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1. Introduction

Tension in a membrane structure made of an elastoplastic
material can lead to localized deformation which, depending
on the adoptedparameters and conditions, can take a formof a
shear band or a neck. The former is referred to as a localized
mode, whereas the latter is a diffuse one [4]. Such localization
can have three sources: material (e.g. degradation of stiffness

in a damage process or plasticity with softening), thermal
(influence of temperature on material parameters), and
geometrical (due to large deformations). In contrast to the
first two sources, the last one is considered at the level of a
specimen (not at the material point) and occurs when a cross-
section of the elongated sample decreases while stresses are
limited by the yield condition [16].

Localization phenomena are related to the notion of
instability which was extensively studied for isothermal cases
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a b s t r a c t

This paper deals with the numerical analysis of localized deformation for a rectangular plate

in membrane tension, modelled with large strain thermoplasticity. The aim is to determine

the influence of selected factors on the localization phenomena, which can result from

geometrical, material, and thermal softening. Two types of boundary conditions are con-

sidered: plane stress and plane strain, as well as two yield functions, Huber–Mises–Hencky

and Burzyński–Drucker–Prager [45_TD$DIFF], with selected values of friction angle. First, isothermal

conditions are considered and next, a conductive case with thermal softening is studied.

Moreover, three types of plastic behaviour are analysed: strain hardening (with different

values of hardening modulus), ideal plasticity, and strain softening. Numerical tests,

performed using AceGen/FEM packages, are carried out for the rectangular plate under

tension with an imperfection, using three finite element discretizations. The results for

plane strain in the isothermal model show that with the decrease of linear hardening

modulus, we can observe stronger mesh sensitivity, while for plane stress, mesh sensitivity

is visible for all cases. Furthermore, for the thermomechanicalmodel the results also depend

on the mesh density due to insufficient heat conduction regularization.
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by for example [8,19,25,5] or [17]. The theoretical analysis of
sheet necking is included in [23]. When thermo-mechanical
coupling is taken into account, the analysis of the localization
phenomena is much more complicated. Usually, the increase
of temperature causes thermal softening manifest itself in the
degradation of the elastic stiffness and/or reduction of the
yield strength. However, at the same time, conductivity can
have a regularizing effect and influences the width of the
occurring shear bands. Theoretical or numerical aspects of the
unstable behaviour of materials in thermomechanical context
can be found, for instance, in [12,2,3]. In the recent paper [27], a
thermoplastic material model with the Huber–Mises–Hencky
yield criterion is also considered and special attention is paid
to the regularization of strain localization, resulting from heat
conduction and/or a gradient enhancement related to the
temperature field. In particular, two modes of localization are
simulated: necking in an elongated circular bar and shear
banding in a tensioned rectangular plate in plane strain
conditions. The numerical tests, whose results are presented
in the aforementionedpaper, are carried out for different values
of the heat conduction coefficient and internal length scale.

In this paper, attention is focused on local material models.
The analysis of shear banding for a tensioned rectangular plate
simulated with gradient-enhanced plasticity can be found in
[15], whereas the coupled thermomechanical response of
gradient plasticity is approached in [1].

To the author's knowledge, there is a scarcity of compre-
hensive parametric study on the localization phenomena for
large strain (thermo-)elasto-plasticity. Thus, the aim of this
paper is to numerically investigate the influence of selected
factors on the localised deformation. The analysed benchmark
is a rectangular plate under tension with an imperfection in
the center. The specimen ismodelled using three dimensional
elasto-plastic finite elements and, depending on the applied
boundary conditions, plane strain or plane stress [46_TD$DIFF]state [47_TD$DIFF]is
obtained. The analysis is performed for two yield criteria:
Huber–Mises–Hencky and Burzyński–Drucker–Prager. Addi-
tionally three types of plastic behaviour are taken into
account: softening, hardening, or ideal plasticity. The analysis
is firstly performed for the isothermal case, and next the full
thermomechanical coupling is approached, which involves
thermal expansion, thermal softening, and plastic dissipation
as the source of material heating. Different values of the
coefficient of thermal conductivity are tested. Basic assump-
tions and limitations utilized in the work are as follows: initial
isotropy of the material model, rate-independent plasticity
with associative flow rule, static loading, and, for thermo-
mechanical coupling, transient heat flowwith the Fourier law.
From the computational point of view,[12_TD$DIFF] an ill-posed problem,
which is related to the localization phenomenon, leads to
discretization-dependent results: the width of a localization
zone is governed by the size of the finite elements, see e.g. [7].
Due to that reason the majority of the analysed cases are
simulated with three meshes.

All simulations are performed using novel symbolic-
numerical packages of Wolfram Mathematica called AceGen
and AceFEM [9]. The former package is a code generator which
allows for the implementation of highly nonlinear constitutive
models. From this point of view, the most useful capability
of AceGen is automatic differentiation which significantly

simplifies the process of linearization of equations for the
Newton–Raphson procedure. The solution algorithm for the
elastoplastic model implemented within AceGen is presented
in [28], whereas thermoplasticity is approached in [27]. The
latter package, AceFEM, is a finite element software, which
thoroughly cooperates with AceGen,[48_TD$DIFF] and is equipped with[49_TD$DIFF] a
preprocessor, computational engine, and postprocessing
tools. Computational tests, for which results are presented
in this paper, are carried out using standard eight-noded
hexahedral elements with linear interpolation of all unknown
fields. To prevent the danger of volumetric locking phenomena
the F-bar methodology [6] is applied.

At this stage, it is worth highlighting the new aspects of the
research[50_TD$DIFF], which are presented in this paper. First, the depen-
dence of the unstable response of the rectangularflatmembrane
in tension to out-of-plane constraints (plane stress vs plane
strain conditions) is examined for finite strain plasticity and
thermoplasticity. Second, the influence of different parameters
of the Burzyński–Drucker–Prager plasticity function on the
localized deformation, in particular on the inclination angle of
the simulated shear band, is investigated. The special case of
zero friction angle, which corresponds to the Huber–Mises–
Hencky yield criterion, is also taken into account. Third, the
sensitivity of the simulation results to the finite element
discretization is examined for hardening, ideal, and softening
(thermo)plasticity. Finally, the regularizing effect of conductivity
in the thermoplastic material model with thermal and material
softening for planestress andplanestrain conditions is assessed.

This paper is laid out as follows. In Section 2, the
mathematical formulation of the analysed elastoplastic
material model is presented. In Section 3, the description of
the implemented benchmark is included. The core part of the
paper is in Section 4, which contains the results of the
numerical simulations. They are grouped in two subsections:
the analysis of the plate in the plane strain and plane stress
states. For each case, the influence the of adopted yield
function and conductivity is investigated. For selected simula-
tions, the imperfection-dependence is additionally tested. The
conclusions are summarized in Section 5.

2. Theory

2.1. Isothermal model

2.1.1. Kinematics
A deformable continuous body B with boundary @B is
considered. Vector X denotes the referential location of the
body particles at time t0 and vector x(X, t) identifies the current
position of particleX at time t. Function x = w(X, t) describes the
motion of the body. The deformation gradient and its
determinant are defined as usual

F ¼ @’ðX; tÞ
@X

; J ¼ detðFÞ (2.1)

Following [10,11] the deformation gradient can be decomposed
into elastic and plastic [51_TD$DIFF]parts

F ¼ FeFp (2.2)
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2.1.2. Free energy functional
The free energy potential per unit volume in the reference
configuration, which expresses the state of material, is
assumed in the decoupled form:

cðbe; gÞ ¼ ceðbeÞ þ cpðgÞ (2.3)

where the elastic left Cauchy–Green tensor be
[40_TD$DIFF] is defined as

be ¼ FeðFeÞT (2.4)

and g is a plastic strain measure, ce(be) refers to the elastic
response and cp(g) denotes the potential of isotropic strain
hardening in plasticity.

Based on [20,21,29] the elastic and plastic parts of the free
energy potential are defined in the further analysis in the
following forms:

ceðbeÞ ¼ 1
2
G trðdetðbeÞ�1=3beÞ�3
� �

þ 1
2
KlnðJeÞ2 (2.5)

cpðgÞ ¼ 1
2
Hg2 (2.6)

whereG andK are shear and bulkmoduli, respectively, andH is
a linear hardening coefficient.

The Kirchhoff stress tensor and hardening function are
then respectively derived as follows:

t ¼ 2
@c

@be b
e; h ¼ @c

@g
(2.7)

2.1.3. Yield conditions
To complete the constitutive description the yield condition
which specifies elastic and plastic regimes is defined

Fpðt; gÞ ¼ f ðtÞ�
ffiffiffiffiffiffiffiffi
2=3

p
syðgÞ�0 (2.8)

where f(t) is a stress measure and sy(g) is defined as sy(g)
= sy0 + Hg.

Two yield functions, the classical Huber–Mises–Hencky
(HMH) and pressure-dependent Burzyński–Drucker–Prager
(BDP), are defined as:

f HMH ¼
ffiffiffiffiffiffiffi
2J2

p
(2.9)

f BDP ¼
ffiffiffiffiffiffiffi
2J2

p
�a

3
I1 (2.10)

where

a ¼ 3tanðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12tanðfÞp (2.11)

I1 ¼ tdev : I (2.12)

J2 ¼ 1
2
�t2dev�I (2.13)

f is the friction angle and tdev is the deviatoric part of t.

In particular, the associate flow rule is formulated using the
Lie derivative of be following [20]

1
2
Lvb

e ¼ lÇNbe (2.14)

where N denotes the normal to the yield surface and lÇis the
plastic multiplier satisfying the standard Kuhn–Tucker condi-
tions:

lÇ�0; Fp�0; lÇFp ¼ 0 (2.15)

For simplicity we further assume that the plastic
multiplier plays the role of the plastic strain measure rate
gÇ¼ lÇ.

2.2. Thermoplasticity model

2.2.1. Kinematics
For the thermoplastic model, Eq. (2.2) expands to

F ¼ FuFeFp ¼ FuFm (2.16)

where Fm denotes the mechanical part of the deformation
gradient [18,29]. The thermal contribution Fu is assumed to
be purely volumetric, therefore it can be defined in the follow-
ing way

Fu ¼ ðJuÞ1=3I; Ju ¼ detðFuÞ (2.17)

where I is the second order identity tensor and the deforma-
tion caused by the temperature change is specified in the
following form [13]

Ju ¼ e3aTðT�T0Þ (2.18)

In Eq. (2.18), T is an absolute temperature, T0 denotes a refer-
ence temperature (for a strain-free state), and aT is the coeffi-
cient of linear thermal expansion.

Based on decomposition (2.16) and assumption (2.18), the
mechanical part of the deformation gradient can be deter-
mined as

Fm ¼ e�aTðT�T0ÞF (2.19)

The illustration of the deformation decomposition can be
found in [27].

2.2.2. Free energy functional
For thermoplasticity the free energy potential has the
following form
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cðbe;T; gÞ ¼ ceðbeÞ þ cuðTÞ þ cpðgÞ (2.20)

where

cuðTÞ ¼ c ðT�T0Þ�T�ln T
T0

� �� �
(2.21)

and the first and third components are defined by Eqs. (2.5) and
(2.6), respectively.

According to [21], the heat capacity can be defined as
c ¼ �T @2c

@T2
. For the adopted form of the free energy capacity c is

constant.

2.2.3. Heat conduction
The constitutive relation for heat conduction is the classical
Fourier law for isotropic materials, which is formulated here
using the Kirchhoff heat flux vector q

q ¼ �krT (2.22)

where k is a heat conduction coefficient. The Kirchhoff heat
flux is related to the Cauchy heat flux qC defined in the current
configuration through the formula: q = JqC.

2.2.4. Thermal softening
Themajority of elastic–plastic materials exhibit a reduction in
yield strength with a temperature increase. In this paper the
yield stress has the following form [27]

syðg;TÞ ¼ ðsy0 þHgÞð1�HTðT�T0ÞÞ (2.23)

where H and HT are a linear hardening modulus and a thermal
softening modulus, respectively. Different formulations of
thermal softening and their numerical verification can be
found in [26].

2.3. Governing equations

Due to the distinction between the reference and the current
configurations in large strain analysis, the governing equa-
tions can be formulated in the material description, see for
example [22], or in the spatial description, for example [21]. In
the present model, the spatial quantities are used, however,
they are referred to the volume/surface in the reference
configuration, see for instance [14].

Two governing equations, which describe the analysed
coupled problem, are the balance of linear momentum
presented in the local form in Eq. (2.24) and the energy
balance written in the temperature form [21] in Eq. (2.25).

r0
@2’

@t2
¼ Jdivðt=JÞ þ r0B (2.24)

c
@T
@t

¼ Jdivð�q=JÞ þ R (2.25)

In Eq. (2.24), div(�) is the divergence computed with respect to
Eulerian coordinates, r0 is the reference density, and B is a
given spatial body force field. For the static analysis, which is
presented in this paper, the left–hand side of Eq. (2.24) is equal
to zero.

In Eq. (2.25), R is a heat source density. In the adopted
model, it includes heating due to plastic dissipation and has
the following form [29]

R ¼
ffiffiffi
2
3

r
xsygÇ (2.26)

Parameter x, in Eq. (2.26), denotes a dissipation heat factor[14_TD$DIFF]
which[52_TD$DIFF] for simplicity is assumed to be constant, cf. [24], but the
results of [18] can also be applied.

The balance of linear momentum (2.24) is completed
with boundary conditions for displacements u and
tractions t:

u ¼ û on @Bu

t ¼ t�n ¼ t̂ on ’ð@BtÞ (2.27)

where

@Bu [ @Bt ¼ @B and @Bu \ @Bt ¼ ; (2.28)

The energy balance equation (2.25) is also complemented with
appropriate boundary conditions:

T ¼ TÃ on @BT

q�n ¼ qÃ on ’ð@BqÞ (2.29)

where

@BT [ @Bq ¼ @B and @BT \ @Bq ¼ ; (2.30)

The weak forms of the governing equations are the basis for
the finite element implementation. Applying the standard
derivation: multiplication by test function du, integration over
body B, application of divergence theorem and Neumann
boundary conditions, the balance of linear momentum has
the following weak form

Z
B
rdu : t þ du�Bð ÞdV þ

Z
’ð@BtÞ

du�̂tda ¼ 0 (2.31)

The weak form of the energy balance equation (2.25) is also
obtained using the standardprocedure and the backward Euler
scheme for time integration. The following integral equation,
valid for the current time moment is obtained

Z
B

dT
c
Dt

ðT�TnÞ þ rdTkrT�dTR
� �

dV þ
Z

’ð@BqÞ
dTq̂da

¼ 0 (2.32)

where Tn is the value of temperature at the previous time
instant and Dt is the time increment.
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3. Benchmark

All tests shown in this paper have been performed for a
rectangular plate in plane strain or plane stress conditions, see
Fig. 1. Twodifferent plasticity functions are used and two cases
are considered: isothermal and conductive. For the discussion
of adiabatic case, refer to [27].

The isothermal model was applied with the HMH and BDP
plasticity functions in three different cases: hardening (Hard,
H = 207 � 106 [13_TD$DIFF] Pa or H = 207 � 107 Pa), ideal plasticity (IP,
H = 0 Pa), and softening (Soft, only for HMH, H =�207 � 106 Pa).
Two values of friction[53_TD$DIFF] angle, 158 and 308, are used for BDP.

The conductive model is tested with HMH and BDP
plasticity, for the latter case, only [54_TD$DIFF]the 158 friction angle is
considered. The softening case is considered with different
values of the heat conduction coefficient. The dimensions of
the plate are: 0.2 m � 0.1 m � 0.005 m. Due to the symmetry of
the sample, only one-eighth of the plate is considered. A cube-
shaped imperfection of size 0.005 m is assumed at the center,
see Fig. 1 [16_TD$DIFF]. The imperfection is assumed as the decrease of
the initial yield stress sy0 and can change. The material

parameters are presented in Table 1. The bottom part of the
table is related only to the conductive case, whereas the upper
part refers to both the isothermal and conductive model.
Notice that for the conductive model, thermal softening is
always involved.

Three different densities of the finite element mesh are
applied: a coarse mesh (called further mesh1, 800 elements,
40 � 20 � 1), see Fig. 2, a medium mesh (called further mesh2,
3200 elements, 80 � 40 � 1), and a fine mesh (called further
mesh3, plane strain: 12,800 elements, 160 � 80 � 1 and plane
stress: 25,600 elements, 160 � 80 � 2). Mesh3 was considered
only for selected cases.

All pictures are presented at the final step of the analysis.

4. Numerical simulations

In this section, the results of numerical simulations are
presented. First, the analysis focuses on the isothermal
material behaviour with different boundary conditions and
thenon theHMHor BDP yield function. Then computations are
repeated for the model with thermal conductivity.

Loading is applied by extending the specimen in the length
direction with the maximum displacement equal to 0.08 m,
multiplied by l 2 [0, 1]. The sum of reactions in every
convergent load step is monitored. The total time of
deformation is one second.

4.1. Plane strain

4.1.1. Isothermal, HMH
Firstly, simulations for plane strain and isothermal conditions
for HMH plasticity are presented. The diagram of the sum of
reactions vs the load multiplier is shown in Fig. 3. No mesh
sensitivity is observed for the hardening case (H = 207 � 106[15_TD$DIFF] Pa)
and small dependence is visible for ideal plasticity (H = 0 Pa). It
can be noted that the response formesh1 is stiffer than that for
the finer meshes, and strong mesh–sensitivity occurs for
softening (H =�207 � 106). The deformedmeshes with plots of
accumulated plastic strain measure at the end of the
deformation process are shown in Fig. 4. Although small
softening is observed for plasticity with hardening, a uniform
deformation mode (notice small differences in equivalent
plastic strain) is obtained, see Fig. 4 (left top). For ideal

[(Fig._1)TD$FIG]

Fig. 1 – The boundary conditions for one-eighth of specimen
in plane stress tension (imperfection is marked [24_TD$DIFF]shaded at
the centre). For plane strain, displacement in thickness
direction is blocked at every node[1_TD$DIFF].

Table 1 – Material parameters.

Property Symbol Value Unit

Young modulus E 207 � 109 N/m2

Poisson ratio n 0.29 –

Yield threshold in tension sy0 450 � 106 N/m2

Linear hardening modulus H �207 � 106/0/207 � 106/207 � 107 N/m2

Angle of friction f 15/30 deg
Density r 24 � 103 kg/m3

Conductivity k 100/200/300 J/(s K m)
Heat capacity c 460 J/(kg K)
Thermal expansion coefficient aT 12 � 10�6 1/K
Thermal softening modulus HT 0.02 1/K
Dissipation heat factor x 0.9 –

Reference temperature T0 273.15 K
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plasticity, the localization has the form of necking, see Fig. 4
(left bottom). On the right-hand side of Fig. 4, two tests for
softening are presented for different sizes of load steps. Due to
instabilities in computations, unexpected patterns of shear
bands (reflected bands) are obtained for the case with larger
load steps. Another example is shown in Fig. 5. The same test
is computed with different load step sizes. Although the
obtained necking patterns are qualitatively similar (mirror
reflection), the selection of the load step is a crucial aspect of
simulations, hence for large load steps, out-of-balance states
during Newton–Raphson iterations can cause localization to
occur at a place different than imperfection could suggest. The

solution obtained in such localization simulations is not
unique. In fact, the energetically preferable mode would
involve only one shear band, but other modes can be obtained
for longer load steps and/or coarser discretization.

4.1.2. Isothermal, BDP
The simulations shown in the previous section are now
repeated for BDP plasticity. Two different values of the friction
angle: 158 and 308 and two cases: hardening (H = 207 � 106 Pa)
and ideal plasticity are considered. The results of the
numerical computations are shown in Fig. 6. It can be noted
that for 158, we obtain a stiffer response than for 308, as the
increase of friction angle reduces the load-carrying capability.
The larger friction angle also causes computational problems
which manifest themselves in a faster termination of the
simulation. These two phenomena are presented in Fig. 6: for
158 we have the sum of reactions higher and equal to 54,000 N
at the peak and the maximum value of l is equal to 1.0,
contrary to the analysis performed for 308 where we have less
than the reaction force of 49,500 N at the peak and the
maximum value of l is approximately 0.5. In Fig. 7, the
deformation and equivalent plastic strain maps are compared
for the final step of analysis with different friction angles. The
pattern for 158 can be described as diffuse with a necking
shape. The results for 308 (for this case the simulations stops
just after the peak) show that the maximum value of

[(Fig._2)TD$FIG]

[2_TD$DIFF]Fig. 2 – Finite element discretization of one-eighth of
specimen in tension, coarse mesh (mesh1).

[(Fig._3)TD$FIG]

Fig. 3 – Sum of reactions vs displacement multiplier for isothermal, plane strain conditions with HMH plasticity, and
imperfection[3_TD$DIFF] 1% of sy0 (in the legend, IP denotes ideal plasticity, the remark ‘‘density’’ marks smaller load steps).

[(Fig._4)TD$FIG]

Fig. 4 – Deformed mesh (mesh1) for isothermal, plane strain conditions with HMH plasticity in cases: hardening (left top,
H = 207T 106 Pa), ideal plasticity (left bottom, H = 0 Pa), softening (right top, H =S207T 106 Pa) and softening with smaller
load steps (right bottom). Pictures are presented at final step of the analysis.
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accumulated plastic strain is obtained on the opposite side
than the imperfection.

The small difference between the onset of plastic regime,
shown in Fig. 6 (right), is caused by load steps that are too large
in the elastic part of the process. Although a larger number of
steps should resolve this problem, it also increases the
computation time.

The inclination of the band for models with different
friction angles is also analysed. The angles aremeasured in the
undeformed configuration for the same value of l = 0.21. For
the isothermal plane strain model, the results are 478 (for
friction angle 08), 518 (for friction angle 158), 558 (for friction
angle 308). Therefore, a correlation between the friction angle
and the inclination of the band can be noticed.

4.1.3. Conductive, HMH
In this section, the conductive model in plane strain condi-
tions with HMH plasticity is discussed. Three different aspects
are varied in the study: imperfection (5% and 20% of sy0),

conductivity (100, 200 and 300 J/(s K m)), and mesh density
(mesh1, mesh2 and mesh3, where mesh3 is considered only
for [56_TD$DIFF]the [57_TD$DIFF]20% imperfection).

The results[18_TD$DIFF] for the tests [58_TD$DIFF]with the two imperfections[59_TD$DIFF] are
presented in Figs. 8 and 9. After analysing the differences
between the diagrams, it can [60_TD$DIFF] be deduced that the imperfection[61_TD$DIFF]
magnitude does not have a significant impact on the
computation results. All hardening tests for mesh1, mesh2
and mesh3 coincide, up to a certain point, in the post-peak
regime, namely until l = 0.42. On the contrary, for softening
and ideal plasticity, the diagrams become distinct immediate-
ly after reaching the peak. Small mesh sensitivity can be
observed for all tests because of the regularizing influence of
conduction[62_TD$DIFF], although[19_TD$DIFF] two softening sources, material (nega-
tive value of H) and thermal[63_TD$DIFF], are used. The lower value of
conductivity and finer mesh cause a less ductile response of
the material (see Fig. 10). As shown in Fig. 10, the diagrams
obtained for mesh1 for different conductivities are closer to
each other than the[20_TD$DIFF] diagrams for the same conductivity and

[(Fig._5)TD$FIG]

Fig. 5 – Deformedmesh (mesh2) for isothermal, plane strainmodel with HMH plasticity in cases: ideal plasticity (left) and ideal
plasticity with smaller load steps (right).

[(Fig._6)TD$FIG]

Fig. 6 – Sum of reactions vs displacement multiplier for isothermal, plane strain conditions with BDP plasticity and 1% [25_TD$DIFF]

imperfection for cases f = 158 (left), f = 308 (right).

[(Fig._7)TD$FIG]

Fig. 7 – Deformed mesh (mesh1) for isothermal, hardening (H = 207T 106[4_TD$DIFF] Pa), plane strain conditions with BDP plasticity [26_TD$DIFF]for
cases[5_TD$DIFF] f = 158 (left) and f = 308 (right).
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for differentmeshes. [64_TD$DIFF]Thediagrams formesh1 coincide to point
l = 0.03 and for mesh2 to point l = 0.02. It can also be noticed
that for all values of conductivity[19_TD$DIFF] we obtain a similar shear
band rather than necking (see Fig. 11).

4.1.4. Conductive, BDP
Similar to isothermal computations, the previous tests for
HMH are[22_TD$DIFF] now[65_TD$DIFF] repeated for BDP plasticity, but only for the
friction angle of 158. Unfortunately, the simulations end at the
beginning of the process (see Figs. 12 and 13). Note that the
computations stop when l reaches 0.06, or even less. No
imperfection sensitivity can be observed for hardening (the left
part of Fig. 12). For ideal plasticity (the right part of Fig. 12) and
hardening, mesh–sensitivity is visible. In Fig. 12, only one test
for 5% imperfection is presented because of a premature
termination of computations. It is the main reason why a
stronger imperfection is considered in a part of computations
(this results in more stable calculations).

[(Fig._8)TD$FIG]

Fig. 8 – Sum of reactions vs displacement multiplier for conductive (k = 100 J/(s K m)), plane strain conditions with HMH
plasticity [27_TD$DIFF], 20% of sy0 imperfection (left) and 5% of sy0 imperfection (right). [28_TD$DIFF]Hardening modulus for hardening[29_TD$DIFF] case is equal to
207T 107 Pa (1% of E).

[(Fig._9)TD$FIG]

Fig. 9 – Deformed mesh (mesh1) for conductive, plane strain conditions with HMH plasticity, k = 100 J/(s K m), and four
different cases: hardening (H = 207T 106 Pa) with 20% of sy0 imperfection (left top), hardening (H = 207T 106 Pa) with 5% of sy0
imperfection (left bottom), ideal plasticity with 20% of sy0 imperfection (right top), ideal plasticity with 5% of sy0 imperfection
(right bottom).

[(Fig._10)TD$FIG]

Fig. 10 – Sum of reactions vs displacement multiplier for
conductive, plane strain conditions with HMH plasticity,
material and thermal softening[31_TD$DIFF], [32_TD$DIFF]and different
conductivity Diff id="33">[33_TD$DIFF] coefficients,
imperfection is [3_TD$DIFF] 20% of sy0 and H =S207T 106[30_TD$DIFF] Pa.
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4.2. Plane stress

4.2.1. Isothermal, HMH
The following sections present isothermal tests for plane
stresswithHMHplasticity[18_TD$DIFF]. The imperfection in all cases is [66_TD$DIFF]10% [38_TD$DIFF]

of [67_TD$DIFF]sy0. The calculation results for H = 207 � 106[55_TD$DIFF] Pa for harden-
ing and forH =�207 � 106 Pa for softening are shown in Fig. 14.
Strong mesh sensitivity is visible for all cases; however, the
hardening diagrams are distinct only from point l = 0.14. As
expected, coarser meshes give a more ductile (stiffer)
response. The diagrams presented in Fig. 14 are associated
with[49_TD$DIFF] a localized mode of deformation [68_TD$DIFF]. [69_TD$DIFF]This is confirmed in
Fig. 15, in which shear bands are presented. In the presence of
geometrical softening, material hardening can be insufficient
to prevent mesh–sensitivity.

4.2.2. Isothermal, BDP
The simulations from the previous section are repeated with
the BDP yield function. The problems that occurred previously

for models with BDP plasticity are also visible in the current
tests. The computations end at the beginning of the process
and certain mesh sensitivity is presented in Fig. 16. The stiffer
response for the coarser meshes can be observed. The
deformed meshes with plastic strain distributions at the
end of the deformation process are shown in Fig. 17. However,
because of the above-mentioned problems with continuation
of computation, the beginning of the shear band formation can
be observed. For example, the simulations for hardening case
end for mesh1 when l = 0.26, for mesh2 when l = 0.16, and for
mesh3 when l = 0.15. A wider deformation zone can be
observed for tests with increasing value of hardeningmodulus
(i.e. hardening, ideal plasticity and softening).

The inclination of the localization band for models with
different friction angles is also analysed. The angles are
measured in the undeformed configuration for the same value
of l = 0.06. For the isothermal plain stress model, the
inclinations are equal to 568 (for friction angle 08), 608 (for
friction angle 158) and 648 (for friction angle 308). Therefore, a
correlation can be noticed between the friction angle and the
inclination of the band.

4.2.3. Conductive, HMH
The next simulations are performed for conductive, plane
stress case, assuming the HMH plasticity and 10% imperfec-
tion. Similar to the plane strain tests with conductivity and the
HMH yield function, the results of the test with hardening for
mesh1,mesh2, andmesh3 coincide up to the point l = 0.35 and
then differ (see Fig. 18). In Fig. 19, the deformedmesh with the
distribution of accumulated plastic strain is depicted. The
distinct shear band is visible for ideal-plasticity and softening.
However, because of a fast disruption of calculations due to
rapid reduction of stiffness, only the beginning of the shear
band formation process can be seen for hardening.

4.2.4. Conductive, BDP
The last simulations presented in this paper are computed for
a conductive, plane stress model with the BDP plasticity. The
difference between the peak position, similar to Fig. 6, occurs
in Fig. 20. As was written, applying a larger number of load
steps should resolve the problem. The mesh sensitivity is
visible only for ideal plasticity; however, we can see the results
obtained for the model with strain hardening only for mesh1
and mesh2, due to the fact that the calculations for mesh3
diverge at the beginning of the plastic process. The plastic
strain distribution with the deformed mesh at the end of the
deformation process is presented in Fig. 21.

[(Fig._11)TD$FIG]

Fig. 11 – Deformed mesh (mesh1) for conductive, plane
strain model with HMH plasticity and material and thermal
softening [26_TD$DIFF]for cases: k = 100 (top), k = 200 (middle) and
k = 300 (bottom), H =S207T 106 Pa.

[(Fig._12)TD$FIG]

Fig. 12 – Sum of reactions vs displacement multiplier for conductive, plane strain conditions with BDP plasticity for k = 100 J/
(s K m) and f = 15 in two cases: hardening (left, H = 207T 106 Pa) and ideal plasticity (right).
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5. Conclusions

This paper presents a parametric study of localized deforma-
tion for large strain plasticity with and without thermo-
mechanical coupling. In particular, the calculations consider
the two yield functions (Huber–Mises–Hencky and Burzyński–
Drucker–Prager), different values of hardening modulus,
conductivity, and friction angle. Three discretizations are
employed for the majority of tests.

[(Fig._13)TD$FIG]

Fig. 13 – Deformed mesh (mesh1) for conductive, plane
strain conditions with BDP plasticity, imperfection [3_TD$DIFF] 20% [34_TD$DIFF]of
sy0, f = 158, k = 100 J/(s K m), ideal plasticity.
[(Fig._14)TD$FIG]

Fig. 14 – Sum of reactions vs displacement multiplier for isothermal, plane stress conditions with HMH plasticity, and
imperfection[3_TD$DIFF] 10% of sy0.

[(Fig._15)TD$FIG]

Fig. 15 – Deformed mesh (mesh1) for isothermal, plane stress conditions with HMH plasticity in cases: hardening (left top,
H = 207T 106 [30_TD$DIFF] Pa), ideal plasticity (right top) and softening (bottom, H =S207T 106 Pa).

[(Fig._16)TD$FIG]

Fig. 16 – Sum of reactions vs displacement multiplier for isothermal, plane stress conditions with BDP plasticity, 10%
imperfection [36_TD$DIFF], friction angle 158 (left) and for 308 (right).
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For the isothermal, plane strainmodel, nomesh sensitivity
can be observed for hardening, smallmesh sensitivity for ideal
plasticity, and strong mesh sensitivity for softening. In plane
stress regime, mesh sensitivity is visible for all cases. The
addition of the strain constraint in the thickness direction
causes amore stable behaviour of the specimen. The thickness
of the plate in a shear band is reduced in the plane stress
model.

From the computational point of view, the behaviour of a
material modelled with[70_TD$DIFF] the HMH yield function ismore stable,

computations continue to the end of the assumed loading
process, and the imperfection [71_TD$DIFF]magnitude does not[20_TD$DIFF] influence
the results significantly. In contrast to HMH, the use of the BDP
yield function leads to computational problems. The process
often ends just after the onset of the plastic yielding, especially
for ideal plasticity and softening cases. The possible cause for
the divergence in computation is that the BDP surface in stress
space has a vertex, at which the normalN[23_TD$DIFF]cannot be computed
uniquely. Due to that fact, problems with convergence occur.
The solution to this problem can be the application of the
Hoffman yield function, for which the vertex is smoothed. In
selected cases, a stronger imperfection prevents the computa-
tions from the quick divergence. For this reason, the simula-
tions of the thermomechanical models are performed with
20% of sy imperfection.

However, the numerical tests performed for the isothermal
model have been repeated using the thermomechanical
description. In the analysed cases, heat conduction does not
regularize the response sufficiently. It can be a result of the
presence of two types of softening: material and thermal. The
thermal softening effect is strong enough to cause a quick loss
of stiffness, and consequently, terminate the computation.

The inclination of the band for isothermal, plane stress and
plain strainmodels with different friction angles has also been
analysed. In both cases a correlation between the friction angle
and the inclination of the band can be noticed. Although the
inclinations are larger for the plane strain case, the [72_TD$DIFF]differences
between the models with friction angles 08, 158, and 308 [73_TD$DIFF]are
similar and equal to around 48.

[(Fig._17)TD$FIG]

Fig. 17 – Deformedmesh (mesh1) for isothermal, plane stress conditions with BDP plasticity: on the left for f = 158, on the right
for f = 308, and three cases: hardening (top, H = 207T 106[35_TD$DIFF] Pa), ideal plasticity (middle), softening (bottom, H =S207T 106 Pa).

[(Fig._18)TD$FIG]

Fig. 18 – Sum of reactions vs displacement
multiplier for conductive, plane stress conditions
with HMH plasticity, imperfection [3_TD$DIFF] 20% of sy0 and
k = 100 J/(s K m). [9_TD$DIFF] Hardening modulus for hardening [37_TD$DIFF]case [38_TD$DIFF]

is H = 207T 107 [8_TD$DIFF] Pa (1% of E) and for softening[11_TD$DIFF]
H =S207T 106 Pa (S0.1% of E).
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[(Fig._19)TD$FIG]

Fig. 19 – Deformed mesh (mesh1) for conductive, plane stress conditions with HMH plasticity: hardening (left top,
H = 207T 107 Pa), ideal plasticity (right top) and softening (bottom, H =S207T 106 Pa).

[(Fig._20)TD$FIG]

Fig. 20 – Sum of reactions vs displacement multiplier for conductive, plane stress conditions with BDP plasticity and
imperfection 20% of sy0 and k = 100 J/(s K m). The hardening modulus for hardening is [3_TD$DIFF] H = 207T 107 [3_TD$DIFF] Pa (1% of E) and for
softening[11_TD$DIFF] H =S207T 106 Pa (S0.1% of E).

[(Fig._21)TD$FIG]

Fig. 21 – Deformed mesh (mesh1) for conductive, plane stress conditions with BDP plasticity in cases hardening (left,
H = 207T 107 Pa), ideal plasticity (right).

a r c h i v e s o f c i v i l a n d m e c h an i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 0 5 5 – 1 0 6 71066



r e f e r e n c e s

[1] F. Aldakheel, C. Miehe, Coupled thermomechanical response
of gradient plasticity, Int. J. Plast. 91 (2017) 1–24.

[2] R.C. Batra, C.H. Kim, Effect of thermal conductivity on the
initiation, growth and bandwidth of adiabatic shear bands,
Int. J. Eng. Sci. 29 (8) (1991) 949–960.

[3] A. Benallal, D. Bigoni, Effects on temperature and thermo-
mechanical couplings on material instabilities and strain
localization of inelastic materials, J. Mech. Phys. Solids 52
(2004) 725–753.

[4] D. Bigoni, Nonlinear Solid Mechanics: Bifurcation Theory and
Material Instability, Cambridge University Press, Cambridge,
2012.

[5] R. de Borst, L.J. Sluys, H.-B. Mühlhaus, J. Pamin, Fundamental
issues in finite element analyses of localization of
deformation, Eng. Comput. 10 (1993) 99–121.

[6] E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational
Methods for Plasticity: Theory and Applications, John Wiley
& Sons, Ltd., Chichester, UK, 2008.

[7] S. Forest, E. Lorentz, Localization phenomena and
regularization methods, in: J. Besson (Ed.), Local Approach to
Fracture, Les Presses de l'École des Mines, Paris, 2004 311–370.

[8] R. Hill, A general theory of uniqueness and stability in elastic–
plastic solids, J. Mech. Phys. Solids 6 (1958) 236–249.

[9] J. Korelc, Automation of primal and sensitivity analysis of
transient coupled problems, Comput. Mech. 44 (2009) 631–649.

[10] E.H. Lee, Elastic plastic deformation at finite strain, ASME
Trans. J. Appl. Mech. 36 (1969) 1–6.

[11] E.H. Lee, D.T. Liu, Finite-strain elastic–plastic theory with
application to plane-wave analysis, J. Appl. Phys. 38 (1967) 19–27.

[12] J. LeMonds, A. Needleman, Finite element analyses of shear
localization in rate and temperature dependent solids, Mech.
Mater. 5 (1986) 339–361.

[13] S.C.H. Lu, K.S. Pister, Decomposition of deformation and
representation of the free energy function for isotropic
thermoelastic solids, Int. J. Solids Struct. 11 (1975) 927–934.

[14] C. Miehe, Entropic thermoelasticity at finite strains. Aspects
of the formulation and numerical implementation, Comput.
Methods Appl. Mech. Eng. 120 (1995) 243–269.

[15] L.P. Mikkelsen, Necking in rectangular tensile bars
approximated by a 2-D gradient dependent plasticity
model, Eur. J. Mech. A/Solids 18 (5) (1999) 805–818.

[16] S. Okazawa, Structural bifurcation for ductile necking
localization, Int. J. Nonlinear Mech. 45 (2009) 35–41.

[17] H. Petryk, Theory of material instability in incrementally
nonlinear plasticity, in: H. Petryk (Ed.), Material Instabilities
in Elastic and Plastic Solids, Springer-Verlag, Wien/New York,
2000, 261–331, CISM Course Lecture Notes No. 414.

[18] M. Ristinmaa, M. Wallin, N.S. Ottosen, Thermodynamic
format and heat generation of isotropic hardening
plasticity, Acta Mech. 194 (2007) 103–121.

[19] J.W. Rudnicki, J.R. Rice, Conditions for the localization of
deformation in pressure-sensitive dilatant materials, J. Mech.
Phys. Solids 23 (1975) 371–394.

[20] J.C. Simo, A framework for finite strain elastoplasticity based
on maximum plastic dissipation and the multiplicative
decomposition: Part 1. Continuum formulation, Comput.
Methods Appl. Mech. Eng. 66 (1988) 199–219.

[21] J.C. Simo, C. Miehe, Associative coupled thermoplasticity at
finite strains: formulation, numerical analysis and
implementation, Comput. Methods Appl. Mech. Eng. 98
(1992) 41–104.

[22] J.C. Simo, Numerical analysis and simulation of plasticity, in:
P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis.
Numerical Methods for Solids (Part 3), vol. VI, Elsevier
Science, Boca Raton, 1998 183–499.

[23] S. Stören, J.R. Rice, Localized necking in thin sheets, J. Mech.
Phys. Solids 23 (1975) 421–441.

[24] G.I. Taylor, H. Quinney, The latent energy remaining in a
metal after cold working, Proc. R. Soc. Lond. Ser. A 143 (1934)
307–326.

[25] V. Tvergaard, Tensile instabilities at large strains, in: Q.S.
Nguyen (Ed.), Bifurcation and Stability of Dissipative Systems,
Springer-Verlag, Wien/New York, 1993, 251–291, CISM
Courses and Lectures No. 327.

[26] B. Wcisło, Simulations of thermal softening in large strain
thermoplasticity with degradation, Eng. Trans. 4 (64) (2016)
563–572.

[27] B. Wcisło, J. Pamin, Local and non-local thermomechanical
modeling of elastic–plastic materials undergoing large
strains, Int. J. Numer. Methods Eng. 109 (1) (2017) 102–124.

[28] B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska, Gradient-
enhanced damage model for large deformations of elastic–
plastic materials, Arch. Mech. 65 (5) (2013) 407–428.

[29] P.A. Wriggers, C. Miehe, M. Kleiber, J.C. Simo, On the coupled
thermomechnical treatment of necking problems via finite
element methods, Int. J. Numer. Methods Eng. 33 (1992) 869–883.

a r c h i v e s o f c i v i l a n d m e c h an i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 0 5 5 – 1 0 6 7 1067

http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0005
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0005
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0010
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0010
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0010
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0015
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0015
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0015
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0015
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0020
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0020
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0020
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0025
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0025
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0025
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0030
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0030
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0030
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0035
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0035
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0035
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0040
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0040
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0045
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0045
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0050
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0050
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0055
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0055
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0060
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0060
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0060
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0065
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0065
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0065
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0070
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0070
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0070
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0075
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0075
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0075
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0080
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0080
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0085
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0085
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0085
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0085
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0090
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0090
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0090
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0095
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0095
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0095
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0100
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0100
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0100
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0100
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0105
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0105
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0105
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0105
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0110
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0110
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0110
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0110
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0115
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0115
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0120
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0120
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0120
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0125
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0125
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0125
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0125
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0130
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0130
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0130
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0135
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0135
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0135
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0140
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0140
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0140
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0145
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0145
http://refhub.elsevier.com/S1644-9665(18)30008-6/sbref0145

	Instabilities in membrane tension: Parametric study for large strain thermoplasticity
	1 Introduction
	2 Theory
	2.1 Isothermal model
	2.1.1 Kinematics
	2.1.2 Free energy functional
	2.1.3 Yield conditions

	2.2 Thermoplasticity model
	2.2.1 Kinematics
	2.2.2 Free energy functional
	2.2.3 Heat conduction
	2.2.4 Thermal softening

	2.3 Governing equations

	3 Benchmark
	4 Numerical simulations
	4.1 Plane strain
	4.1.1 Isothermal, HMH
	4.1.2 Isothermal, BDP
	4.1.3 Conductive, HMH
	4.1.4 Conductive, BDP

	4.2 Plane stress
	4.2.1 Isothermal, HMH
	4.2.2 Isothermal, BDP
	4.2.3 Conductive, HMH
	4.2.4 Conductive, BDP


	5 Conclusions
	References


