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Analytical and experimental investigation on the
free vibration of a floating composite sandwich
plate having viscoelastic core
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1. Introduction

Lightweight composite sandwichpanels arewidely used as the
main load-carrying body of aerospace, civil, and marine
vessels. Composite sandwich plates consisting of two thin
stiff composite faces and a thicker flexible core layer show
proper behavior under bending due to an increased flexural
stiffness. In addition, significant viscoelastic behavior of

sandwich plates helps the damping of vibration and noise.
The viscoelastic behavior of the sandwich plates is mainly due
to their flexible core material. Several different materials used
for sandwich core in marine applications like PVC foams are
known to be viscoelastic materials having time- and frequen-
cy-dependent properties. The viscoelastic behavior of the core
material decreases the natural frequencies of the sandwich
plate in free vibration. On the other hand, the composite
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a b s t r a c t

This paper focuses on the free vibration analytical solution of a composite sandwich plate

consisting of woven carbon laminated faces and a viscoelastic foam core. In addition to the

dry condition, a case of floating on bounded water is considered for the sandwich plate not

only in analytical work but also in verification experiments. The equations of motion for the

first-order shear-deformation plate in contact with the fluid are derived by using Hamilton's

principle, and analytically solved using Navier's procedure. Bounded water boundary con-

ditions and velocity potential function are used to describe the fluidmotion. The viscoelastic

properties of a marine PVC foam core are extracted from dynamic mechanical analysis.

Frequency response function (FRF) method is applied in modal testing for measuring the

natural frequencies of the dry and wet sandwich plates. Experimental results demonstrate

the validity of the analytical results. The effects of the foam core behavior, core thickness,

plate dimension ratio, and the fluid density on the natural frequencies are examined and

discussed. The decrease of the fundamental mode natural frequency with the presence of

the viscoelastic foam core is more prominent for the dry sandwich plate with respect to the

wet one already damped by water.
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sandwich body of a marine structure may have different
natural frequencies in and out of water, known as dry and wet
natural frequencies. The decrease of the natural frequencies is
attributed to the effect of the added mass of water.

The free vibration of composite sandwich plates has been
studied in the previous works. Cupial and Niziol [1]
numerically calculated the natural frequencies and loss
factors for a plate assuming simplified viscoelastic properties
for the core layer only in a dry condition. Kant and
Swaminathan [2] derived an analytical solution to the natural
frequency analysis of simply supported dry sandwich plates
considering only elastic behavior for the face and core
materials. A discrete layer annular finite element was
employed to derive the equations of motion for a three-
layered annular dry sandwich plate with a viscoelastic core
layer by Wang and Chen [3]. Kim [4] examined the dynamic
behavior of dry composite laminate plates undergoing
moderately large deflection by considering the viscoelastic
properties of the material. Xu et al. [5] presented a simplex
optimization analysis method of dry metal structures with
simple viscoelastic dampers. Chen [6] analyzed the non-
axisymmetric vibration and stability problem of the rotating
dry sandwich plate with a simple viscoelastic core layer by
using the finite element method. Civalek [7] developed a
discrete singular convolution method for the vibration
analysis of moderately thick symmetrically dry composite
laminate plates based on the first-order shear deformation
theory.

The first-order shear deformation theory (FSDT) has been
found to yield accurate results in the non-local problems of
sandwich structures, such as buckling and free vibration [8]. A
comparison between higher-order and first-order shear
deformation theories for analyzing dry laminated composite
stiffened plates was presented by Bhar et al. [9] using the finite
element method. They clearly showed that the higher-order
shear deformation theory tenders very close results with first-
order shear deformation theory for un-stiffened even thick
laminated composites. However, Bhar et al. [9] found signifi-
cant differences between these two theories for stiffened
composite laminates which was attributed to the realistic
variation of transverse shear through the thickness due to the
presence of the stiffeners. Several works have reasonably used
the first-order shear deformation theory for polymeric
laminated composites as well as functionally graded shells
enhanced with composites, not only as flat plates [10] but also
as annular ones [11].

Dynamic response of orthotropic viscoelastic laminated
composite plates was investigated by Assie et al. [12] using an
efficient numerical algorithm in time domain.Mahmoudkhani
et al. [13] studied the free vibration and transverse response of
dry sandwich plates with viscoelastic cores under wide-band
random excitations. Kramer et al. [14] investigated the effects
of material anisotropy and added mass on the free vibration
response of elastic cantilevered composite laminate plates via
combined analytical and numerical modeling. Yang et al. [15]
experimentally investigated vibration and damping perfor-
mances of composite pyramidal truss sandwich panels with
viscoelastic layers embedded in the face layers. Khorshid and
Farhadi [16] analyzed the vibration of an elastic composite
laminate plate in contact with a bounded fluid.

Due to the lack of the analytical solution, the effect of the
compressible flow on composite as well as functionally graded
plates has been numerically examined [17]. The free vibration
of isotropic viscoelastic plates on viscoelastic medium was
analytically investigated by Kiasat et al. [18]. Avcar [19]
examined separate and combined effects of rotary inertia,
shear deformation and material non-homogeneity (MNH) on
the values of natural frequencies of the simply supported
beam. Yang et al. [20] provided a unified yet accurate solution
for vibration and damping analysis of simple viscoelastic and
functionally graded dry sandwich plates with arbitrary
boundary conditions. Finally, Kahya and Turan [21] presented
a finite element model based on the first-order shear
deformation theory for free vibration and buckling of
functionally graded beams.

In the present work, a composite sandwich plate
consisting of woven carbon laminated faces and a low
density PVC foam core is subjected to an experimental
modal analysis. The measurements are done on a free-free
square sandwich plate in both dry and wet conditions so
that only one side of the plate is in contact with water.
Frequency response function (FRF) method is applied to
extract the natural frequencies of the sandwich plate. On
the other hand, the equations of motion for the first-order
shear-deformation plate coupled with the irrotational
bounded water are analytically solved using Navier's
solution to obtain the natural frequencies. The viscoelastic
properties of the PVC foam core including master curves for
the relaxation moduli are experimentally extracted using
dynamic mechanical analysis as in our recent work on
compound materials [22]. The analytical solution of the
equations of motion introduces direct relations between the
natural frequencies and the mechanical and physical
properties of the sandwich and water, applicable in the
modern sandwich marine vessels. Experimental results
demonstrate the validity of the analytical results. The
effects of the core viscoelastic properties and thickness,
plate dimension ratio, and fluid density on the natural
frequency are examined and discussed.

2. Equations of motion and analytical solution

The governing equations for the free vibration of a thick
sandwich plate are derived using the first-order shear-
deformation plate theory. The ratio of the thickness to the
side length of sandwich plates is usually more than 1–15, and
thus the shear deformation during bending causes a signifi-
cant deviation from simple plate theory. On the other hand, no
discontinuity is assumed to exist at the interfaces between the
core and the laminate face layers. For small-amplitude
vibration of symmetric sandwich plates considered in the
present work, no interface failure or delamination, and no
deviation of the neutral plane is expected. Furthermore, the
core material is regarded to be viscoelastic having frequency-
dependent storage and loss moduli which results in a
significant damping behavior of the sandwich plate. Because
of the presence of stiff fibers in the composite laminates, the
faces show negligible viscoelastic behavior, and thus the
laminates are assumed to be elastic.
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2.1. Displacement field in thick plates

Based on the first-order shear-deformation theory, the
displacement components u, v and w in x, y and z directions,
respectively, in a thick vibrating plate of Fig. 1 are functions of
the coordinates and time t as in Eq. (1). The origin of the
orthonormal coordinate system (x, y, z) is chosen at the mid-
surface of the sandwich plate.

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zuxðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zuyðx; y; tÞ
wðx; y; tÞ ¼ w0ðx; y; tÞ

9=
; (1)

The functions ux and uy are rotations of the normal to the
middle plane about y and x axes, respectively. Also u0;v0;w0; ux

and uy are defined at the reference plane, z = 0. By substituting
Eq. (1) into the strain–displacement kinematic relations, the
strain components are obtained as in Eq. (2).

exx ¼ e1 ¼ ex0 þ zkx ; eyz ¼ e4 ¼ @w0

@y
þuy ¼ ’y

eyy ¼ e2 ¼ ey0 þ zky ; exz ¼ e5 ¼ @w0

@x
þux ¼ ’x

sz ¼ s3 ¼ 0 ; exy ¼ e6 ¼ exy0 þ zkxy

(2)

where

ðex0; ey0; exy0Þ ¼ @u0

@x
;
@v0
@x

;
@u0

@y
þ @v0

@x

� �
ðkx; ky; kxyÞ ¼ @ux

@x
;
@uy

@y
;
@ux

@y
þ @uy

@x

� � (3)

2.2. Constitutive equations for laminated plates

The reduced stress tensor in any unidirectional ply of the
upper and lower laminate faces, in the ply principal coordi-
nates, are expressed as

sf gðkÞ ¼ Q½ �ðkÞ ef gðkÞ;

s1

s2

s4

s5

s6

8>>>><
>>>>:

9>>>>=
>>>>;

ðkÞ

¼

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G12

2
66664

3
77775
ðkÞ

e1
e2
e4
e5
e6

8>>>><
>>>>:

9>>>>=
>>>>;

(4)

The superscript (k) refers to the kth plywithin the laminate.
The terms Qij and Gij represent the stiffness constants for a
unidirectional orthotropic ply in its principal coordinates.
Eq. (4) is transformed to the sandwich plate coordinates (x, y, z)
in which the strain components (2) are substituted to obtain

s0f gðkÞ ¼ Q 0½ �ðkÞ e0f gðkÞ;

s1

s2

s4

s5

s6

8>>>><
>>>>:

9>>>>=
>>>>;

ðkÞ

¼ Q 0½ �ðkÞ
ex0
ey0
’g
’x
exy0

8>>>><
>>>>:

9>>>>=
>>>>;

þ z Q 0½ �ðkÞ
kx
ky
0
0
kxy

8>>>><
>>>>:

9>>>>=
>>>>;
; zk�1 < z< zk (5)

where Q 0½ �ðkÞ is the 5 � 5 stiffness matrix of the kth layer
transformed into the plate coordinates. The distributed force
and moment resultants applied on the laminate side lengths
are obtained by integrating the stresses over the thickness of
the laminate as below

Nf g ¼

Nx

Ny

Qy
Qx
Nxy

8>>>><
>>>>:

9>>>>=
>>>>;

¼
Xn
k¼1

Z zk

zk�1

s1

s2

s4

s5

s6

8>>>><
>>>>:

9>>>>=
>>>>;
dz

2
66664

3
77775

¼ A½ �

ex0
ey0
’y
’x
exy

8>>>><
>>>>:

9>>>>=
>>>>;

þ B½ �

kx
ky
0
0
kxy

8>>>><
>>>>:

9>>>>=
>>>>;

(6)

Mf g ¼

Mx

My

Myz

Mxz

Mxy

8>>>><
>>>>:

9>>>>=
>>>>;

¼
Xn
k¼1

Z zk

zk�1

z

s1

s2

s4

s5

s6

8>>>><
>>>>:

9>>>>=
>>>>;
dz

2
66664

3
77775

¼ B½ �

ex0
ey0
’y
’x
exy

8>>>><
>>>>:

9>>>>=
>>>>;

þ D½ �

kx
ky
0
0
kxy

8>>>><
>>>>:

9>>>>=
>>>>;

(7)

The matrices [A], [B] and [D] are the composite laminate
stiffness matrices defined as follows

Aij Bij Dij
� � ¼

Xn
k¼1

Z zk

zk�1

Q 0
ij
ðkÞ

1 z z2
� �

dz ði; j

¼ 1; 2;3;4;5Þ; (8)

where the distance zk � zk�1 is the thickness of a single ply of
the laminate faces.

2.3. Constitutive equations for the viscoelastic foam

A viscoelastic material is characterized by its creep or
relaxation behavior under a constant-load or a constant-
deformation excitation, respectively. Under a harmonic
excitation, the viscoelastic material is described by its storage

[(Fig._1)TD$FIG]

Fig. 1 – The coordinate system for the sandwich plate.
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and loss moduli. On the other hand, the viscoelastic behavior
presents itself by material damping in a free vibration
excitation. Within the limits of linear viscoelasticity, the
Boltzmann superposition principle is used to derive the stress–
strain constitutive relation based on the relaxation functions,
Cij(t), of the material

siðtÞ ¼
Z t

�1
Cijðt�tÞ dejðtÞ

dt
dt (9)

where ej(t) = 0 for �1 < t < 0 and the components of the
relaxation functionmatrix Cij are combinations of the Young's
and shear relaxation moduli. In a damped free vibration the
harmonic strain applied to the viscoelastic material may be
described by an exponential function of time with a complex
frequency as below:

ejðtÞ ¼ e0je
v�t; v� ¼ ð�bvþ ivÞ (10)

where e0j, v*, v and b are the initial amplitude, complex
frequency, natural frequency and damping factor, respective-
ly. The negative real part of the complex frequency introduces
the decreasing amplitude of the damped vibration. By substi-
tuting Eq. (10) into Eq. (9) and using h = t � t, the stress is
obtained as

siðtÞ ¼
Z 1

0
CijðhÞð�bvþ ivÞe0je

ð�bvþivÞðt�hÞ
dh (11)

By applying harmonic functions for e�(�bv+iv)h in the
integration, and extracting e(�bv+iv)t from the integration on
h, the above equation changes to

siðtÞ ¼
Z 1

0
vCijðhÞebvhðsinðvhÞ�bcosðvhÞÞdh

�

þi
Z 1

0
vCijðhÞebvhðcosðvhÞ þ bsinðvhÞÞdh�e0jeð�bvþivÞt (12)

Since the effect of the harmonic terms containing the small
damping factor, b, is negligible in the integrations, the
integrals in Eq. (12) may be reduced to the following form:

siðtÞ ¼
Z 1

0
vCijðhÞsinðvhÞdh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C0
ijðvÞ

þi
Z 1

0
vCijðhÞcosðvhÞdh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C00
ijðvÞ

2
66664

3
77775ejðtÞ (13)

The two integrals in the bracket of Eq. (13) are known as the
storage and loss moduli, C0

ijðvÞ and C00
ijðvÞ respectively, which

are functions of the frequency. The combination of these two
moduli indicates the complex modulus of the viscoelastic
material as shown below:

C�
ijðvÞ ¼ C0

ijðvÞ þ iC00
ijðvÞ and then siðtÞ ¼ C�

ijðvÞejðtÞ (14)

In expanded matrix notation, all nonzero components of
stress in Eq. (14) are written as:

s1ðtÞ
s2ðtÞ
s4ðtÞ
s5ðtÞ
s6ðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼

C�
11ðvÞ C�

12ðvÞ 0 0 0
C�
21ðvÞ C�

22ðvÞ 0 0 0
0 0 C�

44ðvÞ 0 0
0 0 0 C�

55ðvÞ 0
0 0 0 0 C�

66ðvÞ

2
66664

3
77775�

e1ðtÞ
e2ðtÞ
e4ðtÞ
e5ðtÞ
e6ðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(15)

The stress–strain relation for the viscoelastic core material
in Eq. (15) is applied as a single layer in the Eqs. (6) and (7) to
form the complete load-deformation relations for the sand-
wich plate.

2.4. Hydrodynamic model

The fluid is assumed to be homogeneous, incompressible,
inviscid, irrotational, and its motion is small, because of the
small amplitude of the plate vibrations. Therefore, the velocity
potential f(x, y, z, t)must satisfy Laplace's equationgivenby [23]:

r2f ¼ @2f

@x2
þ @f

@y2
þ @2f

@z2
¼ 0 (16)

The boundary conditions at the fluid/tank rigid wall
interfaces are given as zero velocities,

@f

@x
¼ 0 on x ¼ 0; c

@f

@y
¼ 0 on y ¼ 0;d

@f

@z
¼ 0 on z ¼ a

8>>>>><
>>>>>:

(17)

The boundary condition at the fluid/sandwich plate
interface is expressed as equal velocities for the fluid and
the vibrating plate,

@f

@z
j
Z¼0

¼ @Wðx; y; tÞ
@t

(18)

In order to solve the Laplace's differential equation, a
separation of variable form is assumed for the velocity
potential function,

fðx; y; z; tÞ ¼ Gðx; y; tÞFðzÞ (19)

where F(z) and G(x,y,t) are two functions to be determined. By
substituting Eq. (19) into the boundary condition (18), we arrive
at the following equation

Gðx; y; tÞ ¼ 1
dF
dzjz¼0

@W
@t

(20)

Eq. (20) describes themovement of the fluid at any point on
the interface linked to the movement of the plate. After
substituting Eq. (20) into Eq. (19), the following expression for
the potential function is derived
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fðx; y; z; tÞ ¼ FðzÞ
dF
dzjz¼0

@W
@t

(21)

Substituting Eq. (21) into Laplace's equation described in
the Eq. (16) leads to the following differential equation

d2FðzÞ
dz2

�m2FðzÞ ¼ 0 (22)

The general solution of Eq. (22) is given as

FðzÞ ¼ C1emz þ C2e�mz (23)

where C1 and C2 are two unknown integration constants and m

is determined after solving the differential equation of the
velocity potential function using the boundary conditions in x
and y directions. The general solution of G(x, y, t) is given as

Gðx; y; tÞ ¼ C cosðlxÞ cosððm2�l2ÞyÞTðtÞ (24)

where l ¼ p
c, m ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c2
þ 1

d2

q
and C is constant.

Applying boundary conditions (17) and (18) into Eq. (23) and
using Eq. (21), the potential function can be derived as follows

fðx; y; z; tÞ ¼ 1
m

emðz�2aÞ þ e�mz

e�2ma�1

� 	
@W
@t

(25)

The kinetic energy of the fluid with a density of rw is
expressed using the above velocity potential function

Tw ¼ 1
2
rw

Z
V

ðr’Þ2dV (26)

By applying Green's theorem, the volume integral on the
fluid domainV, is transformed into a surface integral over the
plate surface G as follows

Tw ¼ � 1
2
rw

Z
G

’
@’

@z
Þ

�
j
z¼0

dG (27)

2.5. Hamilton's principle

Hamilton's principle for free vibration analysis of a wet plate
can be written as follows:

d

Z t

0
T þ Tw�U½ �dt ¼ 0 (28)

where U and T are the potential strain energy and kinetic
energy of the plate respectively, and Tw the fluid kinetic energy
as in Eq. (27). Substituting energy expressions into the Hamil-
ton's principle, the following relation is obtained

0¼ R t
0 �R h=2�h=2

R
AðsxdexþsydeyþsxydexyþksyzdeyzþksxzdexzÞdAdz

h
þ1
2

Z h=2

�h=2

Z
A

rd ðuÇÞ2þðvÇÞ2þðwÇÞ2
h i

dAdzþ dTw

3
5dt

(29)

where r is the density for each layer, and k the shear correction
factor. The shear correction factor is introduced in the first-
order shear-deformation theory to compensate the effect of
the assumption of uniform shear strain over the thickness. An
approximate value of 5/6 �0.833 for the shear correction factor
has been common in the literature for plates. However, Birman
and Bert [8] showed that the value of the shear correction
factormay differ for homogeneous plates and sandwich struc-
tures. Two values of p2/12 � 0.822 and 5/(6 � n) � 0.877 are
proposed in Mindlin plate theory for homogeneous and sand-
wich plates, respectively. Also it has been shown that the
shear correction factor for sandwich plates is affected by both
thicknesses as well as the stiffnesses of the facings and core
materials. Pradeep et al. [24] presented the effects of these
parameters in two graphs which give the value of the shear
correction factor between 0.833 and 0.88. Taking all the above
points into account, a reasonable value of

ffiffiffi
3

p
=2� 0:866 [16] is

used in the present work for our symmetric sandwich plate
specified in the next sections.

It is noted that because of the symmetry of the sandwich
plate considered in ourwork, the deviation of the neutral plane
is not expected specially for the small amplitude vibration.
Using Eqs. (1)–(3), (27) into (29) and integrating the resulting
expression by part, and separating the coefficients of
du0; dv0; dw0; ux and uy, the following differential equations
of motion are obtained:

du0 :
@Nx

@x
þ @Nxy

@y
¼ I1uÈ0 þ I2uÈ

dv0 :
@Ny

@y
þ @Nxy

@x
¼ I1vÈ0 þ I2uÈy

dw0 :
@Qx

@x
þ @Qy

@y
¼ wÈ0ðI1 þmaÞ

dux :
@Mx

@x
þ @Mxy

@y
þkQx ¼ I2uÈ0 þ I3uÈx

duy :
@My

@y
þ @Mxy

@x
þkQy ¼ I2vÈ0 þ I3uÈy

(30)

where ma is the added mass obtained using the following
relation [25]

ma ¼ rw
1

2m2

ðe�2am þ 1Þ
ðe�2am�1Þ ðm eð�2amÞ�mÞ (31)

I1; I2; I3 ¼
Z h=2

�h=2
rð1; z; z2Þdz (32)

By inserting Eqs. (5) and (15) into Eqs. (6) and (7), and
integrating through the thickness of the sandwich plate, the
force and moment resultants are obtained (see Appendix A).
The force and moment resultants are substituted in Eq. (30) to
achieve five differential equations of motion (see Appendix B).
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2.6. Analytical solutions

In the present work, the differential equations of motion are
analytically solved for a c � d rectangular sandwich plate by
using the Navier's solution procedure [26] for displacement
components u, v, w and rotations ux and uy.

u0ðx; y; tÞ ¼
XM
m¼1

XN
n¼1

um;ncosðaxÞsinðbyÞe�ivt

v0ðx; y; tÞ ¼
XM
m¼1

XN
n¼1

vm;nsinðaxÞcosðbyÞe�ivt

w0ðx; y; tÞ ¼
XM
m¼1

XN
n¼1

wm;nsinðaxÞsinðbyÞe�ivt

uxðx; y; tÞ ¼
XM
m¼1

XN
n¼1

uxm;ncosðaxÞsinðbyÞe�ivt

uyðx; y; tÞ ¼
XM
m¼1

XN
n¼1

uym;nsinðaxÞcosðbyÞe�ivt

(33)

where a ¼ mp
c and b ¼ np

d , are the unknown coefficients. um,n,
vm;n, wm;n, ux m,n, uy m,n are to be determined. The above dis-
placement components are proposed for a plate having four
simply supported sides described by the following boundary
conditions

u ¼ v ¼ w ¼ uy ¼ Mx ¼ 0 at x ¼ 0; c
u ¼ v ¼ w ¼ ux ¼ My ¼ 0 at y ¼ 0; d (34)

When the solution form for the displacement components
(33) are substituted into the differential equations of motion
resulted from (30), a set of homogeneous algebraic equations
are obtained which can be written in matrix form as follows

ð½K�ðvÞ��l�½M�Þ U�f g ¼ 0f g (35)

where l� ¼ ðv�Þ2 and U�f g are the complex eigenvalues and the
eigenvectors, respectively. The complex stiffnessmatrix [K�(v)]
is composted of the real and imaginary parts [K�(v)] = [K0(v)] + i
[K00(v)] due to the dynamic modulus of the viscoelastic foam in
(13). After solving Eq. (35), the complex eigenvalues are
obtained as l� = l0 + il00. The natural frequency v of the sand-
wich plate can be calculated as follows:
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(36)

where [K0], [M] and v ¼
ffiffiffiffi
l0

p
are the real part of the stiffness

matrix, the mass matrix and the natural frequency of the
sandwich plate in contact with a bounded fluid, respectively.
The elements of the stiffness andmassmatrices are presented
in Appendix C.

3. Materials specification and properties

In the experimental part of this work, a sandwich panel is
fabricated using eight layers of a thickwoven carbon fabric and
a layer of PVC foam. All layers together are impregnated by an
epoxy resin through the vacuum infusion process. The
nominal thickness of the sandwich panel is 20 mm consisting
of two 2.5 mm thick face laminates and 15 mm thick PVC foam
core. A square sandwich plate of 270 mm side length is cut out
of the vacuumed panel. The specifications of the fabric and
foam and their mechanical properties required for the
analytical calculations are detailed in the following sections.
The isotropic viscoelastic properties of the foam core Cij in
Eq. (9) are collected from dynamic mechanical analysis (DMA)
using both extension and shear deformations. On the other
hand, the orthotropic elastic properties of the face laminates
[Q] in Eq. (4) are extracted from our relevant work [27] as
explained in the following sections.

3.1. Foam viscoelastic properties

The foam core selected for the present work is AIREX-C70.75 a
closed cell PVC foam with a density of 75 kg/m3. In order to
obtain the long term viscoelastic properties of the foam core
over more than 13 frequency decades, the dynamic tests are
performed in a wide range of the constant temperatures. For a
viscoelastic material as foam, the rate of the relaxation or
creep behavior increases with the temperature. Based on the
time-temperature superposition principle, the effect of the
temperature is treated as a reduced time, and on this basis a
master curve is developed for the viscoelastic properties
[22,28].

In thiswork, both compressive and shear deformationDMA
tests are performed at 7 different constant temperatures �25,
�10, 0, 10, 25, 35, 50 8C in a DMA machine equipped with a
cooling/heating chamber shown in Fig. 2. The configurations of
the foam specimen for the compressive and shear DMA test
are presented in Fig. 3. At each temperature a sweep of
frequency of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50,100 Hz
is carried out, and the storage Young's and shear Moduli are
obtained as functions of temperature and frequency, shown in
Figs. 4 and 5, respectively.

Based on the time-temperature superposition principle, the
effect of the increase or decrease of the temperature is treated
as the decrease or increase of frequency, respectively.
According to this analogy, the measured values of the storage
modulus at different temperatures over a limited frequency
range are taken as the short-term parts of a single long-term
master curve over a wide frequency range. On this basis, to
construct the master curve for the storage modulus, the curve
at 25 8C in Figs. 4 and 5 is selected as the modulus at the
reference temperature. The other curves at the higher and
lower temperatures are then shifted horizontally to the left
and right, respectively, over the logarithmic frequency axis to
meet the other curves. The shifting process is performed by
multiplying the frequency axis by an appropriate shift factor a
(T) at each temperature. Figs. 6 and 7 present themaster curves
developed in this work for the storage Young's and shear
moduli of the PVC foam, respectively, over more than 13
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frequency decades. Also the data obtained for the shift factor
of the foam for the construction of the master curve is shown
in Fig. 8.

When the decreasing behavior of the relaxationmodulus in
time domain described by a Prony exponential series is
substituted in the viscoelastic constitutive relation (9), the
increasing behavior of the storage modulus in frequency
domain is obtained as a fractional series. On this basis, the
fractional series (37) and (38) are fitted to the master curves
data for the storage Young's and shear moduli in Figs. 6 and 7,
respectively. The constant intensities Ei and Gi, and the
relaxation times ti for the PVC foam are obtained from the
fitting process over 13 frequency decades and presented in
Table 1.

EðtÞ ¼
Xn
i¼1

Eiexp
�t
ti

� �
)E0ðvÞ ¼

Xn
i¼1

Ei
v2t2i

1þ v2t2i
(37)

[(Fig._2)TD$FIG]

Fig. 2 – The DMA test setups.

[(Fig._3)TD$FIG]

Fig. 3 – PVC foam core subjected to (a) compression excitation and (b) shear excitation.

[(Fig._4)TD$FIG]

Fig. 4 – Storage Young's modulus at seven temperatures.
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GðtÞ ¼
Xn
i¼1

Giexp
�t
ti

� �
)G0ðvÞ ¼

Xn
i¼1

Gi
v2t2i

1þ v2t2i
(38)

Among themathematicalmodels proposed in the literature
for describing the variation of the shift factor versus
temperature, a second-degree polynomial function proposed
by Kiasat et al. [29] in Eq. (39) is best fitted to the shift factor
data for the foam in Fig. 8.

logðaÞ ¼ c1ðT�Tref Þ þ c2ðT�Tref Þ2 (39)

where Tref is the reference temperature (25 8C) and the con-
stants c1 and c2 are obtained in the fitting process as �0.1328
and �2.54 � 10�4, respectively. The above viscoelastic proper-
ties for the foam core of the sandwich plate are combined to
obtain the components of the relaxation function matrix Cij(t).

3.2. Face laminate properties

The face laminates of the sandwich plate consist of 4 woven
carbon/epoxy layers. The 12K-roving carbon fabric has an areal
density and thickness of 600 g/m2 and 0.6 mm, respectively

[27]. Because of the complexity of the woven fabric composites
as a single bidirectional layer, each of thewoven carbon/epoxy
layers is here modeled as a symmetric 4-ply laminate [90/0/0/
90] as done in [30]. The properties of such a laminate are
obtained from the orthotropic elastic properties of its
constituting unidirectional plies measured as presented in
Table 2.

4. Experimental modal analysis

In order to prepare a free-free boundary condition for the
sandwich plate undergoing modal analysis, shown in Fig. 9,
the plate is hanged off from four thin nylon strings attached to
the plate at its corners. This setup minimizes the energy
dissipation during vibration. The free-free boundary condition
is selected in this work because of the difficulties concerned
with constructing rigid simple supports inducing no energy
dissipation. The tests are performed according to Brüel & Kjær
(B&K) modal testing method [31] and the setup is shown in
Fig. 10. An accelerometer of 2.4 gram is attached to the center
of the sandwich plate. The sandwich plate is excited by an
impact hammer force applied close to the accelerometer. The

[(Fig._5)TD$FIG]

Fig. 5 – Storage shear modulus in various temperature.
[(Fig._6)TD$FIG]

Fig. 6 – Master curve of the storage Young's modulus at
reference temperature 25 8C.

[(Fig._7)TD$FIG]

Fig. 7 – Master curve of the storage shear modulus at
reference temperature 25 8C.

[(Fig._8)TD$FIG]

Fig. 8 – The shift factor a(T) and polynomial fitting.

a r c h i v e s o f c i v i l a n d m e c h an i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 2 4 1 – 1 2 5 81248



Table 1 – Constant parameters in Eqs. (37) and (38).

i ti Ei Gi i ti Ei Gi

1 1.00E�11 0.00E+00 0.00E+00 11 1.97E�02 7.77E+05 3.85E+05
2 8.50E�11 0.00E+00 0.00E+00 12 1.67E�01 1.65E+06 7.76E+05
3 7.23E�10 3.25E+06 1.60E+06 13 1.42E+00 1.30E+06 6.20E+05
4 6.14E�09 3.60E+06 1.71E+06 14 1.21E+01 2.62E+06 1.24E+06
5 5.22E�08 3.61E+06 1.74E+06 15 1.03E+02 2.79E+06 1.31E+06
6 4.44E�07 2.75E+06 1.35E+06 16 8.72E+04 1.99E+06 9.10E+05
7 3.77E�06 1.98E+06 9.50E+05 17 Infinity 1.06E+07 4.85E+06
8 3.21E�05 1.38E+06 6.90E+05
9 2.72E�04 3.48E+06 1.61E+06
10 2.32E�03 1.34E+06 6.45E+05

Table 2 – Stiffness properties of a unidirectional carbon/epoxy ply.

Property E1(GPa) E2(GPa) G12(GPa) G23(GPa) v12 v23 r(kg/m3)

Carbon/epoxy (T600) 96 12 6 3.5 0.3 0.714 1500

[(Fig._9)TD$FIG]

Fig. 9 – Composite sandwich plate made through vacuum infusion process.

[(Fig._10)TD$FIG]

Fig. 10 – Experimental setup for modal testing.
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hammer force is measured by an internal sensor embedded in
the hammer which is plotted versus time in Fig. 11.

The output response of the plate is measured by the
accelerometer. A good impact produces a vibration response
which is perfectly correlated with the impact. Such a good
impact is conventionally indicated by a coherence graph that
must be near to unity over the entire frequency range. A
sample coherence graph for our tests is shown in Fig. 12
presenting the relevance of the hammer excitations applied
here. Two type of modal tests are performed on the sandwich
plate in this work, the first one in the air and the second in
contact with bounded water. In the wet modal test only one
side of the sandwich plate is in contact with water. A water
tank of 500 � 500 � 1000 mm is used for the wet modal test
which is big enough to avoid the reflection of the waves [32]
and [33].

5. Finite element analysis

Since the analytical exact solution developed in this work for
simply supported sandwich plate is not applicable to the free-
free plate, and on the other hand the construction of really
rigid simple supports is not practical, the finite element
method (FEM) is used as an intermediary between the
experimental and analytical methods [34]. For this purpose,
the two cases of the sandwich plate with simply supported as
well as free-free sides are numerically analyzed by the finite
element method to obtain both the dry and wet natural
frequencies. The faces and the core of the sandwich plate are

modeled by using brick elements. The mechanical properties
of the viscoelastic foam and the orthotropic composite
presented in Tables 1 and 2 are used as input to the modeling.

6. Results and discussion

In this section, the results of the present analytical method,
modal testing, and the FEM are compared. The effects of the
foam behavior and thickness, fiber orientation, plate dimen-
sion ratio, and fluid density on the natural frequency are
examined and discussed.

6.1. Experimental and finite element results and
discussion

From the plate midpoint acceleration data collected by the
accelerometer, and the excitation force data, the real part and
the absolute value of the frequency response function (FRF) are
calculated and plotted versus frequency for both dry and wet
plates as in Figs. 13 and 14, respectively. A comparison of the
FRF absolute values for the dry and wet sandwich plates is
shown in Fig. 15. The shapes of the frequency response
function versus frequency graphs for the dry and wet
sandwich plates are similar but shifted along the frequency
axis with a factor of about 2 for frequency.

The natural frequencies of the sandwich plate are extracted
from FRF graphs for the dry andwet conditions as presented in
Table 3. It is noted that the natural frequencies are at the peak
values of the absolute FRF graph if and only if there is a
corresponding sudden change in the real part FRF graph. As
shown in Table 3, the experimentally determined natural
frequencies of the dry plate are about twice of those for thewet
plate. This is attributed to the effect of the addedmass ofwater
contacting the sandwich plate.

The results of the FEM modal analysis for the mode shapes
of the dry and wet sandwich plates with free-free and simply
supported boundary conditions are shown in Figs. 16 and 17,
respectively. Table 4 presents the natural frequencies of the
dry and wet sandwich plates for the first three modes of
vibration. As observed for the experimental results, the natural
frequencies of the dry plate are about twice of those for thewet
plate. On the other hand, the natural frequencies of the simply
supported plate are always higher than those for the free-free
plate, but their difference for the dry plate ismore than that for
the wet plate. Although there is a significant difference
between the natural frequencies of the dry and wet plates,
the mode shapes are quite similar for similar boundary
conditions. It is concluded that thewater addedmass does not
affect the mode shapes of the vibration.

A graphical comparison of thenatural frequencies in Tables
3 and 4 for the experimental and free-free FEMmodel is shown
in Fig. 18. It is observed that the experimental natural
frequencies are higher than the numerical ones, not only for
the dry but also for the wet plate. However, the frequency
difference for the wet plate is less than that for the dry plate,
10–13% difference respectively. This is a reasonable difference
between the FEM results and the experimental vibration
measurements which are very sensitive to the boundary
conditions. The creation of the real free-free boundary

[(Fig._11)TD$FIG]

Fig. 11 – Excitation force versus time.

[(Fig._12)TD$FIG]

Fig. 12 – Coherence graph.
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condition for the plate is quite difficult in practice, and of
course the results concern a reasonable error when using
nylon strings.

6.2. Analytical method results and discussion

The analytical method of Navier's solution in this work is
presented for simply supported sandwich plate and therefore
its results are only compared with the FEM results as the

intermediary explained in the previous section. The natural
frequencies are analytically calculated for the dry and wet
sandwich plates with different foam core behaviors, thick-
nesses, fiber orientations, plate dimension ratios, and fluid
densities. The analytical and numerical first mode natural
frequencies of the dry and wet plates are compared in the
graphs of Fig. 19 for different plate dimension ratios, c/d in
Fig. 1. It is observed that both of the analytical and numerical
natural frequencies decrease with the increase of the plate
dimension ratio which is due to the decrease of the flexural
stiffness of the plate, see Fig. 19(a). Also, the ratio of the natural
frequencies for the dry and wet plates slightly increases with
the plate dimension ratio, see Fig. 19(b). This observation is
attributed to the increase of the addedmass effect on the plate
having higher dimension ratios.

More importantly in Fig. 19(a), the analytical fundamental
mode natural frequencies for both dry and wet plates are
somewhat higher than the numerical ones. This difference is
attributed to the approximation made in Eq. (13) by replacing
the two integrals by the storage and loss modulus in the
analytical method. Although this approximation has been
necessary for our analytical solution, it slightly decreases the
damping of the foam material and thus increases the
analytical natural frequencies. Such an approximation is not
necessary in the numerical FEM calculations where the
relaxation functions of the foam are used directly.

One of themain capabilities of the present analytical closed
form solution is the study of the influence of the viscoelastic
against elastic behavior of the foam core on the natural
frequencies of the sandwich plate. Two different mechanical
behaviors are assumed for the foam core, the viscoelastic
behavior as done above and an elastic behavior with constant
Young's and shear moduli extracted from Figs. 6 and 7 at
frequencies around the sandwich plate natural frequency. The

[(Fig._13)TD$FIG]

Fig. 13 – (a) Absolute value of FRF and (b) phase angle for dry
sandwich plate.
[(Fig._14)TD$FIG]

Fig. 14 – (a) Absolute value of FRF and (b) phase angle for wet
sandwich plate.

[(Fig._15)TD$FIG]

Fig. 15 – The absolute value of FRF for dry and wet plates
together.

Table 3 – Experimental results for natural frequency of
dry and wet sandwich free-free plates.

Mode number Natural frequency (Hz)

Dry sandwich plate Wet sandwich plate

1st mode 1200.1290 595.22
2nd mode 1305.0140 711.21
3rd mode 1736.7230 800.2941
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results for the fundamental mode natural frequency of the dry
and wet plates are summarized in Fig. 20. The decrease of the
fundamentalmode natural frequencywith the presence of the
viscoelastic foam core is observed for both dry and wet plates,
however this effect is less prominent for the wet sandwich
plate with respect to the dry one.

An alternative method to understand the significance of
the viscoelastic core is presented in this work by studying the
effect of the thickness of the foamcore. The analytical solution
is repeated for a series of sandwich plates consisting of
identical face laminates but different core thicknesses from 5
up to 150 mm, see Fig. 21. It is observed that the fundamental
mode natural frequency of the sandwich plate increases with
the core thickness from 5 up to 70 mm where it starts to
decrease. The increase of the fundamental mode natural
frequency in the first part of the graph is attributed to the
increase of the flexural stiffness of the sandwich plate which
overrules the increase of the viscoelastic material. It is evident
that above 70 mm thickness, the damping effect of the

[(Fig._16)TD$FIG]

Fig. 16 – Mode shapes of the free-free dry and wet sandwich plates.

[(Fig._17)TD$FIG]

Fig. 17 – Mode shapes of the simply supported dry and wet sandwich plates.

Table 4 – FEM results for natural frequencies of the dry and wet sandwich plates.

Mode number Natural frequency (Hz)

Dry sandwich plate Wet sandwich plate

Simply supported free-free Simply supported free-free

1st mode 1677.5 1039.9 839.4 532.5
2nd mode 2412.0 1188.2 994.7 654.6
3rd mode 2425.0 1504.8 996.2 724.7

[(Fig._18)TD$FIG]

Fig. 18 – Comparison of experimental and FEM results for
the first three modes of dry and wet sandwich plates.
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viscoelastic core overrules the increase of the plate flexural
stiffness. When the total thickness of the sandwich plate h is
fixed and the ratio of the core thickness hc to the total thickness
is increased, the analytical solution shows the decrease of the
fundamental mode natural frequency, see Table 5. This is of
course due to the decrease of the face thickness and thus the
decrease of the sandwich plate stiffness.

The first five mode natural frequencies of the dry and wet
sandwich plates obtained by the FEM method are shown in
Fig. 22 for the free-free as well as simply supported conditions.
It is observed that the influence of the water added mass is
changing not only for different modes of vibration but also for
different boundary conditions. The reason for the change of

the added mass is the change of the shape of the plate
vibrating in the water, and thus the amount of water that is
moved by the plate at different modes and boundary
conditions. Nevertheless, Fig. 22 shows that for both free-free
and simply supported sandwich plates the changes of the
natural frequencies from dry to wet condition remain within
50–70%, and it approaches to the same value of about 58% at
higher modes of vibration.

As a continuation to the above discussion on the effect of
the fluid, the fluid density is increased in the analytical
method to obtain its effect on the fundamental mode natural
frequency of the sandwich plate. Fig. 23 shows the decrease of
the fundamental mode natural frequency with the fluid

[(Fig._19)TD$FIG]

Fig. 19 – Comparison of analytical and FEM results for the fundamental mode natural frequency of dry and wet sandwich
plates.

[(Fig._20)TD$FIG]

Fig. 20 – Analytical solution for the influence of the elastic
and viscoelastic foam behaviors.

[(Fig._21)TD$FIG]

Fig. 21 – Variation of fundamental mode natural frequency
versus core thickness.

Table 5 – Fundamental mode natural frequency of the sandwich plate (c/h = 13.4).

Plate dimension ratio c/d Fundamental mode natural frequency (Hz)

hc/h 0.77 0.83 0.85 0.87 0.92 0.98

1 1616.9 1615.2 1607 1592.5 1506.5 1174.8
2 3781.2 3767.3 3748.4 3717.8 3543.7 2859.4
4 9561.4 9499.5 9455.2 9391.8 9073.3 7863.9
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density. Also, the rate of decrease of the natural frequency is
higher for the interval of low densities. This implies the lower
effect of the fluid addedmass at relatively high fluid densities.

7. Conclusions

In this study, the free vibration of a composite sandwich plate
with a viscoelastic core in contact with bounded water is
investigated both theoretically and experimentally for the first
time. The kinetic and potential energy for the first-order shear-
deformation sandwich plate with the kinetic energy of the
bounded water are obtained and used in Hamilton's principle.
The effect of water is therefore appeared as an added mass in
themassmatrix. For the simply supported sandwich plate, the
exact Navier's solution is used to construct the eigenvalue
problem. In the experimental part of thiswork, eight layers of a

thick woven carbon fabric as the face laminates and a marine
PVC foam as the core material are applied in a vacuum
infusion process tomake a sandwich plate. Free-free boundary
conditions are arranged for the sandwich plate in a hammer-
accelerometer modal testing. FEM analysis is also used as an
intermediary to verify the present analytical results. The
conclusions may be summarized as below:

� Themain novelty of the present study is the development of
a closed form solution for the natural frequencies of a
viscoelastic core sandwich plate at dry and wet conditions.

� The shapes of the graphs for the frequency response
function vs frequency for the dry and wet sandwich plates
are similar but shifted along the frequency axis with a factor
of about 2 for frequency.

� It is experimentally found and analytically approved that the
natural frequencies for thewet sandwich plate are about 50–
70% of those for the dry sandwich plate. This demonstrates
the validity of the analytical results.

� The decrease of the fundamental mode natural frequency
with the presence of the viscoelastic foam core is more
prominent for the dry sandwichplatewith respect to thewet
one already damped by water.

� The increase of the foam thickness has two different effects
on the natural frequencies of the plate which are due to the
opposite phenomena of increasing the stiffness as well as
the damping of the plate.

� The effect of the added mass on the fundamental mode
natural frequency of the sandwich plate decreases with the
increase of the plate dimension ratio.

� The mode shape of the plate and its boundary condition
affect the amount of the fluid moved by the plate and thus
the value of the fluid added mass.

[(Fig._22)TD$FIG]

Fig. 22 – Effect of water in different modes of vibration and boundary conditions.

[(Fig._23)TD$FIG]

Fig. 23 – Effect of fluid density on fundamental mode natural
frequency.
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Appendix A. The force and moment resultants acting on the cross-section of the laminate.

Nx ¼ A11ex0 þ B11Kx þA12ey0 þ B12ky þA13’y þA14’x þA15exy0 þ B15kxy
Ny ¼ A21ex0 þ B21Kx þA22ey0 þ B22ky þA23’y þA24’x þA25exy0 þ B25kxy
Nxy ¼ A51ex0 þ B51kx þA52ey0 þ B52ky þA53’y þA54’x þA55exy0 þ B55kxy
Qy ¼ A31ex0 þ B31kx þA32ey0 þ B32ky þ A33’y þ A34’x þ A35exy0 þ B35kxy
Qx ¼ A41ex0 þ B41kx þA42ey0 þ B42ky þ A43’y þ A44’x þ A45exy0 þ B35kxy
Mx ¼ B11ex0 þ D11kx þ B12ey0 þ D12ky þ B13’y þ B14’x þ B15exy0 þ D15kxy
My ¼ B21ex0 þ D21kx þ B22ey0 þ D22ky þ B23’y þ B24’x þ B25exy0 þ D25kxy
Mxy ¼ B51ex0 þ D51kxþ B25ey0 þ D52ky þ B53’y þ B54’x þ B55exy0 þ D55kxy

(A.1)

Appendix B. Five differential equations for displacement components and rotation functions.
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Appendix C. The elements of the mass matrix [M] and the real part of the stiffness matrix [K0].

½M� ¼

m11 ¼ I1 0 0 m14 ¼ I2 0
0 m21 ¼ I1 0 0 m25 ¼ I2
0 0 m31 ¼ ðI1 þmaÞ 0 0

m41 ¼ I2 0 0 m44 ¼ I3 0
0 m52 ¼ I2 0 0 m55 ¼ I3

2
66664

3
77775 (C.1)

k011 ¼ A11a
2 þA15abþA51abþA55b

2

k012 ¼ A12abþA15a
2 þA52b

2 þA55ab
k013 ¼ A13abþA14a

2 þA53b
2 þA54ab

k014 ¼ B11a
2 þ A14aþ B15abþ B51abþA54bþ B55b

2

k015 ¼ B12abþA13aþ B15a
2 þ B52b

2 þA53bþ B55ab

(C.2)

k021 ¼ A21abþA25b
2 þA51a

2 þA55ab

k022 ¼ A22b
2 þA25abþA52baþA55a

2

k023 ¼ A23b
2 þA24abþA53abþA54a

2

k024 ¼ B21abþA24bþ B25b
2 þ B51a

2 þ A54aþ B55ab
k025 ¼ B22b

2 þA23bþ B25abþ B52abþA53aþ B55a
2

(C.3)

k031 ¼ A41a
2 þA45abþA31abþA35b

2

k032 ¼ A42abþA45a
2 þA32b

2 þA35ab
k033 ¼ A43abþA44a

2 þA33b
2 þA34ab

k034 ¼ B41a
2 þ A44aþ B45abþ B31abþA34bþ B35ab

k035 ¼ B42abþA43aþ B45a
2 þ B32b

2 þA33bþ B35ab

(C.4)
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k041 ¼ B11a
2 þ B15abþ B51abþ B55bþ k2xðA41aþ A45bÞ

k042 ¼ B12abþ B15a
2 þ B52b

2 þ B5abþ k2xðA42bþA45aÞ
k043 ¼ B13abþ B14a

2 þ B53B2 þ B54abþ k2xðA43bþA44aÞ
k044 ¼ D11a

2 þ B14aþ D15abþ D51abþ B54bþ D55b
2 þ k2xðB41aþ A44 þ B45bÞ

k045 ¼ D12abþ B13aþ D15a
2 þ D52b

2 þ B53bþ D55abþ k2xðA43 þ b45aÞ

(C.5)

k051 ¼ B21abþ B25b
2 þ B51a

2 þ B55abþ k2yðA31aþ A35bÞ
k052 ¼ B22b

2 þ B25abþ B52abþ B55a
2 þ k2yðA32bþA35aÞ

k053 ¼ B23b
2 þ B24abþ B53abþ B54a

2 þ k2yðA33bþA34aÞ
k054 ¼ D21abþ B24bþ D25b

2 þ D51a
2 þ D55abþ k2yðB31aþA34 þ B34bÞ

k055 ¼ D22b
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2 þ k2yðB32bþA33 þ B35aÞ

(C.6)

a r c h i v e s o f c i v i l a n d m e c h an i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 2 4 1 – 1 2 5 8 1257



r e f e r e n c e s

[1] P. Cupiał, J. Nizioł, Vibration and damping analysis of a three-
layered composite plate with a viscoelastic mid-layer, J.
Sound Vib. 183 (1995) 99–114.

[2] T. Kant, K. Swaminathan, Analytical solutions for free
vibration of laminated composite and sandwich plates
based on a higher-order refined theory, Compos. Struct. 53
(2001) 73–85.

[3] H.-J. Wang, L.-W. Chen, Vibration and damping analysis of a
three-layered composite annular plate with a viscoelastic
mid-layer, Compos. Struct. 58 (2002) 563–570.

[4] T.-W. Kim, J.-H. Kim, Nonlinear vibration of viscoelastic
laminated composite plates, Int. J. Solids Struct. 39 (2002)
2857–2870.

[5] Z.-D. Xu, H.-T. Zhao, A.-Q. Li, Optimal analysis and
experimental study on structures with viscoelastic
dampers, J. Sound Vib. 273 (2004) 607–618.

[6] Y.-R. Chen, L.-W. Chen, Vibration and stability of rotating
polar orthotropic sandwich annular plates with a viscoelastic
core layer, Compos. Struct. 78 (2007) 45–57.

[7] Ö. Civalek, Free vibration analysis of symmetrically
laminated composite plates with first-order shear
deformation theory (FSDT) by discrete singular convolution
method, Finite Elem. Anal. Des. 44 (2008) 725–731.

[8] V. Birman, C.W. Bert, On the choice of shear correction
factor in sandwich structures, J. Sandwich Struct. Mater. 4
(2002) 83–95.

[9] A. Bhar, S. Phoenix, S. Satsangi, Finite element analysis of
laminated composite stiffened plates using FSDT and HSDT:
a comparative perspective, Compos. Struct. 92 (2010) 312–321.

[10] H. Asadi, M. Souri, Q. Wang, A numerical study on flow-
induced instabilities of supersonic FG-CNT reinforced
composite flat panels in thermal environments, Compos.
Struct. 171 (2017) 113–125.

[11] M.M. Keleshteri, H. Asadi, Q. Wang, Large amplitude vibration
of FG-CNT reinforced composite annular plates with
integrated piezoelectric layers on elastic foundation, Thin-
Walled Struct. 120 (2017) 203–214.

[12] A. Assie, M. Eltaher, F. Mahmoud, Behavior of a viscoelastic
composite plates under transient load, J. Mech. Sci. Technol.
25 (2011) 1129–1140.

[13] S. Mahmoudkhani, H. Haddadpour, H.M. Navazi, Free and
forced random vibration analysis of sandwich plates with
thick viscoelastic cores, J. Vib. Control 19 (2013) 2223–2240.

[14] M.R. Kramer, Z. Liu, Y.L. Young, Free vibration of cantilevered
composite plates in air and in water, Compos. Struct. 95
(2013) 254–263.

[15] J. Yang, J. Xiong, L. Ma, B. Wang, G. Zhang, L. Wu, Vibration
and damping characteristics of hybrid carbon fiber composite
pyramidal truss sandwich panels with viscoelastic layers,
Compos. Struct. 106 (2013) 570–580.

[16] K. Khorshid, S. Farhadi, Free vibration analysis of a laminated
composite rectangular plate in contact with a bounded fluid,
Compos. Struct. 104 (2013) 176–186.

[17] M. Mehri, H. Asadi, Q. Wang, On dynamic instability of a
pressurized functionally graded carbon nanotube reinforced
truncated conical shell subjected to yawed supersonic
airflow, Compos. Struct. 153 (2016) 938–951.

[18] M.S. Kiasat, H.A. Zamani, M.M. Aghdam, On the transient
response of viscoelastic beams and plates on viscoelastic
medium, Int. J. Mech. Sci. 83 (2014) 133–145.

[19] M. Avcar, Effects of rotary inertia shear deformation and non-
homogeneity on frequencies of beam, Struct. Eng. Mech. 55
(4) (2015) 871–884.

[20] C. Yang, G. Jin, X. Ye, Z. Liu, A modified Fourier–Ritz solution
for vibration and damping analysis of sandwich plates with
viscoelastic and functionally graded materials, Int. J. Mech.
Sci. 106 (2016) 1–18.

[21] V. Kahya, M. Turan, Finite element model for vibration and
buckling of functionally graded beams based on the first-
order shear deformation theory, Compos. B: Eng. 109 (2017)
108–115.

[22] M. Rezaee Sangtabi, M.S. Kiasat, Long-term viscoelastic
properties of an adhesive and molding compound,
characterization and modeling, Polymer 116 (2017) 204–217.

[23] D.S. Cho, B.H. Kim, J.-H. Kim, N. Vladimir, T.M. Choi,
Frequency response of rectangular plate structures in
contact with fluid subjected to harmonic point excitation
force, Thin-Walled Struct. 95 (2015) 276–286.

[24] K.R. Pradeep, B.N. Rao, S.M. Srinivasan, K. Balasubramaniam,
S. Ahamed, Influence of core compressibility, flexibility and
transverse shear effects on the response of sandwich
structures, Am. J. Mech. Ind. Eng. 2 (2) (2017) 81–91.

[25] J. Zhang, G. Xu, F. Liu, J. Lian, X. Yan, Experimental
investigation on the flow induced vibration of an
equilateral triangle prism in water, Appl. Ocean Res. 61
(2016) 92–100.

[26] A.S. Sayyad, Y.M. Ghugal, On the free vibration analysis of
laminated composite and sandwich plates: a review of recent
literature with some numerical results, Compos. Struct. 129
(2015) 177–201.

[27] M.S. Kiasat, M. Rezaee Sangtabi, Effects of fiber bundle size
and weave density on stiffness degradation and final failure
of fabric laminates, Compos. Sci. Technol. 111 (2015) 23–31.

[28] J.D. Ferry, Viscoelastic Properties of Polymers, John Wiley &
Sons, 1980.

[29] M.S. Kiasat, G. Zhang, L. Ernst, G. Wisse, Creep behavior of a
molding compound and its effect on packaging process
stresses, in: Electronic Components and Technology Conf,
2001, 931–938.

[30] C. Cooper, R. Young, M. Halsall, Investigation into the
deformation of carbon nanotubes and their composites
through the use of Raman spectroscopy, Compos. A: Appl.
Sci. Manuf. 32 (2001) 401–411.

[31] K. Torabi, M. Shariati-Nia, M. Heidari-Rarani, Experimental
and theoretical investigation on transverse vibration of
delaminated cross-ply composite beams, Int. J. Mech. Sci.
115 (2016) 1–11.

[32] T. Brugo, R. Panciroli, G. Minak, Study of the dynamic
behavior of plates immersed in a fluid, in: Experimental
Mechanics Conf., 2012.

[33] S. Hosseini Hashemi, M. Karimi, H. Rokni, Natural
frequencies of rectangular Mindlin plates coupled with
stationary fluid, Appl. Math. Model. 36 (2012) 764–778.

[34] S.K. Lee, M.W. Kim, C.J. Park, M.J. Chol, G. Kim, J.-M. Cho, G.
Kim, J.-M. Cho, C.-H. Choi, Effect of fiber orientation on
acoustic and vibration response of a carbon fiber/epoxy
composite plate: Natural vibration mode and sound
radiation, Int. J. Mech. Sci. 117 (2016) 162–173.

a r c h i v e s o f c i v i l a n d m e c h an i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 2 4 1 – 1 2 5 81258

http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0175
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0175
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0175
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0180
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0180
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0180
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0180
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0185
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0185
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0185
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0190
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0190
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0190
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0195
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0195
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0195
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0200
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0200
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0200
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0205
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0205
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0205
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0205
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0210
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0210
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0210
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0215
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0215
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0215
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0220
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0220
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0220
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0220
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0225
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0225
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0225
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0225
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0230
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0230
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0230
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0235
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0235
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0235
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0240
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0240
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0240
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0245
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0245
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0245
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0245
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0250
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0250
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0250
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0255
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0255
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0255
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0255
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0260
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0260
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0260
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0265
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0265
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0265
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0270
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0270
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0270
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0270
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0275
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0275
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0275
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0275
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0280
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0280
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0280
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0285
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0285
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0285
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0285
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0290
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0290
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0290
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0290
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0295
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0295
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0295
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0295
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0300
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0300
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0300
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0300
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0305
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0305
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0305
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0310
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0310
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0315
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0315
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0315
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0315
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0320
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0320
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0320
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0320
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0325
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0325
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0325
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0325
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0330
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0330
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0330
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0335
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0335
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0335
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0340
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0340
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0340
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0340
http://refhub.elsevier.com/S1644-9665(18)30040-2/sbref0340

	Analytical and experimental investigation on the free vibration of a floating composite sandwich plate having viscoelastic core
	1 Introduction
	2 Equations of motion and analytical solution
	2.1 Displacement field in thick plates
	2.2 Constitutive equations for laminated plates
	2.3 Constitutive equations for the viscoelastic foam
	2.4 Hydrodynamic model
	2.5 Hamilton's principle
	2.6 Analytical solutions

	3 Materials specification and properties
	3.1 Foam viscoelastic properties
	3.2 Face laminate properties

	4 Experimental modal analysis
	5 Finite element analysis
	6 Results and discussion
	6.1 Experimental and finite element results and discussion
	6.2 Analytical method results and discussion

	7 Conclusions
	Appendix A The force and moment resultants acting on the cross-section of the laminate.
	Appendix B Five differential equations for displacement components and rotation functions.
	Appendix C The elements of the mass matrix [M] and the real part of the stiffness matrix [K&prime;].
	References


