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a b s t r a c t

The aim of this work was to determine the stress distribution during plastic deformation,

based on the displacement field obtained using the digital image correlation (DIC) method.

To achieve stress distribution, the experimentally measured displacement gradient and the

elastoplastic material model with isotropic hardening were used. The proposed approach

was implemented in the ThermoCorr program. The developed procedure was used to

determine stress fields for uniaxial tension and simple shear processes, carried out on

samples made of austenitic steel 304L. Both material parameters, such as the Young's

modulus, Poisson's ratio, yield stress, and parameters of the hardening curve, were acquired

experimentally. The macroscopic force obtained from the DIC-based stresses and its finite

element analysis (FEA) equivalent were compared with that measured during the experi-

ment. It was shown that the DIC-based approach gives more accurate results with respect to

FEA, especially for a simple shear test, where FEA significantly overestimates the value of

experimentally obtained macroscopic force.
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1. Introduction

In recent years, the digital image correlation (DIC) has become
one of the most used full-field optical methods of displace-
ment measurement in the field of experimental solid
mechanics [1]. The method has been extensively investigated
by many researchers, and as a result the efficiency and
accuracy of calculations has been significantly improved [2,3]
and the application range has been greatly expanded, e.g. in
shape measurement [4] and calibration of concrete parameters
[5]. In addition to displacement measurement, the DIC method
has been extended for estimating strain distributions, which
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are important and desirable in many experimental analyses
[6]. The DIC has recently proven to be an efficient technique to
experimentally evaluate a broad set of elastic constants of
anisotropic materials [7,8]. The authors in Refs. [9,10] used the
DIC to study the strain field within the Portevin–Le Chatelier
(PLC) bands. Displacement and strain fields obtained using the
DIC method have been utilized to analyze damage mecha-
nisms in Ref. [11]. Having measured strains, new questions
arise. Is it possible to determine the stress distribution on the
basis of the DIC results? Unfortunately, stress state cannot be
directly computed from the DIC data because some predefined
constitutive law together with the known material parameters
should be specified. In the case of the linear elasticity,
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List of symbols

s Cauchy stress tensor
e Hencky strain tensor
ee elastic part of the Hencky strain tensor
ep plastic part of the Hencky strain tensor
we elastic work
wp plastic work
E Young's modulus
n Poisson's ratio
sy yield stress
x = (x,y) Eulerian coordinates
X = (X,Y) Lagrangian coordinates
H displacement gradient tensor
F deformation gradient tensor
U stretch tensor
C deformation tensor
IU1 ; IU2 ; IU3 first, second and third invariant of the stretch

tensor
D stiffness matrix
ep equivalent plastic strain
sHM Huber–von Mises stress
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knowledge of the stiffness tensor makes it possible to
determine the stresses by simply multiplying the stiffness
tensor by the strain tensor. However, the majority of materials
require more sophisticated material models that cannot be
limited to the linear elasticity, e.g. materials that exhibit a
plastic (irreversible) range. In a traditional mechanical test this
problem can be solved when the stress and strain fields are
uniform. In this case the stress can be determined from the
loads applied to the specimen, taking into account the
specimen geometry. However, often either the strain becomes
non-uniform as a result of localization [12,13] or the specimen
is designed or constrained to obtain non-uniform deformation
[14]. Generally, there seems to be lack of literature concerning
stress field determination directly from DIC results. One of the
most widely used approaches combines finite element
analysis (FEA), DIC and numerical optimization to determine
constitutive parameters of the assumed material model.
During the optimization process, the parameters of the model
are updated until the measured displacement distribution
using DIC is close enough to that from FEA simulation [15]. The
DIC method is also used with the hole drilling method for
determining residual stresses [16,17]. It was implemented as
an alternative to the tensometric rosettes based version. A
different method of stress field estimation was described in
another study [18], which aimed to determine the energy
storage rate distribution in the area of strain localization using
infrared and visible imaging. The stress field was obtained
from the force measured by the testing machine taking into
account actual sample geometry assuming constant stress in
the cross section. Similar analysis was applied in the work [19]
in order to determine the stress–strain relation during tensile
of an anisotropic titanium. In the paper [20] the authors
presented methodology of characterizing the material behav-
iour at the point of fracture. The stress–strain curve was
evaluated using DIC data and the stepwise modelling method.
However, the approach was not used for the full-field stress
analysis, what was the main goal of the paper [21], where
simplified solution of the plastic flow rule equation was used
for stress determination. Nevertheless, the statement made by
the authors, that plastic strain can be easily derived from the
DIC data, seems to be not true and there are no details how it
was done in the paper.

This work presents a new approach of direct stress
calculation using DIC data. The DIC-based stresses are
calculated with a predefined elastic-plastic constitutive model
in which parameters were estimated using a traditional
mechanical tensile test. The developed numerical algorithm
allows the decomposition of the total strain into its elastic and
plastic parts. Numerical simulations and optimization are not
required. The algorithm has been applied for the experimental
data obtained during uniaxial tension and simple shear tests.
Moreover, the obtained stress distributions were compared
with the FEA assuming the same constitutive model. The
considerations have been limited to the 2D DIC only.
Nevertheless, the extension to the 3D DIC [22] or digital
volume correlation (DVC) [23] is straightforward.

2. DIC-based stress determination

The analysis presented below concerns two-dimensional case,
therefore 2D DIC, and the plane stress condition were applied.
In the proposed approach the experimentally obtained
evolution of the field of displacement gradient and J2 plasticity
constitutive model are used for determining stress distribu-
tion. The displacement gradient tensor H obtained from the 2D
DIC analysis has the following form:

H ¼ @u
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¼
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where u = (ux, uy) is the displacement vector and X = (X,Y) is a
position of a material point in the Lagrangian coordinate
system. The @uz=@Z and corresponding ezz strain component,
which is not measured in 2D DIC analysis, is usually calculated
under assumption of a constant volume. Here, the ezz compo-
nent is calculated iteratively to ensure the plane stress condi-
tion. A variety of strain measures can be calculated using the H
tensor, obtained directly by the differentiation of displacement
field.

In the first step, the Hencky strain (true strain) tensor was
chosen and was calculated for each instant of the deformation
process. The calculations include obtaining the deformation
gradient F ¼ H þ I (where I is the 3 � 3 identity matrix), the
deformation tensor C ¼ FTF and the stretch tensor U ¼ ffiffiffiffi

C
p

. The
stretch tensor was calculated using the Cayley–Hamilton
theorem:
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where IU1 ; IU2 ; IU3 are the first, second and third stretch tensor
invariants, respectively. Next, the Hencky strain tensor was
obtained using following formula:

e ¼ ln U ¼
X1
n¼1

�1ð Þn�1

n
U�Ið Þn: (3)

The initial conditions for the process are defined as follows:

s0 ¼ 0; ee0 ¼ 0; e
p
0 ¼ 0; ep0 ¼ 0; (4)

where s is the Cauchy stress tensor, ee and ep are the elastic
and plastic part of the Hencky strain tensor, respectively, and
ep is the equivalent plastic strain.

The evolution of the stress tensor is calculated using an
elastic-plastic material model with isotropic hardening. At
the beginning of each calculation step, the trial elastic stress is
obtained using isotropic Hooke's law. Then, the plasticity
condition is checked (whether the step is elastic or plastic)
according to the Huber–von Mises yield criterion. If the
deformation is elastic, the trial stress is correct and the
procedure is closed; otherwise, the final stress is calculated
using the return mapping algorithm [24]. For the plane stress
condition, the modified ezz component is also returned.
Finally, the calculated stress, elastic and plastic parts of the
strain and equivalent plastic strain are saved and are treated
as a new input for the next calculation step. A flowchart of the
presented DIC-based stress calculation algorithm is shown
in Fig. 1. The loop contained in the flowchart is executed
for every point of DIC analysis. The described procedure
was implemented in ThermoCorr software [25], designed
Fig. 1 – The flowchart of the DIC-bas
for determining coupled displacement and temperature
fields.

The procedure was validated throughout the comparison
between the obtained stress distributions and stress distribu-
tions computed using the ABAQUS FE program. In the first
step, a square area (see grey square in Fig. 2a) was discretized
by finite elements. Then, according to the positions of
integration points, the set of points in DIC-based analysis
was defined. Next, the known, virtual non-uniform displace-
ment field was applied onto the initial configuration numeri-
cally (see green area in Fig. 2a). In FEA, for each node of the
mesh, the generated displacement was applied as a prescribed
displacement boundary condition. In DIC-based approach, the
displacement gradient was derived and the procedure shown
in the flow chart in Fig. 1 was applied. The elastic-plastic
material model with following parameters: E ¼ 210GPa,
n ¼ 0:3, s0 ¼ 250MPa and the hardening function sy ¼ s0 þ
2000ep were assumed. The exact values of the parameters were
not relevant from the point of view of the validation procedure.
Finally, the obtained stress distributions were compared (see
Fig. 2b and c). In the validation procedure no real test was
considered. The distributions of syy obtained using the
procedure presented above and corresponding result of FEA
are presented in Fig. 2b and c, respectively.

The time dependencies of the syy component obtained
using both methods were drawn to check the correctness of
the algorithm implementation (Fig. 3). The dependencies were
obtained from the stress distributions for two pairs of points
with the same coordinates. The results obtained show that the
DIC-based stress calculation algorithm was implemented
correctly.
ed stress calculation algorithm.



Fig. 2 – (a) The reference configuration of the 2D region used for computations (grey) and deformed configuration (green).
Distributions of syy obtained using (b) procedure presented above and (c) FEA.

Fig. 3 – History plots of syy obtained for the developed
procedure and FEA for the points marked in the internal
drawings.
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3. Experimental and FEA details

The presented approach was used for determining stress
distributions for experimentally measured displacement fields
during uniaxial tension and simple shear tests. The results
were compared with the results of numerical simulations.
The uniaxial tension and simple shear tests were per-
formed on the samples made from 304L austenitic stainless
steel. The samples were cut out from the 0.8 mm thick sheet
using electro-erosion machining. The geometry and dimen-
sions of the samples used in both tests are presented in Fig. 4a
and b, respectively. In the same figures the regions of interest
used in DIC and FEA are shown. The simple shear conditions
were realized by eccentric compression of the specimen
(Fig. 4b) using the device presented in Fig. 4d. A similar
approach has been used in other studies [26,27]. The device
allows analysis of the shear zones using optical system. The
deformed specimen after the shear test is presented in Fig. 4c.
Both experiments were carried out using MTS 858 testing
machine under constant displacement rates equal to
0.015 mm/s. During the experiments, the surfaces of the
specimens were covered with soot and small dots of white
paint and observed using Manta G-125 camera and the
sequences of images were recorded. The settings of the
camera were the same for both the tension and simple shear
tests (Table 1). The force and displacement of the grips of the
testing machine were recorded. On the basis of the image
sequences obtained, the evolutions of the displacement fields
were determined using our own implementation of 2D DIC
algorithm [25]. DIC analysis was performed for the square
subset window 37 � 37 pixels. Then, the evolution of the DIC-
based stresses was determined based on the procedure
described in Section 2. The material parameters needed for
the constitutive model were determined from a uniaxial



Fig. 4 – Geometry and dimensions of samples for (a) uniaxial tension and (b) simple shear. (c) The deformed specimen after
shear test. (d) The device for fixing specimens for simple shear test.

Table 1 – Settings of visible range camera.

Parameter Value

Resolution [pixel] 1292 � 964
Recording frequency [Hz] 10
Exposure time [ms] 1.5
Pixel size [mm] 9.5

Fig. 5 – The evolution of distributions of eyy determined using a DI
and (c) 250 s (end of the process).
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tensile test: Young's modulus, E = 190 GPa; Poisson's ratio,
0.262; yield stress, s0 = 240 MPa. The hardening function in the
form sy ¼ s0 þ 640:919�ðepÞ0:5075 þ 762:854�ep�e0:4805�ep was used.

The obtained DIC-based stress fields were compared with
the FEA performed for both uniaxial tension and simple shear
tests. In the first step, the geometry of the specimens was
discretized (see Fig. 4a and b) and displacement boundary
C-based approach and FEA for time instance (a) 20 s, (b) 100 s



Fig. 6 – The evolution of distributions of sHM determined using a DIC-based approach and FEA for time instance (a) 20 s, (b)
100 s and (c) 250 s (end of the process).

Fig. 7 – The distribution of (a) the eyy and (b) the
corresponding distribution of the correlation coefficient.
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conditions were applied according to the experimental
process. For both simulations the same constitutive model
and material parameters as in the DIC-based approach were
assumed.

The numerical simulations of those experiments were
carried out using the ABAQUS FE program. In FEA, the quasi-
static equilibrium equation and elastic-plastic material model
were assumed. A 20-node quadratic brick (C3D20) element
type was chosen.

4. Results and discussion

First, the results of the DIC-based approach and FEA were
compared for the uniaxial tension test. The evolutions of the
calculated strains and stresses are presented in Figs. 5 and 6,
respectively. As expected, the distributions of strain using FEA
are smoother and more continuous with respect to DIC results.
However, the range of strains and stresses for the DIC-based
approach and FEA are very similar. The local non-uniformities
observed in experimentally obtained distributions can be an
effect of either uncertainty of the DIC measurement or
inhomogeneity of the tested material. The peak values located
at the sample boundaries are caused by poor correlation
coefficients in this region (see Fig. 7).

Figs. 8 and 9 show the shear strains exy and Huber–von
Mises stresses sHM. The zone of uniform deformation is located
at the centre of the sample, whereas in its upper and lower
parts the values of the shear strains and Huber–von Mises
stresses are significantly lower. Similar to as in the case of
uniaxial tension, the experimentally obtained distributions
are less smooth but their ranges are very close to those
obtained by FEA. The small discrepancies between the FEA and
DIC results indicate that the deformation state realized by the
device for eccentric compression shown in Fig. 4d can be
roughly treated as the simple shear.

On the basis of obtained stress fields, both for the DIC-based
approach and FEA, the evolution of the macroscopic force was
determined and compared with the force evolution measured
by the testing machine. In the DIC-based approach, the
evolution of stress distributions for each instant of the
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deformation process were averaged over several cross-
sections of the sample in the reference configuration. Due to
the fact that the calculations were carried out on the reference
configuration, the Cauchy stress was converted into the
nominal stress, according to the following relationship:

S ¼ JF�1s; (5)

where J ¼ detF.
The macroscopic force was calculated as F ¼ hSiA0 where h�i

denotes averaged nominal stress Syy for uniaxial tension and
Sxy for simple shear. A0 denotes the specimen's initial cross
section area. Checks were done to ensure that there were no
significant discrepancies between force evolutions obtained
Fig. 8 – The evolution of distributions of exy determined using a D
and (c) 160 s (end of the process).
for different cross-sections. Therefore, one lying at the sample
centre was chosen as the representative for the DIC-based
method and compared with the cross-sectional force evolu-
tion computed using the FE program and the one measured in
the experiment. The comparisons for both uniaxial tension
and simple shear are shown in Fig. 10.

For uniaxial tension (Fig. 10a) all obtained evolutions of
macroscopic forces were in good agreement in both linear and
non-linear domains. However, in the case of simple shear a
distinct difference was observed between the FEA and
experiment in the non-linear range (see Fig. 10b). The FEA
significantly overestimated the value of macroscopic force,
whereas the force values predicted using the proposed DIC-
based approach were close to the experiment. This result can
IC-based approach and FEA for time instance (a) 25 s, (b) 85 s



Fig. 9 – The evolution of distributions of sHM determined using a DIC-based approach and FEA for time instance (a) 25 s, (b) 85 s
and (c) 160 s (end of the process).
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be explained by the fact that in the DIC-based approach the
strain field used for the stress calculations is measured in the
experiment, which takes into account all inaccuracies that
influence the deformation process (i.e. inaccuracies in sample
preparation, material non-homogeneities, misalignment of
the loading system, testing machine compliance, etc.). As is
seen in Fig. 11, the ux distribution measured in the experiment
using DIC is not uniform, what generates strains in this
direction. The prescribed displacements' boundary conditions
in FEA, corresponding to the simple shear deformation, do not
allow the strain components in the x direction, which seems to
cause the macroscopic force overestimation in FEA. The proper
formulation of boundary conditions is crucial in FEA, but
difficult to define in more complex deformation states realized
in the experiment. Therefore, the presented DIC-based
approach, where the experimentally measured displacement
field is already influenced by the experimental conditions,
seems to be an adequate method for the stress field
determination, especially in complex deformation processes.

The distributions of elastic eeyy, plastic epyy and equivalent
plastic ep strains obtained for the final stage of the process of
uniaxial tension are presented in Fig. 12a–c. With the strain
decomposition on the elastic and plastic parts and using the
work conjugated measure of stress, the elastic we and plastic
wp works can be obtained as we ¼ 1=r

R
s : dee and

wp ¼ 1=r
R
s : dep, respectively (Fig. 12d and e). From the total

elastic and plastic works for a given instant of the deformation
process equal to we ¼ R

Vw
e dV and wp ¼ R

Vw
p dV, respectively,



Fig. 10 – Comparison of the macroscopic force evolution obtained for FEA, a DIC-based approach and the testing machine
during (a) uniaxial tension and (b) a simple shear process.

Fig. 11 – The distributions of ux obtained for (a) a DIC-based
approach and (b) FEA.

Fig. 12 – The distributions of (a) eeyy, (b) epyy, (c) ep, (d) we and (e) wp ob
uniaxial tension process.
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the contribution of the wp in the total energy was calculated as
ðwp=ðwe þ wpÞÞ�100%. In the case of uniaxial tension the
contribution was equal to 98.7%.

The distributions of eexy, epxy, ep, we and wp for the simple shear
test are presented in Fig. 13. Comparison of the epxy and ep

indicates that in this case the other components of the plastic
strain tensor cannot be neglected (contrary to uniaxial
tension). As with the uniaxial tension, the contribution of
Wp in total work is approximately 99%.

5. Summary and conclusions

In the present paper, the original DIC-based stress determina-
tion method has been proposed. The developed algorithm was
numerically verified with the FEA results and then imple-
mented in the ThermoCorr DIC software. The presented
approach was used for determining stress distributions for
experimentally obtained displacement fields during uniaxial
tension and simple shear tests and the results were compared
with FEA solutions. The distributions of the DIC-based stresses
were used for determining macroscopic force then the force
and its FEA equivalent were compared with the force
measured by the testing machine during the experiment. It
tained for the DIC-based approach in the last moment of the



Fig. 13 – The distributions of (a) eexy, (b) epxy, (c) ep, (d) we and (e) wp obtained for the DIC-based approach in the last moment of the
simple shear process.
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was shown that the DIC-based approach gives significantly
more accurate results with respect to FEA, especially for simple
shear test, where FEA overestimates the experimentally
obtained values. This result can be explained by the fact that
in the DIC-based approach the strain field used for the stress
calculations is measured in the experiment and takes into
account all inaccuracies that influence the deformation
process (i.e. inaccuracies in sample preparation, material
non-homogeneities, misalignment of the loading system,
testing machine compliance, etc.). None of these inaccuracies
are taken into account in FE simulations. In the proposed DIC-
based approach it is not necessary to define the boundary
conditions, which is an advantage in relation to FEA. The
distributions of elastic and plastic work were obtained on the
basis of determined strain and stress fields. In further research
the results will be used in the field analysis of the energy
conversion during the deformation process. This will be a
continuation of studies on stored energy during deformation
of polycrystalline materials [18,28].
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