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a b s t r a c t

Single point incremental forming (SPIF) is a flexible, innovative, and cheap process for rapid

manufacturing of complex sheet metal parts. It is a crucial task for engineers to predict a

process when many independent parameters are affecting simultaneously its performance.

An artificial neural network (ANN) based prediction model was developed to evaluate

average surface roughness (Ra) and maximum forming angle (Ømax) while SPIF forming of

AA5052-H32 material. A feedforward backpropagation network with Levenberg–Marquardt

algorithm was employed to build ANN model. The ANNs (4-n-1, 4-n-2) were generated by

introducing different combinations of transfer functions and a number of neurons. The

confirmation runs were performed to verify the agreement between the ANN predicted and

the experimental results. The developed ANN model (4-n-1) was capable of predicting the

process response with an excellent accuracy and resulted in overall R-value, MSE, and MAPE

of 0.99807, 0.0209, and 5.96% for Ra 0.99913, 0.0281, and 0.003 for Ømax. The optimum 4-n-2

model was built with overall R-value, MSE of 0.99999 and 0.057194, respectively. Hence, it

was found that the engineering efforts may be reduced in the SPIF process with successful

ANN model implementation.

© 2019 Politechnika Wroclawska. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Conventional forming has some disadvantages such as high
capital cost, lower flexibility, and formability due to which
incremental sheet forming (ISF) becomes a more popular
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process in the area of automotive, marine and aerospace, etc.
According to the number of contact points, there are two types
of ISF process such as single point incremental forming (SPIF)
and two point incremental forming (TPIF). SPIF is a novel,
versatile and cost effective process to form complex geome-
tries. This forming technology is based on the localized plastic
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deformation by the tool on the sheet metal. The rapid
prototyping, customized product, new product development,
short production time, etc. are the major requirements for fast
moving competitive markets. The unit cost of the product has
been significantly reduced in the case of small batch
production due to the elimination of dedicated dies [1,2]. On
the other hand, it has few disadvantages like less profile
accuracy, higher production time and small batch production
etc. The most of the sheet part is unconstraint during the
forming which causes inaccuracy in the resulting component
as well as hemispherical tool causes waviness on the sheet
surface at higher step depth. The shearing and stretching of
the sheet during incremental forming causes sheet thinning
which can be approximated by sine's law [3]. The thinning
behavior depends on imposed forming angle, and hence, the
formability is defined by a maximum forming angle that sheet
material would endure without fracturing. In SPIF, the sheet
metal is clamped at four edges with the help of fixture on CNC
machining center and tool movement is controlled with the
help of CAD/CAM software. The machine control unit
regulates the tool movement along the horizontal x–y direction
as well as gradual movement along the z direction. The point
by point movement of the tool path causes small local
deformation at the vicinity of contact area and thus enhances
overall formability. The ball ended tool forces the sheet metal
to achieve the predefined shape. Recently, SPIF has gained
significant attention in the manufacturing sector.

In the past, many researchers made efforts for minimizing
drawbacks in SPIF process, and they tried to make this
technology suitable to meet industrial purposes. For instance,
Ambrogio et al. [4] proposed ANN implementation for the
prediction of the height of specimen in the SPIF process taking
into account geometrical variability. They compared error
back propagation (EBP) and Levenberg–Marquardt (LM) algo-
rithm to predict material failure in complex shapes. The result
shows that LM method can predict the maximum height of
deformed specimen more efficiently than EBP model. Liu et al.
[5] investigated SPIF process with RSM's Box–Behnken design
and multiobjective function. The impact of most influencing
forming parameters such as sheet thickness, feed rate, tool
diameter and step down was studied, and they found that
sheet thickness is the most influential forming variable on the
overall surface finish, followed by step depth. Durante et al. [6]
performed an experimental work to deepen the knowledge of
incremental forming. They investigated AA7075T0 under four
different tool sheet contact types, and output characteristics
such as surface roughness, forming force and formability, were
studied. Azevedo et al. [7] studied about the influence of
lubricants used during the SPIF forming of aluminum 1050 and
DP780 steel sheets. They found that the use of a suitable
lubricant can significantly improve surface quality, reduce
forming forces and prevent tool wear. Ham and Jeswiet [8]
studied SPIF process using the Box–Behnken method with five
factors at three levels such as material type, material
thickness, formed shape, tool size, and incremental step size.
Cerro et al. [9] investigated the incremental forming process by
experimental and finite element approach and process
responses such as thickness distribution, geometrical inaccu-
racy, and surface roughness. Shanmuganatan and Senthil
Kumar [10] deformed the sheet metal to understand the
processing mechanism. They studied maximum wall angle,
surface roughness and thinning of the sheet. In addition to
this, metallurgical study and FEM simulation were also carried
out. Golabi and Khazaali [11] used one factor at a time
methodology to find the achievable depth of frustums made
from SS304 with various cone angles, thicknesses, and major
diameters. Cui et al. [12] showed that strain distribution has
excellent co-relation in incremental sheet forming by com-
paring analytical, numerical and experimental techniques.
They used a hyperbolic, skew and elliptical type of cone in
their research. Bambach et al. [13] proved that multistage
forming along with stress relief annealing before trimming
could successfully improve the geometrical accuracy than
single stage forming process. Attanasio et al. [14] performed
experimental evaluation and optimization of tool path to form
a part with best dimensional accuracy, best surface finish, and
lowest sheet thinning. Kim and Park [15] studied the effect of
process parameters such as tool type, tool size, feed rate,
interface friction and plane anisotropy of the sheet on the
formability of SPIF process. Shim and Park [16] demonstrated
that crack occurs mostly at the corners due to greater
deformation than that along a side. Mugendiran et al. [17]
optimized surface roughness and sheet thickness of ISF using
three influencing parameters such as spindle speed, tool feed,
and step size. Minutolo et al. [18] performed experimental and
numerical investigation for the evaluation of maximum wall
angle in the case of pyramidal and cone frustums of aluminum
alloy 7075T0 sheets. Mirnia et al. [19] compared SPIF process
with sequential limit analysis and the explicit FE based model.
They found that sequential limit analysis has better capability
in predicting thickness distribution much closer to the
experimental values than equivalent FE model. Duflou et al.
[20] concluded that local heating at the contact zone leads to
reduction in the force, unwanted deformation, and geometric
errors. Park and Kim [21] investigated incremental forming on
the complex geometries under various forming conditions.
They proved that ISF gives better formability as compared to
conventional forming techniques. Hussain et al. [22] carried
out the formability investigation of an aluminum sheet under
various radius of curvature of a part's generatrix, and they
concluded that the formability increases when curvature
radius decreases. Bhattacharya et al. [23] used Box–Behnken
method for surface roughness study. They observed that
formability of Al5052 sheet decreases with increase in tool
diameter, incremental depth, and a decrease in sheet
thickness while the surface roughness decreases with increase
in tool diameters, increase in wall angle. The surface
roughness increases first with an increase in incremental
depth up to certain angle and then decreases. Riadh et al. [24]
found that wall inclination angle and initial sheet thickness
are the most influential parameters affecting sheet thinning
and maximum punching load in SPIF process. Liu et al. [25]
performed experimental campaign to evaluate successful part
height, maximum draw angle, total forces during the
incremental forming of AA7075-O. They found that SPIF
formability is significantly affected by part draw angle and
inclination depth of the tool path. In addition, they also
concluded that the maximum vertical force increases as the
step-down size and sheet thickness increases. Ziren et al. [2]
used SPIF process for forming a U-shaped channel from



Fig. 1 – Experimental setup for single point incremental
forming process on CNC milling machine.
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AA3003O sheets in order to verify the accuracy between flat
end and hemispherical end tools. They concluded that the flat
end tools provide better profile accuracy than the hemispheri-
cal end tools. Kurra and Regalla [26] carried out a comparative
study between varying wall angle conical and pyramidal
frustum with circular, elliptical, parabolic, and exponential
generatrix. They found that conical frustums are under plane
strain condition while pyramidal frustum experiences biaxial
stretching. In addition to this; they also modeled SPIF process
using different techniques such as artificial neural networks,
support vector regression, and genetic programming. They
initially optimized the process by using Box–Behnken design
using independent model variables such as tool diameter, step
depth, wall angle, feed rate and lubricant [27]. Gulati et al. [28]
successfully optimized the formability and surface roughness
during single point incremental forming of aluminum 6063
alloys based on Taguchi's L18 orthogonal array. Palumbo and
Brandizzi [29] investigated the effect of electric static heating
and tool rotation speed on the incremental forming of Ti6Al4V
sheets. Mulay et al. [30] studied the effect of SPIF process
variables such as feed rate, step depth, tool diameter and sheet
thickness on surface roughness and formability using re-
sponse surface methodology. Honarpisheh et al. [31] per-
formed experimental and numerical study of Al1050/Cu
bimetal formed with SPIF process. The multiobjective optimi-
zation was carried out with fracture depth and wall thickness
as response variable using RSM approach. Finally, they
evaluated reaction force, thickness variation and stress
distribution using FE analysis at optimum condition. Liu and
Li [32] carried out comprehensive investigation of bimetallic
roll bonded Cu-Al composite sheet. The study reveals that Al/
Cu layer arrangement leads to higher formability and larger
forming force compared to Cu/Al layer arrangement as the
exterior thinner but stronger Cu layer could endure more
stretching deformation. Kumar and Gulati [33] performed
experimental investigation to study the effect of input
parameters such as sheet thickness, tool diameter, step size,
wall angle, feed rate, tool shape, oil viscosity and spindle speed
on the surface roughness during incremental forming.

From the previous literature it has been found that, the SPIF
performance is greatly affected by forming process parameters
(step depth, tool rotational speed, feed rate, type of lubrica-
tion), material properties (stiffness, percentage elongation,
strain hardening) and part geometrical parameters (wall angle,
sheet thickness, type of wall curvature). A large scale research
has been done by many researchers to know the process
mechanics and improve the fundamental knowledge for better
understanding. There are numerous research works published
on process improvement for aluminum, steel, and titanium
alloy materials. After an extensive literature survey, although
a significant research was reported based on analytical,
experimental and numerical techniques, no such an
attempted has been made for predicting the surface quality
and formability in the incremental forming of sheets. To fill
this gap, in the present paper the plan of forty experiments
was performed, and output responses were measured for each
trial. It consists of various novelties such as (a) the artificial
neural network models were developed to predict responses
by considering key operating parameters, viz. feed rate ( f), step
depth ( p), tool diameter (d), and sheet thickness (to); (b) all
possible ANN architectures were implemented; (c) the effect of
number of neurons in the hidden layer on response prediction
capability. The good surface quality and higher formability are
the major concerns for a commercialization of ISF technology
into the industry. Furthermore, the principal goal of this
research is to find most accurate ANN models without
performing expensive experimental runs. It is necessary to
understand the SPIF behavior when a process is dependent on
multiple input process parameters. The objective of work also
includes confirmation of ANN predicted results by performing
additional experiments.

2. Experimental procedures and materials

The experiments were performed at Indo-German Tool Room,
Aurangabad, India. The current work was carried out on
varying wall angle conical frustum (VWACF) with circular
generatrix. Incremental sheet forming (ISF) experiments were
carried out using a three axis computerized numerical control
(CNC) vertical milling machine within the working range of
input process factors and the corresponding average surface
roughness (Ra) and maximum forming angle (Ømax) were
recorded.

2.1. Experimental conditions and plan

The SPIF forming fixture have been mounted on CNC machine
bed (Model: Surya VF 30 CNC VS, Make: Bharat Fritz Werner
LTD, Bangalore, India) as shown in Fig. 1. The SPIF forming is
carried out on various thicknesses (0.8 mm, 1 mm, and
1.2 mm) of AA5052 H32 alloy sheets of dimensions
222 mm � 222 mm with the help of a hemispherical tool.
The forming tool was perfectly fastened into the collect chuck
as shown in Fig. 1. The surface hardened high-speed steel (62–
65 HRC) hemispherical tools of 8 mm, 10 mm and 12 mm in
diameters were utilized in the investigation. The continuous
series of small plastic local deformations were carried out with



a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 9 ( 2 0 1 9 ) 1 1 3 5 – 1 1 4 91138
the help of a tool. During the forming, each point on the
contour experiences elasto-plastic loading and unloading. The
tools were finely polished by different grades of abrasive
papers. The forming fixture composed of the top plate, backing
plate, vertical columns, and bottom plate. The backing plate
with center orifice was placed below the sheet in order to easy
flow of material and prevents the bending of the sheet during
initial forming. In the process, the movement of the tool with
respect to sheet metal is controlled by machine control unit
along x, y, and z-directions. In the trial experiments, it has been
observed that performance parameters of SPIF are enhanced
by applying oil lubricant at tool sheet interface. It was also
observed that an increase in tool rotation speed and table feed
rate lead to high amount of frictional heat and burning of
lubricant which further causes early sheet fracture. Therefore,
Castrol 10W30 synthetic mineral oil is used as a lubricant as it
shows very good results while incremental forming of
aluminum alloys [7]. The oil of a viscosity of 71.5 mm2/s at
40 8C, the relative density of 0.856 g/ml at 15 8C.

The varying wall angle conical frustum (VWACF) geometry
was chosen in SPIF investigation. The commercial CAD/CAM
software such as UG-NX CAM 8.5 was used for designing 3D
geometry and generating tool path. Fig. 2(a) indicates the
development of tool path using CAM software based upon CAD
geometry. The Z-level profile tool path was adopted to
generate clockwise circular contour followed by vertical step
depth ( p) between each consecutive contour. After the
completion of each contour, the tool moves down at certain
depth called step depth and further traces next contour of
slightly lower diameter than the previous contour. Before the
start of forming, the flatness of the blank was measured and
Fig. 2 – SPIF process: (a) development of contour path from
then adjusted with the help of dial gauge indicator with least
count of 0.001 mm.

The dimensions of cone are as follows: initial wall angle (Øi)
= 308, final wall angle (Øf) = 908, major radius of cone (ri)
= 69 mm, minor radius of cone (rf) = 34 mm, radius of circular
generatrix (r) = 70 mm and total height of the cone (h)
= 60.62 mm. The dimensions of the VWACF are shown in
Fig. 2(b). In the previous literature study, it was observed that
formability decreased at higher step depth, feed rate, and tool
rotational speed. The higher thinning of sheet leads to
fracture. It has been well understood that the thickness of
the sheet decreases along the specimen depth. The reduction
in sheet thickness leads to instability point in the material
which causes crack initiation. The angle at which material
breaks due to high concentrated stresses in tool sheet interface
is called as maximum forming angle i.e. Ømax. The higher
thinning rate has been observed to be associated with shallow
parts or part with lesser maximum forming angle [11]. The
variations in the Ra and Ømax depend on inputs of the
incremental forming process. The angle at any arbitrary
fractured point can be found out by Eq. (1),

The forming angle at point c,

;c ¼ cos�1 yc
r

� �
¼ cos�1 ht�hp

r

� �
(1)

In Eq. (1), total sample height (ht) and radius of circular
generatrix (r) are the known parameters while hp is the height
of formed part from Pi (xi, yi). The Taylor-Hobson Surtronic S-
100 series profilometer was used to measure Ra. The final Ra

value was determined by taking an average of three
 CAM software, (b) geometrical details of a specimen.



Fig. 3 – The sample specimens resulting from SPIF at
different process condition.
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measurements with a sampling length (Lc) of 2.5 mm. It is an
arithmetic mean of deviation of the profile from the center line
along sampling length. The best capacity of used surface
roughness tester is �(2% + 0.004 mm). The surface roughnesses
of formed sheets were measured at three different locations
along the step depth direction at the inner side of the sheet
surface. Three forming tests were performed to ensure the
reproducibility of the results. It is always desirable to form the
product with the higher forming angle and lower Ra. The
sample specimens produced from SPIF process are shows in
Fig. 3. It indicates the change in the Ra and formability at two
different combinations of process parameters.

2.2. Material

Interest in the utilization of aluminum alloys has been
developed due to the production of lightweight vehicles with
high fuel economy. As per AA 5xxx alloys, magnesium is a
major alloying element with aluminum. The Al-Mg alloy
shows high corrosive resistance, non-heat treatable, high
strength properties. The AA5052 H32 alloy can replace existing
material in order to reduce a weight of the system by
introducing thinner sheets at the same strength level. The
mechanical properties of the material were confirmed by the
tensile test as per ASTM E8 standards in the directions of 08,
458, and 908 to the rolling direction and the properties of
AA5052 H32 are as follows: yield strength of 189.53 MPa,
ultimate tensile strength of 260.37 MPa, the maximum
elongation of 12.23%. The AA5052 H32 sheet has chemical
composition of 2.5, Mg; 0.26, Cr; 0.13, Si; 0.33, Fe; 0.08, Cu; 0.06,
other; (balance) Al was considered for investigation [34]. Since
Al-Mg alloys have high strength, low weight properties, and
Table 1 – Independent process parameters and their levels.

Parameter Unit 

Feed rate ( f) mm/min 

Step depth ( p) mm 

Tool diameter (d) mm 

Sheet thickness (to) mm 
high formability, these alloys can be utilized in aerospace and
automotive industries.

The parameters and their levels were selected based on
previous literature, machine capabilities and pilot experiments.
The one-factor-at-a-time was used to evaluate the effect of each
process parameter on the process performance. The suitable
working range of process parameters was selected in the present
study. Table 1 shows the independent parameters and their
respective levels to evaluate the SPIF performance. The goal of
this investigation is to generate a best ANN prediction model to
form the sheet metal without any defects such as higher surface
roughness, extra material thinning, material failure, etc.

3. Response surface methodology

The Design of Experiment is used to organize the experimental
run in order to get a fruitful outcome. Response surface
methodology (RSM) is a widely used statistical tool to carry out
systematic set of experiments. RSM is a collection of
mathematical and statistical techniques useful for the
modeling and analysis of problems in which a response of
interest is influenced by several variables. The input param-
eters and their levels were defined after the pilot experimental
study of each factor using one-factor-at-a-time. RSM answers
the question of how to select process parameters to obtain the
desirable value of the response with a reduced number of
experiments. The behavior of the response with the changes in
the variables can be represented by the surface not a curve,
thus, a response surface methodology is needed. One of the
most applicable and prosperous RSM's tools is Box–Behnken.
In this design, the process parameter combinations are at the
midpoints of edges of the process space and at the center [30].
These designs are rotatable (or near rotatable). The design
matrix was built considering four input parameters (feed rate,
step depth, tool diameter, and sheet thickness) at three levels.
This could be advantageous when the points on the corners of
the cube represent factor- level combinations that are
prohibitively expensive or impossible to test due to physical
process constraints. The 29 data sets were generated according
to single block Box–Behnken design with four factors at three
levels. However, for developing good ANN model, a higher
number of data is required. Therefore, additionally, 11 data
sets were generated randomly within the range of input
process parameters. Three specimens were prepared at same
forming condition of design matrix in order to minimize noise
(forming error) and corresponding responses were recorded
during the SPIF process (Table 2).
Coded process parameters

�1 0 1

600 1400 2200
0.2 0.4 0.6
8 10 12
0.8 1 1.2



Table 2 – The SPIF input and corresponding response variable data in the ANN model.

Runs Feed rate
(mm/min)

Step depth
(mm)

Tool diameter
(mm)

Sheet thickness
(mm)

Surface roughness
(mm)

Maximum forming
angle (8)

1 600 0.2 10 1 2.1 83.9
2 2200 0.2 10 1 2.3 83.45
3 600 0.6 10 1 4.2 80.8
4 2200 0.6 10 1 4.5 77.38
5 1400 0.4 8 0.8 4.8 82.68
6 1400 0.4 12 0.8 2.8 77.54
7 1400 0.4 8 1.2 4.2 82.56
8 1400 0.4 12 1.2 2.6 78.35
9 600 0.4 10 0.8 3.3 80
10 2200 0.4 10 0.8 3.5 78.98
11 600 0.4 10 1.2 3.2 82.33
12 2200 0.4 10 1.2 3.3 79.95
13 1400 0.2 8 1 3.3 85.06
14 1400 0.6 8 1 7.7 80.34
15 1400 0.2 12 1 1.9 81.51
16 1400 0.6 12 1 3.5 76.26
17 600 0.4 8 1 5.4 81.72
18 2200 0.4 8 1 5.9 80.69
19 600 0.4 12 1 2.9 78.36
20 2200 0.4 12 1 3.2 77.35
21 1400 0.2 10 0.8 2.4 83.45
22 1400 0.6 10 0.8 4.7 77.96
23 1400 0.2 10 1.2 2.1 83.11
24 1400 0.6 10 1.2 4.2 81.87
25 1400 0.4 10 1 3.2 81.2
26 1400 0.4 10 1 3.2 81.2
27 1400 0.4 10 1 3.2 81.2
28 1400 0.4 10 1 3.2 81.2
29 1400 0.4 10 1 3.2 81.2
30 1400 0.6 8 1.2 6.9 82.2
31 1400 0.2 10 1 2.15 83.95
32 1400 0.4 12 1 2.75 78.6
33 1400 0.4 8 1 5.4 82.3
34 600 0.4 12 1.2 2.6 79.44
35 2200 0.2 12 0.8 2.55 81
36 600 0.6 12 0.8 3.48 75.1
37 2200 0.2 10 0.8 2.43 83.6
38 2200 0.6 10 1.2 4.77 78.2
39 600 0.2 8 1 3.45 84.35
40 600 0.6 10 1.2 4.25 82.57
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4. Topology, structure and artificial
development of neural networks

The ANN is most powerful and simple modeling technique
based on statistical techniques which do not require any kind
of mathematical model. The complex non-linear relationship
between independent inputs and responses can be easily
predicted by neural network soft computing tool which is due
to the inspiration of biological nervous systems and function-
ing of the human brain. The neural network architecture
consists of the input layer, hidden layer, and an output layer.
All nodes of subsequent layers are connected to each other and
neurons in a hidden layer were varied. The input layer receives
the information from an external source, which is subse-
quently multiplied by the interconnection weights between it
and the adjacent hidden layer and then the products are
summed up. The summation of the product is further modified
by transfer functions, and these modified values will be an
output of first hidden layer and input for the next layer. In this
way, the signal reaches to an external receptor node(s) or
output layer. By achieving the learning ability, ANN produces
the desired responses according to the given decision variables
[35]. The ANN optimization is carried out on 'nnstart' wizard of
MATLAB R2014a software (The Mathworks Inc., Massachu-
setts, USA). The steps involved in search of optimum neural
network model have been illustrated in Fig. 4. Topology and
structure of the artificial neural system are shown in Figs. 5–7.
Finding the ANN topology with best network configurations is
the most important step in neural network modeling. Four
independent process parameters such as f, p, d, to are
considered in the input layer while Ra, Ømax are considered
in the output layer of ANN modeling. The neural networks
were developed for predicting Ra and Ømax individually.

At the start of the development stage, the process
treatment combinations and output responses are fed to
Matlab software as input and target data, respectively. The
different networks are created based on a number of neurons



Fig. 4 – Step involved in the search of optimum neural network in present investigation.
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in the hidden layer and type of transfer function at each layer.
Levenberg–Marquardt algorithm (trainlm) is used to initialize
the new weight, bias values and train the network for better
optimization. It is the most commonly used algorithm which
offers the best generalization and easy convergence in less
number of iterations [36]. The training is aimed at minimizing
the error by adjusting the weights of the network. Suppose a
function V(x) is to be minimized with respect to parameter
vector x, then Newton's method would be

Dx ¼ �½r2VðxÞ�
�1rVðxÞ (2)

In Eq. (2), r2VðxÞ is the Hessian matrix of the error function
at particular weights and biases and rVðxÞ is the gradient of an
error function. It is assumed that VðxÞ is the sum of square
function and is expressed by Eq. (3),
VðxÞ ¼
XN
i¼1

e2i ðxÞ (3)

Eq. (4) reveals Marquardt–Levenberg modification to the Gauss–
Newton method and it can be mathematically represented as,

Dx ¼ ½JTðxÞJðxÞ þ mI��1
JTðxÞeðxÞ (4)

The key step in this algorithm is the computation of
Jacobean matrix (i.e., JðxÞ) by a simple modification to back
propagation algorithm. The parameter m is multiplied by some
factor (b) if a step would result in an increased VðxÞ and is
divided by b if a step would result in decrease in VðxÞ. The
direction in which the search is performed is described by a
single iteration of an algorithm which is shown in Eq. (5).



Fig. 5 – The structure of ANN (4-n-1) for average surface
roughness.
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xkþ1 ¼ xk�½JTðxÞJðxÞ þ mI��1
JTðxÞeðxÞ (5)

The LM is an approximation to the Newton's method and
well suited to the training of the neural architecture [4]. By this
algorithm, the improvement in the performance of the neural
network in terms of a sum of square error value and epochs
required to train the network were found to be reduced. In all
the developed neural networks adaptation learning function
and performance function are employed as LEARNGD and MSE
respectively. According to number of parameters in input and
output layer, the following two types of architecture were
studied,

1. The 4-x-1 topology (Figs. 5 and 6) is selected in the modeling
of neural networks where, 4 indicates number of neurons in
the input layer ( f, p, d, to), 'x' indicates number of neurons in
the hidden layer, 1 indicates number of neurons in the
output layer (Ra or Ømax).
Fig. 6 – The structure of ANN (4-n-1
2. The 4-x-2 topology (Fig. 7) is similar to 4-x-1 except for number
of neurons in the output layer. '<!– no-mfc –>2'<!– /no-mfc –>

indicate the output layer neurons (Ra and Ømax).

In order to determine the optimal architecture, the trial-
and-error approach is carried out by adjusting the number of
neurons in the hidden layer. The correct number of neurons
has to be selected to avoid over-fitting due to more neurons
and under fitting due to fewer neurons. The number of
neurons in the hidden layer gradually increases from 4 to 12
and effect on the predicted response is recorded. Nine different
neural networks such as (4-4-1, 4-5-1, 4-6-1, 4-7-1, 4-8-1, 4-9-1,
4-10-1, 4-11-1, 4-12-1) are developed by varying number of
neurons in the hidden layer. The similar procedure was
adopted in the case of 4-x-2 topology. During modeling, the
hyperbolic tangent sigmoid function 'tansig,' log sigmoid
transfer function 'logsig,' and pure linear function 'purelin'
have been utilized as the transfer function. The tansig and
logsig transfer functions can be calculated by Eqs. (6) and (7),
respectively.

tansigðnÞ ¼ 2
1 þ e�2n �1 (6)

logsigðnÞ ¼ 1
1 þ e�n (7)

To have a good correlation between predicted and target
values, the pure linear transfer function (purelin) is always
defined for the output layer [37]. Out of overall data the 70% of
the total data were used for training, 15% for validation, and
15% for testing [38]. Therefore, 28 data were used for training, 6
data for validation, and 6 data for testing. Since the result of
the training phase majorly depends on the initialization of the
interconnection weights and sampling of data, each ANN was
trained five times. Confirmation of ANN results with target
) for maximum forming angle.



Fig. 7 – The structure of ANN (4-n-2) for two output neurons i.e. average surface roughness and maximum forming angle.
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values is carried out by employing a new input data set which
was not used in training. After the training is over, the network
generates an output file for all the predicted responses for given
input treatments. In addition to this, one more file is generated
which accounts an error between predicted and target values.

4.1. Feed forward back propagation network

The multilayer feed forward back propagation (FFBP) with
three transfer functions (tangent sigmoid transfer function,
log sigmoid transfer function, pure linear transfer function) are
selected for a hidden layer of ANN. Data obtained from
experimental factors i.e. f, p, d, to, Ra, Ømax are provided to a
neural network in the learning stage. The network learning is
done to minimize the difference between predicted and the
target value. If the difference is quite large, then the connector
weights initialize to a new value, and network predicts another
output. The error is propagated backward till it reaches an
acceptable value. During the ANN architecture, the number of
neurons in the hidden layer and type of transfer function for
each layer are the critical design parameters.

4.2. Mathematical representation of neural networks

The hidden layer includes several processing units connected
with variable weights called neurons. Each neuron is con-
nected to another neuron with a certain weight in the network.
An input signal xj connected to neuron k is multiplied by the
synaptic weight wkj. The processing of neural network has
been mathematically expressed by Eqs. (8) and (9),

uk ¼
Xm
j¼1

ðwkj�xjÞ (8)

yk ¼ f ðuk þ bkÞ (9)
where, x1, x2, . . ., xm are input signals; wk1, wk2, . . ., wkm are the
synaptic weights of neuron k; uk is linear combiner due to the
input signals; bk is the bias; f is the activation function; and yk is
the output signal of the neuron.

During the learning stage, predicted output is compared
with target output, and the connector weights inside the
network are adjusted to minimize the difference. The
network forecasts the output according to the knowledge it
has gained. The training of a network is completed when the
validation error starts to increase in order to avoid over
learning of network and corresponding mean squared error
(MSE) value was noted. The performance of a neural network
is evaluated by MSE and coefficient of correlation (R value)
[34]. The co-relationship is said to be strong if the predicted
and target values are very close to the line for the entire
datasets. The good ANN architecture is selected based on
lower MSE and higher R values. The minimization of MSE was
carried out by updating the weights through gradient descent
method. The MSE value can be found out by Eq. (10),

MSE ¼ 1
N

XN
i¼1

ðypi�ytiÞ2 (10)

where ypi and yti are network prediction and a target values for
ith observation respectively, N is the total number of observa-
tions. The R value is used to show a relationship between
predicted and random values. The relationship is said to be
close if R value is nearly equal to ‘‘1’’ while the relationship is
said to be random if R value is nearly equal to ‘‘0’’.

5. Results and discussion

In the paper, the various neural network models were
developed based on a number of neurons in the hidden layer
and type of transfer functions. The modeling of SPIF process is
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carried out with the help of feed forward back propagation
ANN network architecture. Figs. 5–7 show the schematic
representation of an artificial neural network to predict Ra and
Ømax. To get a good fit model, the various possible combina-
tions of transfer functions and gradually increasing the
number of neurons in the hidden layer is utilized in this
investigation. A deviation of predicted results from experi-
mental results is given in the form of mean absolute
percentage error (MAPE) [38–40]. It can be formulated by the
following Eq. (11),

MAPE ¼ 1
N

XN
i¼1

ypi�yti
yti

����
����

� �
�100 (11)

5.1. ANN model for the individual response (Ra or Ømax)

In this study, an attempt has been made to formulate a
prediction model between key SPIF process parameters and
requested response variable. The three neural network based
models were developed by considering a different number of
neurons and three different combinations of transfer func-
tions. These models revealed accuracy to different degrees.
Table 3 reflects the R value and MSE for Ra prediction model '3-
n-<!– no-mfc –>1'<!– /no-mfc –> when trained by using FFBP
network and Levenberg–Marquardt algorithm. It is observed
Table 3 – Summary of trial and error method for prediction of 

Hidden layer neurons Transfer function 

Layer 1 Layer 2 Traini

4 TANSIG PURELIN 0.9959
5 0.9982
6 0.9939
7 0.9975
8 1 

9 1 

10 0.996
11 0.9999
12 0.9999
4 LOGSIG PURELIN 0.9980
5 0.9991
6 0.9960
7 0.9957
8 0.9971
9 0.9986
10 0.9999
11 0.9968
12 0.9972
4 PURELIN PURELIN 0.9068
5 0.9059
6 0.9201
7 0.9048
8 0.9052
9 0.9115
10 0.9066
11 0.9056
12 0.9038

MSE: mean square error, FFBP: feed forward back propagation, TANSIG
function, PURELIN: linear transfer function. Bold values refer to the best
that lowest average MSE value is obtained with ten neurons in
the hidden layer. The network 4-10-1 gives highest R value of
0.99807 and lowest MSE value of 0.0291 out of all the ANN
models, and the results inferred that the neural network with
ten neurons with a tangent sigmoid transfer function in the
hidden layer can predict an Ra closer to the observed target
value. In the optimum ANN model for the Ra, the tansig and
pureline transfer functions were employed in the hidden and
output layer, respectively. The corresponding R values for
training, testing and validation were 0.99699, 0.99851, and
0.99884, respectively. The R value lies between 0 and 1. If it is 1,
then it shows perfect correlation, and in a case of 0, it implies
no relationship between predicted and actual response. The
trained network was tested again for additional data, and
corresponding MAPE was calculated. The lowest value of MAPE
is expected from optimum ANN network. Fig. 10(a) shows the
relation between the predicted and target Ra values by
performing confirmation experiments. The mean error was
calculated based on the results of trial experiments in order to
verify the practical suitability of developed ANN model. It has
been observed that MAPE is found to be 5.97% and the R2 value
of 0.973. Hence, the 4-10-1 ANN model is confident enough to
forecast the responses for unknown input process variables.

Table 4 shows the R-value and MSE in predicting Ømax for
SPIF forming process by the 3-n-1 model that is trained by
Levenberg–Marquardt algorithm with FFBP type of network.
The network 4-9-1 gives the highest R-value of 0.99913 and
Ra using 4-n-1 ANN model.

R values MSE

ng Testing Validation All

9 0.99127 0.99086 0.99085 0.109
2 0.94621 0.95633 0.98941 0.118
7 0.96501 0.99407 0.98981 0.05
2 0.98026 0.92947 0.98373 0.1589

0.9535 0.98566 0.99734 0.0488
0.96447 0.95523 0.97966 0.1943

99 0.99851 0.99884 0.99807 0.0209
 0.98033 0.95716 0.98262 0.2802
9 0.96939 0.9911 0.98841 0.2176
9 0.9875 0.90347 0.98166 0.1709
7 0.97899 0.95501 0.98993 0.1449
8 0.97639 0.95696 0.99133 0.0409
8 0.98875 0.90908 0.99231 0.0399
6 0.90341 0.99045 0.98947 0.0502
7 0.91403 0.98491 0.99649 0.037
 0.95016 0.99096 0.99184 0.0428
3 0.95063 0.93303 0.98052 0.213
6 0.98006 0.94373 0.98384 0.1237
7 0.96223 0.99032 0.91156 0.1451
9 0.94878 0.95155 0.91187 0.1335
9 0.9439 0.96901 0.91112 0.145
5 0.92672 0.99667 0.9108 0.1719
9 0.92068 0.95955 0.91138 0.0908
 0.92418 0.96319 0.91094 0.0929
2 0.94263 0.97013 0.91189 0.179
3 0.90967 0.95908 0.91177 0.1524
 0.93619 0.93725 0.9109 0.2673

: tangent sigmoid transfer function, LOGSIG: log sigmoid transfer
 values.



Table 4 – Summary of trial and error method for prediction of Ømax (i.e. formability) using 4-n-1 ANN model.

Hidden layer neurons Transfer function R values MSE

Layer 1 Layer 2 Training Testing Validation All

4 TANSIG PURELIN 0.99859 0.9148 0.97839 0.97586 0.5819
5 0.99766 0.96545 0.96117 0.98499 0.4442
6 0.9991 0.99701 0.99643 0.99162 0.17326
7 0.99442 0.96677 0.94984 0.98239 0.4008
8 0.99416 0.92889 0.97261 0.98167 0.2423
9 0.9995 0.99924 0.99648 0.99913 0.0281
10 0.9982 0.81999 0.9689 0.987 0.3195
11 0.99997 0.92912 0.9839 0.98577 0.1633
12 0.99996 0.98666 0.92301 0.97722 1.048
4 LOGSIG PURELIN 0.97734 0.93575 0.98654 0.97191 0.4189
5 0.99975 0.92716 0.97281 0.98501 0.4428
6 0.99618 0.95673 0.94306 0.98884 0.2355
7 0.99954 0.96558 0.96223 0.98337 0.4841
8 1 0.97983 0.99568 0.99481 0.1035
9 1 0.99577 0.9545 0.97974 1.4747
10 0.99116 0.97769 0.95861 0.98629 0.2656
11 0.99615 0.99931 0.97748 0.97364 0.7268
12 1 0.97832 0.90949 0.97095 1.2447
4 PURELIN PURELIN 0.89387 0.90736 0.91021 0.88986 1.0138
5 0.85965 0.94703 0.98103 0.89557 1.2943
6 0.89842 0.92706 0.90416 0.89413 1.2287
7 0.86834 0.9198 0.96006 0.89377 0.9297
8 0.86459 0.92397 0.97347 0.89543 1.0487
9 0.91686 0.843 0.8506 0.89652 1.0638
10 0.89611 0.92495 0.9368 0.89629 1.2074
11 0.86877 0.96827 0.97738 0.89642 1.0185
12 0.87592 0.92799 0.89041 0.89058 1.0103

MSE: mean square error, FFBP: feed forward back propagation, TANSIG: tangent sigmoid transfer function, LOGSIG: log sigmoid transfer
function, PURELIN: linear transfer function. Bold values refer to the best values.

Fig. 8 – Performance plot at 4-7-2 (logsig-purelin) network
model.
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lowest MSE value of 0.0281, and the results inferred that the
neural network with nine neurons in the hidden layer with
tangent sigmoid transfer function predicts the Ømax closer to
the observed target value. In the optimum ANN model for the
Ømax, the tansig and pureline transfer functions were
employed in the hidden and output layer, respectively. The
R values for training, validation, and testing were 0.9995,
0.99924, and 0.99648, respectively. The mean error was
calculated based on trial experiments in order to verify the
practical suitability of developed ANN model. Fig. 10(b) shows
the predicted vs. actual response of Ømax with MAPE of 0.3%
and the R2 value of 0.955. Hence, the 4-9-1 ANN model is
confident enough to forecast the responses for unknown input
process variables.

From the discussion on the results of different models,
done so far, it is determined that the tansig and purelin
transfer functions in hidden and output layer, respectively are
recommendable since they revealed the lowest average MSE in
the case of Ra and Ømax.

5.2. ANN model for two responses in the output layer
(Ra and Ømax)

In the study, Figs. 8 and 9 and Table 5 illustrate the best
capability of 4-7-2 NN model in predicting Ra and formability
together with log sigmoid transfer function. The R-value is
reported to be 0.99999, MSE of 0.05719 which is an indication of
good fit. It is the lowest value of MSE over the all investigated
neural networks in a present study. The R values of 1, 0.99994,
and 0.99998 corresponding to training, testing, and validation,
respectively. The logsig is found to be more efficient than
tansig and purelin transfer functions to get accurate ANN
structure with two neurons in the output layer.

Fig. 10(c, d) reveals that the R2 and MAPE are found to be
94.2% and 8.1521%, respectively in case of Rawhereas it is 0.927
and 0.769% for Ømax, respectively. The results showed an



Fig. 9 – Regression plot of 4-7-2 (logsig-purelin) network model (training, testing, and validation).

Table 5 – Summary of trial and error method for prediction of Ra and Ømax (i.e. formability) simultaneously using 4-n-2 ANN
model.

Hidden layer neurons Transfer function R values MSE

Layer 1 Layer 2 Training Testing Validation All

4 TANSIG PURELIN 0.99985 0.99961 0.99982 0.9998 0.6988
5 0.99987 0.9998 0.99989 0.99983 0.467
6 0.99997 0.99997 0.99994 0.99996 0.2127
7 1 0.99965 0.99988 0.99992 0.4076
8 0.99996 0.99981 0.99986 0.99992 0.4173
9 1 0.99962 0.99985 0.99989 0.4845
10 0.99985 0.99984 0.99987 0.99983 0.4533
11 0.99989 0.99954 0.99979 0.99981 0.7473
12 0.99985 0.99941 0.99966 0.99975 1.0513
4 LOGSIG PURELIN 0.99993 0.99992 0.99994 0.99993 0.1935
5 0.99998 0.99935 0.9998 0.99982 0.5694
6 0.9999 0.99992 0.99982 0.99989 0.5627
7 1 0.99994 0.99998 0.99999 0.0572
8 0.99997 0.99933 0.99969 0.99979 1.3523
9 1 0.99973 0.99981 0.99989 0.653
10 0.99991 0.99991 0.9999 0.99991 0.3091
11 0.99988 0.99958 0.99962 0.99979 1.2252
12 0.9999 0.99998 0.9999 0.99991 0.2953
4 PURELIN PURELIN 0.99975 0.99993 0.99964 0.99975 1.2993
5 0.99982 0.99969 0.99959 0.99977 1.2815
6 0.99984 0.99964 0.99956 0.99974 1.33
7 0.99982 0.99985 0.99978 0.99977 1.2081
8 0.99976 0.99989 0.99962 0.99975 1.2256
9 0.99976 0.99995 0.99962 0.99976 1.1757
10 0.99978 0.99985 0.99957 0.99976 1.2638
11 0.9998 0.99962 0.9996 0.99974 1.2563
12 0.99978 0.99989 0.99959 0.99976 1.2415

MSE: mean square error, FFBP: feed forward back propagation, TANSIG: tangent sigmoid transfer function, LOGSIG: log sigmoid transfer
function, PURELIN: linear transfer function. Bold values refer to the best values.
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Fig. 10 – ANN prediction vs. actual response data (a) 4-n-1 model of surface roughness (b) 4-n-1 model of maximum forming
angle (c) 4-n-2 model of surface roughness (d) 4-n-2 model of maximum forming angle.
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excellent co-relationship between input and output parame-
ters and generated ANN model can predict the output with the
higher confidence level for a new set of inputs.

6. Conclusions

In the present study, the key responses and process
parameters such as table feed rate, step depth, tool diameter
and sheet thickness of SPIF process were successfully modeled
with feed forward back propagation method using the artificial
neural network. The best-predicted model is selected after
evaluating a large number of neural networks with different
training functions and a number of neurons into the hidden
layer. The following conclusions were made out of the
investigation

1. The Ra and Ømax are possible to control in single point
incremental forming using developed neural network
architecture.

2. The optimized neural network for predicting Ra consist
of tansig and pureline transfer functions in the hidden
and output layer respectively with 10 number of neurons
(4-10-1) while 9 number of neurons in the hidden layer (4-9-
1) in the case of Ømax. It was observed that overall R-
value between predicted and target data is 0.99807 and
0.98913 in the case of Ra and Ømax, respectively
indicating close relationship for the selected neural
network model.
3. The developed 4-10-1 and 4-9-1 ANN networks are reliable
to forecast Ra and Ømax in the case of unexposed data with
an absolute average percentage error of 5.97% and 0.3%
respectively.

4. The 4-7-2 model with logsig (hidden layer)-purelin (output
layer) transfer function is found to be appropriate for
predicting Ra and Ømax simultaneously for any specified
combination of table feed, step depth, tool diameter and
sheet thickness. The correlation coefficient of 0.99999, MSE
of 0.05719 reflects an excellent relationship between input
and output process variables.

5. The validity of neural network is confirmed by the
additional experiments. The confirmation results show
that the ANN predictions are in good agreement with
experimental results.

It has been inferred that the responses of this study were
effectively predicted by ANN. The huge economical benefits,
higher predictability, short simulation time make ANN to be a
promising modeling tool as demonstrated here. This could
benefit to a forming industry, particularly research and
development phase where cost and time reduction is a major
objective.
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