line [161735-79-1] (18), are useful compounds for the symptomatic
treatment of Parkinson’s and Alzheimer’s diseases (Zhu et al., 2008;
Choi and Choi, 2015), as they increase concentrations of synap-
tic dopamine by blocking its degradation (Fernandez and Chen,
2007). Another MAO-B inhibitor, safinamide [133865-89-1] (19), is
currently undergoing phase III clinical trials as an adjuvant in com-
bination with a dopamine agonist or levodopa (Schapina, 2011).
MAO-B inhibitors have also been extensively studied for their pos-
sible neuroprotective or disease-modifying actions, and there is an
abundant amount of evidence that MAO-B inhibitors have some
neuroprotective properties (Patil et al., 2013).

17 18 19

Caulerpin [26612-48-6] (20, CLP 001) is a  bisindole alkaloid
that is primarily isolated from green algae of the genus Caulerpa
(Souza et al., 2009a,b); it has an extra eight-member ring between
the two indole rings, which are incorporated directly with the
carbonyl group. Our research group has reported that caulerpin
has a non-selective spasmolytic effect and that this effect is  due in
part to the inhibition of Ca2+ influx through voltage-gated calcium
channels (Cav) (Cavalcante-Silva et al., 2013) and noticed for the
first time that caulerpin has showed a  considerable antinociceptive
and anti-inflammatory activities (Souza et al., 2009a,b).
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Computer-aided drug design (CADD) has become an indispens-
able tool to the pharmaceutical industry and academia over the
last decade (Lill and Danielson, 2011) and has been employed dur-
ing various stages of the drug-design process. Initially, this method
focuses on reducing the overall number of possible ligands; in the
later stages, during lead-optimization, the emphasis shifts to reduc-
ing experimental costs and the duration of time required to make
a discovery. Applied ligand-based virtual screening using Volsurf
and Molegro descriptors and a  random forest algorithm (a method
of machine learning) were included in  the structure-based virtual
screening.

Once AD evidence an activation of inflammatory pathways
(Wyss-Coray and Rogers, 2012) and caulerpin present considerable
anti-inflammatory activity, in  this study, we created a  database of
caulerpin analogs and evaluated it with a  ligand-based model that
included molecular descriptors, as well as with a  structure-based
approach that included docking studies of monoamine oxidase B
(MAO-B) inhibitors.

Materials and methods

Database

From  the ChEMBL database, we selected a  diverse set of
1523 structures (https://www.ebi.ac.uk/chembl/), which had been
screened (in vitro) to inhibit the single protein of human
monoamine oxidase B (Supporting Information Table S1). The com-
pounds were classified using values of -logIC50 (mol/l) = pIC50,
which led us to assign 696 actives (IC50 ≥ 6) and 827 in-actives
(IC50 <  6). In this case, IC50 represented the concentration required
for 50% inhibition of the single protein of human MAO-B. The
database that included caulerpin (CLP001) and its 108 analogs
(CLP002-109) was selected to build in our database. For all struc-
tures, SMILES codes were used as input data in a  Marvin 14.9.1.0,
2014, ChemAxon (http://www.chemaxon.com). We  used Stan-
dardizer software [JChem 14.9.1.0, 2014; ChemAxon (http://www.
chemaxon.com)] to canonize structures, add hydrogens, perform
aromatic form conversions, clean the molecular graph in three
dimensions, and save compounds in sdf format (Imre et al., 2003).

Volsurf  descriptors

Three-dimensional structures (3D) were used as input data
in the Volsurf+ program v. 1.0.7 (Cruciani et al., 2000) and
were subjected to  molecular interaction fields (MIF) (Cruciani
et al., 2000) to  generate descriptors using the following probes:
N1 (amide nitrogen-hydrogen bond donor probe), O (carbonyl
oxygen-hydrogen bond acceptor probe), OH2 (water probe), and
DRY (hydrophobic probe). Additional non-MIF-derived descriptors
were generated to create a  total of 128 descriptors (Cruciani et al.,
2000). Volsurf descriptors have been previously used to predict the
inhibitory actions of flavonoids against enzymes (Scotti et al., 2011).

Drug-like score

Structures were used as input data in  DRAGON Professional
version 6.0.30 to generate Dragon drug-like consensus, which was
calculated as a mean of 7 drug-like scores that were based on the
following: Lipinski’s rules (Lipinski et al., 2001); the drug-like filter
produced by Oprea et al. (2000); the drug-like score implemented
by Walters (Walters and Murcko, 2002); the drug-like filter pro-
duced by Chen (Chen et al., 2005); the drug-like score that was
based on two  rules proposed by Zheng (Zheng et al., 2005); the
drug-like score that was  proposed by Rishton (Rishton, 2003); and
the drug-like filter implemented by Veber and co-workers (Veber
et al., 2002).

Models

Knime 2.10.0 software (KNIME 2.10.0 the Konstanz Informa-
tion Miner Copyright, 2003–2014, www.knime.org) (Berthold et al.,
2007) was used to  perform all of the following analyses. The
descriptors and class variables were imported from the Volsurf+
program, v. 1.0.7, and the data were divided using the “Partition-
ing” node with the “stratified sample” option to  create a training
set and a  test set, encompassing 80% and 20% of the compounds,
respectively. Although the compounds were selected randomly, the
same proportion of active and inactive samples was  maintained
in both sets. For  internal validation, we  employed cross-validation
using ten randomly selected, stratified groups, and the distributions
according to activity class variables was  found to be maintained
in all validation groups and in  the training set. Descriptors were
selected, and a  model was generated using the training set and the
Random Forest algorithm (RF) (Breiman, 2001), using the WEKA
nodes (Hall et al., 2009). The parameters selected for RF included the
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Table  1
Summary of training, internal cross-validation, test results, and corresponding match results, which were obtained using the RF  algorithm on the  total set of 1523 compounds
(1218 were in the training set and 305 in the test set).

Training Validation Test

Samples Match %Match Match %Match Samples Match %Match

Active 557 556 99.8 393 70.6 139 115 82.7
Inactive  661 659 99.7 662 74.5 166 142 85.5
Overall  1218 1215 99.8 886 72.7 305 257 84.3

following settings: number of trees to build =  50, seed for random
number generator =  1,  for training and internal cross-validation
sets. The internal and external performances of the selected mod-
els were analyzed for sensitivity (true positive rate, i.e., active
rate), specificity (true negative rate, i.e., inactive rate), and accuracy
(overall predictability). Additionally, the sensitivity and specificity
of the Receiver Operating Characteristic (ROC) curve was find to
describe true performance with more clarity than accuracy. The
plotted ROC curve shows the true positive (active) rate either ver-
sus the false positive rates, i.e.  sensitivity versus (1-specificity). In
a two-class classification, when a  variable that is  being investi-
gated cannot be distinguished between the two groups (i.e., when
there is  no difference between the two distributions), the area
under the ROC curve equals 0.5, which is to say that the ROC
curve will coincide with the diagonal. When there is a  perfect
separation of values between two groups (i.e., no overlapping of
distributions), the area under the ROC curve equals 1, which is
to say that the ROC curve will reach the upper left corner of the
plot (Hanley and McNeil, 1982). Additionally, we  calculated the
Mathews correlation coefficient, wherein a  value of 1 represents a
perfect prediction, a  value of 0 represents a  random prediction, and
a value of −1 represents total disagreement between prediction and
observation.

Docking

The structure of MAO-B in  complex with rosiglitazone (PDB ID
4A7A) (Binda et al., 2012) was downloaded from the Protein Data
Bank (http://www.rcsb.org/pdb/home/home.do). Alkaloid struc-
tures were submitted to  molecular docking using the Molegro
Virtual Docker, v. 6.0.1 (MVD) (Thomsen and Christensen, 2006).
All of the water compounds were deleted from the enzyme struc-
ture, and the enzyme and compound structures were prepared
using the same default parameter settings in the same software
package (Score function: MolDock Score; Ligand evaluation: Inter-
nal ES, Internal HBond, Sp2–Sp2 Torsions, all checked; Number
of runs: 10 runs; Algorithm: MolDock SE; Maximum Interactions:
1500; Max. population size: 50; Max. steps: 300; Neighbor distance
factor: 1.00; Max. number of poses returned: 5). The docking pro-
cedure was performed using a  GRID of 15 Å in radius and 0.30 in
resolution to cover the ligand-biding site of the MAO-B structure.
Templates with features expected to be relevant for ligand binding
(rosiglitazone) were generated to  perform docking. The Moldock
score [GRID] algorithm was used as the score function, and the
Moldock search algorithm was used (Thomsen and Christensen,
2006).

Results and discussion

The  Volsurf (v 1.0.7) program generated 128 descriptors that,
together with the dependent variables (binary classification) that
described whether the compounds were active (A) or inactive (I),
were used as input data in the Knime program (v. 2.10.0) to generate
the Random Forest model. For all 1523 compounds that comprised
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Fig. 1. Receiver Operating Characteristic (ROC) plot, sensitivity versus 1-specificity,
generated by the selected Random Forest model for test set and value of the area
under the curve (AUC).

the training data sets, the generation of all 128  descriptors by
Volsurf+ took approximately 20 min using a  computer with an i7
processor, running at 3.4 GHz, and equipped with 12  GB of  RAM
memory.

Table 1 summarizes the statistical indices of the RF model for
the training, cross-validation, and test sets. For the training set,
the learning machine program gave similar hit rates for the inac-
tive compounds and active compounds, which were above 99.7%.
However, for the cross-validation and test sets, the RF  model was
better at predicting the inactive compounds; therefore, the speci-
ficity (true negative rate) was higher for the cross-validation and
test sets (74.5% and 85.5%, respectively) than the sensitivity (true
positive rate), which was  measured to  be 70.6% and 82.7%, respec-
tively (Table 1). Because the false positive rate (1-specificity) was
significantly lower, there was  only 25.5% and 14.5% specificity for
the cross-validation and test sets (Table 1), respectively. Therefore,
compounds selected by the model as active had a  low probabil-
ity of being false positives (i.e., of being inactive). These results are
illustrated in  Table 1 as well as in the ROC (Receiver Operating Char-
acteristic) plot that was  generated for the test set,  which plotted the
true positive (active) rate against the false positive rates and had an
area under the curve value of approximately 0.846 (Fig. 1), which
is close to 1.

The  Matthews Correlation Coefficient (MCC) values for the
training, cross-validation and test sets were 0.99, 0.46 and 0.68,
respectively. Because an MCC  value of 1 represents a perfect
prediction, a  value of 0 represents a  random prediction, and a
value of −1  indicates total disagreement between prediction and
observation, the RF model indicated that the values of MCC  that
were calculated were significant, particularly with respect to  the
training and test sets. The equation used to  obtain these values is
as follows:

MCC  = TP  × TN  −  FP ×  FN√
(TP + FP)(TP + FN)(TN + FP)(TN+FN)

,

where  TP =  true positive rate, TN =  true negative rate, FP  = false pos-
itive rate, and FN =  False negative rate.
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Fig. 2. Superposition of crystal pose (black) and docking pose (gray) validating the methodology.

Docking was validated redocking the original ligand rosiglita-
zone in active site of MAO-B as observed in crystallography pdb file
(PDB ID 4A7A) (Binda et al., 2012). The same parameter describes
to evaluate caulerpin and analogs was used in  validation. Super-
position of poses is represented in Fig. 2 and shows a  perfect
match.

Initially, we sought to evaluate the potential of using caulerpin
as an MAO-B inhibitor. The results presented in Table 2 indi-
cate that caulerpin exhibits potential inhibitory activity and can
therefore be used as a lead. As we aimed to include a restric-
tive screening in  this study, we selected 33 as the perceptual
limit for our docking methodology, such that only the analogs
that had energy lower than a  −151.87 Moldock score (i.e., the
lowest 33% of MolDock energies of the whole database) were
selected as active. The Volsurf program (v. 1.0.7) generated 128
descriptors that, together with a  dependent variable (binary classi-
fication), described whether a  compound was active (A) or inactive
(I); these were used as input data in the Knime software pro-
gram (v. 2.10.0). From the RF model, we selected the compounds
classified as being active (i.e., having a  predicted probability of
greater than 50%). Crossing the results, we observed a consensus of
56.9% between the methodologies. Using the mixed ligand-based
and structure-based approach, we  selected nine active analogs of
caulerpin (21).

21

In analyzing the five best analogs from each methodological
approach, we  observed a clear connection between the values
obtained for the compounds CLP 012, CLP 068, CLP 078 and CLP
100, which were the lead results in the two studies. In evaluating

the  chemical characteristics from the active analogs, we  observed
that a monosubstitution that was symmetrical with chlorine and
methyl at positions 4 and 4′ and 5 and 5′, respectively, was not
significantly changed compared to caulerpin (21). However, the
presence of an amide or  acyl halide polar group in R  and a  short
nonpolar allyl or butyl chain in  R1 generated lower docking ener-
gies and higher predicted probability. All active analogs exhibited
favorable values in the dragon consensus of their drug-like scores
(the consensus is  calculated as the mean of the results of seven
drug-like scores). With the exception of CLP109, all active analogs
presented scores above 0.75 (Table 2), highlighting the promising
scores of the leading analogs (CLP 012, CLP 068, CLP 078 and CLP
100), which had scores above 0.80. A  drug-like score is a  value rang-
ing from 0 to 1, in which a value of 1 indicates that a  compound is
a potential drug candidate.
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Table  2
Summary of the Moldock energy, predicted probability (%) and Dragon drug-like consensus of both caulerpin (CLP001) and of its  analogs that were found to  be active against
MAO-B.

Moldock energy Predicted probability Drug-like score

CLP001 −152 58  0.77
CLP012  −164 60 0.87
CLP032  −153 64 0.75
CLP049  −155 52 0.87
CLP068  −159 66 0.87
CLP078  −155 62 0.80
CLP100  −161 64 0.87
CLP107  −152 58  0.77
CLP108  −155 58 0.75
CLP109  −153 54 0.65

In corroborating the analysis of active compounds, several
similar characteristics to the inactive group were observed,
including the presence of groups with similar polarities in R
or R1 (21). Whether in a symmetric (CLP 006 and CLP 009)
or asymmetric (CLP 0013) context, the presence of a  polar
group was found to negatively influence performance. The same
effect occurs in the presence of nonpolar groups (CLP 037 and
CLP 074). The substitution of both indole nitrogens with alter-
native heteroatoms such as oxygen to serve as the binding
groups of that position reduced the inhibitor effect (CLP 065 and
CLP 022).

Although aromatic substitutions did not  lead CLP 032 and
CLP 049 to  become more effective, both a change in position
and disubstitution were found to significantly reduce potency
(CLP 029, CLP 051, CLP 033 and CLP 057). Strong activators
such as hydroxyl also decreased inhibitor activity (CLP 034 and
CLP 036).

In  Fig. 3,  it is possible to  observe the hydrogen bonding (H-bond)
interactions between rosiglitazone (A),  the drug utilized as tem-
plate, and two caulerpin analogs, which were classified as active
(CLP 012) (B) and inactive (CLP 006) (C). It is also possible to  observe
the interactions between the Tyr 435 (A) residue from MAO-B and
rosiglitazone (A), and between Tyr 435(A) and CLP 012 (B). In  CLP
012 (D) and CLP 006 (E), the electrostatic distribution is shown,
corroborating the importance of polar (blue) and non-polar (green)
substitutions to activity.

In  this work, we identified the fundamental physical and
chemical characteristics of caulerpin analogs (21) and indicated
a possibility of how they can produce inhibitory effects against
MAO-B. Ligand and structure-based results, associated with drug-
like score, allow us to indicate the potential possibility of using this
skeleton as a  tool against AD in  future studies.
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Fig. 3. Hydrogen bonding interactions of rosiglitazone (A), CLP 012 (B) and CLP 006 (C)  with MAO-B and their electrostatic distributions on  CLP 012 (D) and CLP 006 (E).
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