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1. Introduction

Cable-stayed structures, especially bridges and footbridges,
have comparatively little stiffness, and are therefore very
sensitive to vibration. As the supporting cables are usually the
most supple elements of the cable-supported structure,
restricting the excessive resonant forced vibration in the
cables is often important. The great amplitudes of the
transversal forced vibration of the cables are due to small
damping and the high suppleness of these elements. The
small damping is due to the fact that the cables are usually
made of materials with small damping, e.g. steel. Usually, the

cables are numerous and of various length. This makes it highly
probable that the excitation frequency will become resonance
synchronized with one of the many natural frequencies
connected to the transversal eigenforms of the cables.

The vibration of the cables may be divided into two groups.
The first encompasses the resonant vibration of cables caused
by excitations directly acting on the length of the cable, e.g.
wind, rain, etc. The second group encompasses resonant
vibration of cables caused indirectly by vibration of the deck or
pylon, which cause the cable anchor points to oscillate and,
as a consequence, lead to kinematic forced vibration of
the cables. In most cases, the cause of vibration cannot be
eliminated as they are connected to the loads inherent in the
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a b s t r a c t

The paper describes the idea and the algorithms of a method for reducing the resonant

vibration of the cables in a footbridge. The method relies on change of the static tension in

chosen cables of the footbridge. The changes in static tension are introduced when reso-

nance vibration occurs. The paper delineates empirical research employed to experimen-

tally verify the numerical prediction. It has been demonstrated that it is possible to select

some stay cables in which applicable change in static tension force value ensures amplitude

reduction of forced resonance oscillations of any cable of the whole system. The choice of

cables and the magnitude of tension change in them were based on the sensitivity analysis

of an eigenproblem formulated in accordance with second order theory. The experimental

research was designed to demonstrate practical effectiveness of amplitude reduction of stay

cable resonant vibration method. A physical laboratory model of the footbridge was built in

compliance with dimensional analysis on a scale of 1:10. Operational Modal Analysis (OMA)

method was applied to identifying modal characteristic of a footbridge model.
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structure's function (e.g. traffic) or are independent of the
designers (e.g. climate). Therefore, it is now becoming the
more common approach to address not the causes of
vibration, but the results – to limit or reduce the amplitudes
of the excessive resonant vibration. Usually, passive devices
are used to reduce cable vibration [1,2]. They are external
devices or structure elements built in or attached to the
structure, whose function is to create additional motion
resistance and, thanks to heightened friction, disperse or
absorb the mechanic energy of vibration [3]. Dampers as
passive eliminators are characterized by a constancy of
parameters (e.g. viscosity coefficients), which cannot be
modified during vibration.

It is now becoming more and more common to use semi-
active devices in reducing the cable vibration in cable-stayed
bridges. Among those, there are: semi-active viscotic dampers,
semi-active friction dampers, semi-active dampers that
change the structure stiffness, and semi-active magnetorheo-
logical dampers [1,2], etc. Elements of control systems of semi
active equipment can automatically change the dynamic
parameters of the system, such as the resistance movement.
Semi-active systems of regulation do not destabilize the
structure they are affixed to, as they do not add energy to the
system; instead, they disperse the energy of its vibration [3].

In the case of long cables, the passive and semi-active
devices affixed near the anchoring are ineffective. In such
cases, the cable vibration reduction is achieved through cross
tying them with lines or stiffer elements. As this is a simple
and cheap method, it is the one most often used in vibration
reduction when unforeseen resonant vibration of cables
occurs [4]. Additionally, special shields, i.e. profiled shielding
pipes with internal parallel or spiral ribbing, are used for
preventing cable vibration due to wind-rain loads.

In the last three decades, a small number of papers have
been published that analyze, theoretically and experimentally,
the methods of active vibration reduction in cable-supported
bridges. Among those discussed is the method of active
reduction of cable vibration, which relies on additional forces
or vibration which are automatically generated, in real time, in
a given point of the structure [2]. The process of active
vibration reduction is performed in real time, with a feedback
mechanism. After a change in the forces of active adjustment,
another measurement is taken to gauge the system response
to the excitation. The analysis is repeated until the planned
vibration reduction is achieved [2].

A few authors have discussed the use of active vibration
reduction in cable-supported bridges. In their 1979 paper [5],
Yang and Giannopoulos were the first to consider the use of
active vibration reduction in bridge structure under wind load.
Using a simple model of a cantilever with a cable, Warnitchai,
Fujino et al. [6] showed, both experimentally and analytically,
that the vibration connected to the first bending eigenforms of
the deck can be reduced using changes in the vibration
amplitudes of the cable's anchor point to the deck. Fujino and
Susumpow considered the vertical vibration of the cable in the
plane of its sag due to the horizontal motion of the foundation
and found the method to be effective even for a cable with a
small sag [7]. Fujino et al. performed a numerical and
experimental analysis of a system consisting of one cable
connected to a structure which was a mass with a single

degree of freedom. The paper focused on the horizontal cable
vibration transverse to the plane of its sag [8].

The algorithms of active vibration reduction presented in
the above papers pertain to vibration connected to eigenforms
of both the deck and the cables. Achkire [9] presents the
analytical and experimental analysis of the method as applied
to a single cable and a whole cable structure using Integral
Force Feedback (IFF). The motion is performed according to the
changing cable tension measured in that anchoring point.
Achkire and his co-authors (Preumont, Bossens) give detailed
information on the IFF method [10]. In [9], Achkire studied the
possible use of flatter vibration reduction in a cable-stayed
bridge model in the form of a beam with two cables. The
problems of active vibration reduction in civil engineering,
including the cable-stayed bridge, are discussed in a compre-
hensive report of the studies performed between 1997 and
2000 by a number of universities and companies [11].

It must be highlighted that the suggested solutions
described above have not yet been implemented in real bridge
structures. However, the large number of analytical solutions
and experimental studies presented by various authors
implies that the application of active methods for reducing
vibration in real cable supported bridges will not be long in
coming.

2. Aim of the paper

The paper presents the method of resonant stay cable
vibration reduction in footbridges and cable-stayed bridges.
The method relies on an obvious assumption that it is possible
to reduce excessive resonant vibration of any stay cable of a
footbridge by change of the static tension in some, purposely
selected stay cables [12–14].

The tension tuning method presented in this paper consists
in the following. When large resonance vibration occurs in a
given cable, a change should be introduced in the static
tension of appropriate cables of the system. Usually, the most
effective approach is changing the tension in the cable that
undergoes the large resonance vibration. However, such a
change is not always applicable or even possible. It should also
be taken into account that changing the tension of one cable
changes the tensions of all the cables in the system. A
sensitivity analysis of the eigenproblem of the system makes it
possible to determine those cables, in which a tension change
will ensure the most effective resonant vibration reduction. It
also determines whether the tension should be decreased or
increased and what magnitude of the tension change affords
the greatest effectivity. The method is made more complex by
the fact that the eigenproblem must be formulated according
to second order theory. The design parameters in the
sensitivity analysis are the tension values in the cables. When
the cause of resonant vibration ceases, tensions in the cables
return to their initial state.

In the paper, a physical laboratory model of the footbridge,
built on a scale of 1:10 is described. Dimensional analysis is
also presented in order to explicitly determine the dependence
of the magnitude of the elements tested on the model from
those occurring in the hypothetical prototype of a footbridge.
Some parts of the research were designed to verify compliance
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of both: numerical model and laboratory physical model and to
validate and attune the FEM numerical model constructed in
Cosmos/M environment. Experimental research was also
carried out with the use of the model and 34 measure
channels system. 32 mini accelerometers and Laser Doppler
Vibrometer were used. The laser enabled non-contact stay
cable vibration measurements. OMA method does not require
intentional vibration excitation of an object. The object might
be excited using natural operating conditions or some other
excitations might be applied to the object (natural air
movement) [15–17].

The main aim of the paper is the final comparison of the
results generated by experimental studies with the results of
the numerical analyses of the FEM model and to unarguably
demonstrate the effectiveness of resonant stay cable vibration
reduction in typical footbridges.

3. Laboratory model of a cable-stayed
footbridge – dimensional analysis

A physical laboratory model of the steel cable-stayed
footbridge, built on a scale of 1:10, was constructed in order
to carry out laboratory tests. The laboratory model was created
with the utmost conformity to a hypothetical prototype of a
real footbridge both in static and dynamic values. Parameters
of the model were chosen in a way that would correspond with
real steel, short-span cable-stayed bridges, i.e. to be similar to
the parameters of a typical footbridge. The main properties of
the model to be recreated were: the geometry (length of the
span, height of the pylon, slenderness of the deck, etc.), the
stiffness of the span (displacement comparison), tension in
the stay cables and supporting cables; and eigenfrequencies.
The model was designed in such a way that would allow later
modifications, such as change of the static system, the number
and arrangement of the stay cables, replacing one deck with
another, etc. Therefore, when taking into account dimensional
analysis, not only parameters of one particular model were
considered but also the whole range of parameters that could
be applied to all footbridges. Analysis carried out in this way
enables future model modifications while retaining dimen-
sional analysis parameters, i.e. enables to try to keep similarity
between the model and the prototype [12,14]. This way both
work station and the model acquire universal features which
consequently might promote further development and

generalization of the results presented in this paper and
contribute further scientific work of disciplines different than
those analyzed in this paper.

Dimensional analysis is the analysis of the relationships
between different physical quantities of a prototype (real
object) and a model built on a different scale (usually
smaller). Dimensional analysis is based on the knowledge of
physical quantities which are relevant to the course of
analyzed phenomena. A physical quantity is a physical
property, such as: force, acceleration, time, frequency of
vibration, etc. When choosing physical quantities known and
relevant to the analyzed phenomena, one should determine
their dimensionless coefficients (products) and check if they will
be the same for both the prototype and the model. Based on the
similarity of their coefficients one can ultimately determine if
the two constructions, built on two different scales will act
similarly [18].

The choice of physical quantities is arbitrary to a large
extent and also depends on the analyzed physical phenomena
[18]. Dimensional analysis in the following research uses the
smallest number of physical quantities which thoroughly and
accurately characterize the analyzed physical phenomena,
such as forced resonance vibrations in footbridges.

When searching for the law of similarity and analysing the
static model operation, the following paper employed so called
dimensional matrix [18,19] in FLT system (Table 1) where F
represents force and L – length.

Geometric parameters were adopted in accordance with
Fig. 1: Ltot – total theoretical length of the bridge load bearing
structure [m]; L – length of the main span [m]; L1 – length of the
side span [m]; hpyl – height of a pylon from the plane of span
supports [m]; h – height of a pylon from the base to the plane of
span supports [m], hp – greatest height of the deck's girder [m];
Hp – total height of the pylon [m]; b – width of the deck [m]. The
remaining symbols in Table 1 are: R – ultimate tensile cable
strength [MPa]; s – tension [MPa]; d – displacement [m]; E –

Young's modulus [MPa], n – Poisson's ratio [–].
In dimensional matrix column (Table 1) relevant physical

quantities of the analyzed phenomena are presented whereas

Table 1 – Dimensional matrix.

Ltot L hpyl hp b R s d E n

Li 1 1 1 1 1 �2 �2 1 �2 0
F 0 0 0 0 0 1 1 0 1 0

Fig. 1 – Geometry of the footbridge model.
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dimensional matrix rows present two basic quantities needed
to assess relevant physical quantity. The first quantity is
the length (Li) which could represent the height of a pylon or
length of a span. The second quantity is the force (F). Digits
that appear in dimensional matrix are the exponents of basic
units of measurement that appear in the dimension of
the relevant physical quantity. Dimensionless quantities
(products) can be based on Table 1. Dimensionless quantities
(m) (product) were created in accordance with Buckingham p

theorem, also known as pi-theorem, which is a key theorem
in dimensional analysis. The number of products (m) is
equal to the number of physical parameters introduced (s)
that are reduced by the number of basic parameters (r)
[18,20]. The number of dimensionless quantities (products)
equals m = s � r = 10 � 2 = 8. The following set of dimension-
less coefficients (products) is called a complete set of
dimensionless coefficients when each of them is indepen-
dent from the others [18,19]. In other words, two construc-
tions which have been described by means of these 10
physical quantities act identically regardless of their size and
loads provided that 8 dimensionless ratios are the same both
in the prototype and the model [18]. It is also possible to
use the dimensional analysis proposed in this research for a
cable-stayed construction where geometric nonlinear de-
pendencies occur [18].

It should be pointed out that ratio of all the physical
quantities of the model and the prototype might take different
scales. While testing the cable-stayed footbridge model, a scale
based upon a length ratio expressed in the form of a quotient
was adopted:

LV ¼ LM
LP

(1)

where LM – length used in the model, LP – length used in the
prototype. Scale of LV equals 1:10. Table 2 shows relevant
geometrical and material properties of the model based on
this scale.

All other dimensionless quantities were determined.

� Proportions of span's length. One-pylon bridges: L = (0.6 � 0.7)
Ltot [1]

LM
Ltot;M

¼ LP
Ltot;P

;
4:5
6:0

¼ 45
60

; 0:75 ¼ 0:75 (2)

� Pylon height. Theoretical ratio of pylon height above the deck
to the main span (hpyl/L) for one-pylon bridge:
– Radial cable system (fan like cable arrangement): hpyl,M/
L = 0.4,

– Harp cable system requires slightly higher pylons: hpyl,M/
L = 0.5 [1].

The height of the pylon should not exceed 20–25 m [1]. When
using static scheme, Fig. 1:

hpyl;M

LM
¼ hpyl;M

LP
;

2:285
4:5

¼ 22:85
45

; 0:51 ¼ 0:51 (3)

� Width of the deck. Decks of the footbridges are usually
narrow, from 2 to 5 m, rarely above 7 m [1]. When using static
scheme, Fig. 1:

bM
LM

¼ bP
LP

;
0:25
4:5

¼ 2:5
45

; 0:06 ¼ 0:06 (4)

� Height of the main girder. When using two rows of cables
which are arranged densely hp/L = 1/285–1/150 [1]. When
using static scheme, Fig. 1:

hp;M

LM
¼ hp;P

LP
;

0:015
4:5

¼ 0:15
45

; 0:0033 ¼ 0:0033: (5)

However, more important appears to be the girder rigidity
similarity condition, that is, a comparison between the
model and the prototype displacement.

� Deck displacement. On the basis of numerical analysis,
maximum displacement of the main span was obtained
dM = 0.0126 m so assuming appropriate span length of the
prototype it is possible to determine dP displacement of the
prototype's main span. When using static scheme Fig. 1:
(6)dMLM ¼ dP

LP
; 0:0126

4:5 ¼ dP
45 ; dP ¼ 0:126 m:

In the prototype dP = 0.126 m displacement is an obtain-
able quantity and falls within the actual construction
parameters. Displacement of both constructions is geomet-
rically similar.

� Equality condition of Poisson's ratio n and Young's modulus E.
Poisson's ratio n is a natural and practically unchangeable

material constant. Satisfying coefficients equality condition
of Poisson's ratio and Young's modulus, is this case, is not
difficult since steel was used as the construction material in
both the prototype and the model.

nM ¼ nP; EM ¼ EP (7)

� Stress in stay cables. Under operational load, acceptable cable
stress of bridge constructions should not exceed 0.3–0.45 of
ultimate tensile cable strength Rpk [1]. The cables effort in
different characteristic load conditions of the model were
presented in the paper [12]. Assumed characteristic strength
of cables Rpk = 1770 MPa.

Dimensional analysis can also be applied to issues of
dynamics [18,19]. However, when describing dynamic phe-
nomena, it is better to apply so called mass system which is
characterized by three main basic quantities: mass (M), length
(L) and time (T) [18,19]. When determining model similarity

Table 2 – Geometrical and material quantities of the model (M) and the prototype (P).

Symbol

Ltot L L1 hpyl h Hpyl hp b E n

[m] [m] [m] [m] [m] [m] [m] [m] [GPa] [–]

Geometric parameters of the model 6.0 4.5 1.5 2.285 0.58 2.88 0.015 0.25 205 0.3
Geometric parameters of the prototype 60.0 45.0 15.0 22.48 5.80 28.8 0.15 2.5 205 0.3
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regarding dynamic features of the model and the prototype,
e.g. when determining eigenfrequencies of the object, it is
essential to select appropriate mass and stiffness of the spans.
Dynamic similarity was determined on the basis of the
formula (9) [21]:

vi;M

vi;P
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo

i;P � koi;M
mo

i;M � koi;P

s
: (8)

where vi,M, vi,P – total eigenfrequency of the model and the
prototype respectively; mo

i;M, mo
i;P – total generalized mass of the

model and the prototype respectively corresponding to the
total frequency; to the total frequency; koi;M, koi;P – total general-
ized stiffness of the model and the prototype respectively
corresponding to the total frequency.

By means of FEM numerical model (Cosmos/M) it was
possible to determine total eigenfrequencies of the model and
the main mass and stiffness corresponding to these frequen-
cies. Then, by using dimensions of the construction elements
and material parameters obtained with dimensional analysis,
a numerical model of the prototype was constructed on the
basis of which the main stiffness and mass were obtained.
For instance, obtained eigenfrequency corresponding to the
vertical eigenform of the deck is 1.55 Hz and remains within
such range of eigenfrequencies that can be observed in real
cable-stayed footbridges [22]. This indicates model similarity
to the prototype.

4. Geometrical and material parameters of the
laboratory model and initial cable tension force

A steel, cable-stayed model of the footbridge was designed
and created with a total length Ltot = 6.0 m and a pylon height
Hpyl = 2.86 m (see Fig. 2). The model of the footbridge was
made entirely of steel. The model consists of both welded
and screw-fastened elements that allow assembling and
disassembling of the elements. Fig. 1 presents the basic
geometrical traits of the real physical model of the cable-
stayed footbridge with the assumed parameters and sym-
bols. The symbols in Tables 1 and 2 correspond to the ones
in Fig. 1.

Fig. 3 presents construction details and cable tension
regulators which are fixed to all stay cables. These regulators
enable to easily shorten or lengthen the cables within
�30 mm. The cables were made of type 1 � 19 lines,
d = 1.2 mm; d = 1.8 mm dia., and tensile strength fy = 1770 MPa.

Stay cable forces were chosen in such a way as to settle the
deck's grade line at a level of �0.00 m. The choice of initial
tension forces was based on numerical analysis.

5. Frequencies and eigenforms of the
laboratory footbridge model

Fig. 4 presents OMA measuring pattern which was used to
depict eigenforms obtained. Fig. 4 also presents distribution of
measurement points. Accelerometers and the direction of
acceleration measurement, which were fixed on the measure-
ment points, were marked with green arrows. Fig. 5 presents

Fig. 2 – The model of the footbridge in laboratory, the
Institute of Civil Engineering.

Fig. 3 – Tension regulator and construction details.
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exemplary eigenforms which were identified with OMA
algorithms.

Table 3 compares footbridge eigenfrequencies experimen-
tally determined with OMA with the use of physical laboratory
model and eigenfrequencies numerically calculated with the
use of validated and adjusted numerical FEM model con-
structed in Cosmos/M environment. The last column presents

approximation error magnitude of both ways of eigenfre-
quency determination.

Stay cables eigenfrequencies were measured and later
compared to eigenfrequencies obtained with numerical model
in Cosmos/M and to eigenfrequencies obtained from analytical
solutions based on Irvine's formula (cf. Table 4). Commonly
known Irvine's formulas fI.wp, fI.zp, represent eigenfrequencies
of a cable which is isolated from the whole construction,
respectively eigenfrequencies for the eigenform in the plane of
the sag (wp) and eigenfrequencies for the eigenform out-of-
plane of the sag (zp). Parameter l2 is Irvine's parameter. The
non-contact measurements were conducted via Doppler laser.
Numerals on the cables are presented in Fig. 1.

6. Influence of tension change on
eigenfrequencies of the physical model

The following section of the paper concentrates on some results
of the experimental research and analyses the influence of
tension change of individual six pairs of stay cables on change of
eigenfrequencies of the physical model of the footbridge. As an
example, graphs in Fig. 6a and b presents frequencies values
(red color) measured on the physical model with the force
change in the 2nd and 3rd pair of stay cables respectively. Green
color indicates changes of frequencies values of a stay cable
which was subject to force changes. The graphs in Fig. 6c
indicated in green show changes in the frequency correspond-
ing to the eigenforms with dominant transversal motion
(vibration) in all cables with the force change in the 2nd pair
of stay cables. Vertical line on the graph represents individual
cables tension in the initial state and eigenfrequencies
corresponding to these tensions. Initial state means that the
forces in the cables are selected in such a way as to settle the
deck's grade line under a loading condition, involving only its
own weight, at a level of �0.00 m. The analyses were carried out
within a wide range of design parameters variability, ranging
from 0% to 20% of their maximal, acceptable characteristic load-
carrying capacity, marked with Nk.

Based on the results of the tests on the influence of tension
change of individual pairs of stay cables on change of
eigenfrequencies related to eigenforms of the deck and the
pylon, it can be noted that:

� there is very high consistency between modal analysis results
carried through OMA algorithms based on experimental

Fig. 4 – Measurement points and the direction of
acceleration measurement with OMA.

Fig. 5 – The first (a) and second (b) eigenform corresponding
to eigenfrequency f1 = 5.66 Hz and f1 = 11.48 Hz obtained
with OMA.

Table 3 – Model frequencies experimentally measured (OMA) and calculated in Cosmos/M.

Form number Form description f [Hz] The relative error

OMA Cosmos/M

1 Deck – 1st bending form 5.66 5.60 1.0%
2 Deck – 2nd bending form 11.54 11.48 0.5%
3 Pylon – 1st plane bending form 15.48 14.77 4.8%
4 Deck – 3rd bending form 19.94 20.10 �0.8%
5 Deck – 4th bending form 31.18 32.16 �3.1%
6 Deck – out-of-plane form 35.12 37.16 �5.5%
7 Deck – torsional form 36.96 44.59 �17.1%
8 Deck – 5th bending form 47.21 47.45 �0.5%
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measurements carried out on a physical laboratory model and
results obtained from calculations based on Cosmos/M FEM
numerical model;

� there is a very limited influence of cable tension change on
eigenfrequencies changes corresponding to eigenforms of
the pylon and the deck;

� there is consistency between results obtained with numeri-
cal method and the experimental research results related to
the influence of actual disconnection of one pair of cables on
eigenfrequencies of the model.

The results achieved demonstrate the validity of the theory
applied in numerical modeling and accordance between the
physical and numerical model of the footbridge.

7. Eigenproblem sensitivity analysis

Sensitivity analysis of the eigenproblem of the system was
used in order to determine the influence of tension change in
one cable – or a few cables – on the change of eigenfrequencies of
the footbridge. This procedure makes it possible to determine
theoretically what tension change, and in which cable, will
cause the greatest change in the chosen eigenfrequency of the

system, and especially of the chosen cable. From a mathemati-
cal point of view, the sensitivity analysis of the eigenproblem is
a calculation of the derivative of the matrix solution of a
homogenous differential equation of motion of the system, with
respect to a given design parameter p. In this case, the design
parameter p is the tension force in cable N. Theoretical value of
the logarithmic sensitivity function was calculated in the paper
[12]. In the paper [12] the effectiveness of the method was tested
using FEM model of a footbridge, on the basis of algorithms
developed in Cosmos/M and Mathematica.

Table 5 presents values of the logarithmic sensitivity
function calculated on the basis of both experimentally
calculated eigenfrequencies of the physical model and
measurements of tension on stay cables. Calculations were
performed using simplified formula (incremental)

si ¼
Dvi=vi

DNi=Ni
(9)

which specifies approximate coefficients of logarithmic sen-
sitivity function. Due to the change of cables tension, only
values of the logarithmic sensitivity function referring to
eigenfrequencies of stay cables were determined. Logarithmic
sensitivity function referring to eigenfrequencies related to

Table 4 – Eigenfrequencies of stay cables.

Design. cable fe.P fe.L fI.wp fI.zp fc.wp fc.zp h1 h2 h3 h4

[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [%] [%] [%] [%]

W1 23.38 23.38 23.2091 23.2085 23.4096 23.4014 0.74% 0.74% �0.13% �0.13%
W2 26.75 26.38 26.5422 26.5414 26.7635 26.7626 0.78% �0.61% �0.05% �1.43%
W3 35.38 35.25 35.3168 35.3163 35.6232 35.6167 0.18% �0.19% �0.68% �1.05%
W4 40.37 39.50 42.5126 42.5118 42.9146 42.9131 �5.04% �7.09% �5.93% �7.96%
W5 46.13 45.00 47.4242 47.4240 47.4599 47.4551 �2.73% �5.11% �2.80% �5.18%
W6 29.38 29.00 30.5938 30.5932 30.6166 30.6106 �3.97% �5.21% �4.04% �5.28%

fe.L, fe.P – obtained experimentally; L – left cable, P – right cable.
fc.wp, fc.zp – eigenfrequencies obtained with numerical model in Cosmos/M.
h1 ¼ f e: p= f l;w p; h2 ¼ f e:L= f l:w p; h3 ¼ f e:P= f c:w p; hc ¼ f e: p= f c:w p.

Irvin formula: f l:z p ¼ vn=2p ¼ n=2L � ffiffiffiffiffiffiffiffiffiffiffi
N=m

p
; n ¼ 1; 2; 3; . . ..

f l:w p ¼ vn=ð2pÞ ¼ Å
vn=2pL � ffiffiffiffiffiffiffiffiffiffiffi

N=m
p

; n ¼ 1; 2; 3; . . . ; tanðÅvn=2Þ ¼ Å
vn=2 � 4=l2 � ðÅvn=2Þ

3

.
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Fig. 6 – Influence of W3 cables (a) and W2 cables (b and c) effort change on the change of eigenfrequencies of the physical and
numerical model; eigenfrequencies: experimentally measured; obtained with Cosmos/M corresponding to eigenforms:

of the deck and the pylon, stay cables.
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eigenforms of the deck and the pylon were not determined
since eigenfrequency changes were too low to experimentally
and reliably determine values of the logarithmic sensitivity
function. Columns marked with Ni in Table 5 present cable
tension changes affecting changes of individual eigenfre-
quencies (i – number of stay cable pairs), e.g. column N1

indicates how tension change in stay cable pair number
one influenced eigenfrequency change of individual cables
marked from v1w to v6w.

Table 5 presents values of the logarithmic sensitivity
function calculated on the basis of experimentally determined
eigenfrequencies of the physical laboratory model. In the
paper [12] shows values of the logarithmic sensitivity function
theoretically calculated with the use of FEM numerical model.
On the basis of comparison of both analyses (numerical and
experimental) we can see that they are comparable with
regard to absolute value and they have the same symbols.

8. Stay cable vibration reduction – examples

Measurement exciter and power amplifier were used for
resonant vibration excitation of the physical model. The

exciter was connected to the deck by a stiff cable and the
structure was excited by a harmonic force. The exciter was
attached to the longer bridge span, 2.0 m away from side
deck support (Fig. 7). Harmonic force used ranged from 10 N to
20 N with frequency equal to eigenfrequency of one, selected
stay cable.

For the purposes of a numerical solution of the FEM
footbridge model, in which damping is taken into account,
the parameters of three damping models were determined.
The following models were analyzed: mass, Voigt–Kelvin and
Rayleigh. The description of damping model variants and the
way their coefficients were chosen was presented in detail
in the unpublished paper [12]. This paper only presents a
comparison between the results of experimental studies of a
footbridge model with an attached, but non-functioning
vibration exciter, and the results of numerical analyses of
this model tuned in such a way that it takes into account
the attached exciter, and thus the possible damping that
could occur during resonant vibration excited by the exciter.
A numerical analysis of three damping models was
performed [23]:

� mass (mass-proportional damping, C = a � B),

Table 5 – Experimental values of the logarithmic sensitivity function si acknowledging cable tension changes on cable pairs.

Fig. 7 – Vibration exciter.
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� Voigt–Kelvin (stiffness-proportional damping, C = b � K)
� Rayleigh (both mass- and stiffness-proportional damping,
C = a � B + b � K).

First, the logarithmic decrement of the damping was
determined using an experimental method in the process of
free vibration. The formula d = ln q(t)/[nq(t + nT0)] was
used, where it was assumed that n = 100. Then, the value of
the non-dimensional damping ratio was found from
j ¼ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p
¼ 0:002015. Following this, the values of

the damping parameters were determined: a – dimensional
mass-proportional damping coefficient (in inverse of
second) and b – dimensional stiffness-proportional damping
coefficient (retardation time in seconds), which were then
used to create corresponding damping matrix models for
the three considered damping models. The following values
were found:

� value of parameter a of the mass damping model,
corresponding to the first bending eigenform of the deck
with an eigenfrequency of f1 = 5.601 Hz, which is then
a = g � vi = g2pf1 = 0.142 s�1, where g = 2j = 0.00403;

� value of parameter b of the Voigt–Kelvin model for the same
frequency f1 = 5.601 Hz, which is then b = g/v1 = g/
2pf1 = 0.000115 s;

� values of parameters a and b in the case of the Rayleigh
model, where a set of two equations was solved, gi = a/
vi + bvi and gj = a/vj + bvj, in which it was assumed that
the coefficients g1 = g2 = g = 0.00403 are equal for two
chosen eigenfrequencies, i.e. eigenfrequency f1 = 5.601 Hz,
connected to the first bending eigenform of the deck,
and eigenfrequency f2 = 11.477 Hz connected to the second

bending eigenfrequency of the deck – the following param-
eters were obtained: a = 0.095311 s�1 and b = 0.0000376 s.

In order to choose the appropriate variant of the damping
model, fragments of time histories of the velocity of chosen
points of the structure were compared. In the laboratory
model, the exciter functioned with an eigenfrequency
f1 = 5.601 Hz, connected to the first bending eigenform of the
deck. A comparison between the time histories of the velocity
of damped resonant vibration of the cable W1P is shown in
Fig. 8. Fig. 8a shows the vibration process identified experi-
mentally in the laboratory model. Fig. 8b–d shows the time
histories of the vibration velocities for the three damping
models described above, determined numerically using the
system Cosmos/M. The damping parameters for those three
models were determined experimentally in a process of free
vibration of the model of the structure with an attached, but
non-functioning exciter.

On the basis of a comparison between the results of the
experimental studies (Fig. 8a) and the results of numerical
analyses (Fig. 8b–d), it can be found that the Rayleigh model
(Fig. 8b) with parameters a = 0.095311 s�1 and b = 0.0000376 s is
the only one that describes vibration damping in the
footbridge model appropriately. It is only for the Rayleigh
model that the determined amplitudes of resonant vibration
reach values close to the experimentally determined ones.
Therefore, the Rayleigh model was used in further numerical
analyses in order to compare the results of theoretical and
experimental studies.

Furthermore, a comparison of the graphs in Fig. 8 reveals
that assuming the mass damping model leads, in this case,
to needlessly heightened values of the vibration velocity

Fig. 8 – Velocity amplitudes of cable mid-span W1P under resonant harmonic excitation: (a) measured, (b) Rayleigh's damping
model: C = a � B + b � K, a = 0.095311 s�1 and b = 0.0000376 s, (c) mass damping model C = a � B, a = 0.142 s�1, (d) Voigt–Kelvin
damping model C = b � K, b = 0.000115 s.
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amplitudes (see Fig. 8a and c). This may be due to the fact that
the mass model is connected only to the external, environ-
ment based resistance to motion. The Voigt–Kelvin model, on
the other hand, yields lowered results of the amplitudes (see
Fig. 8a and d), probably due to the fact that it assumes that the
resistance to motion is of an internal nature (due to the
material of the structure). In reality, damping is caused by both
these factors; the Rayleigh model takes this into account and
thus leads to the best concordance between the theoretical
and experimental results.

In this paper, a structure is analyzed to which an exciter
was attached throughout the experiment (Fig. 7). Initially, in
the process of free vibration, the exciter was not functioning at
all. In the second phase of the experiment, the exciter was
functioning and resulted in the occurrence of resonant
vibration in the cables of the footbridge. Both during free
vibration and during resonant vibration, the whole system of
model-exciter was analyzed (Fig. 7). Even should damping
during resonant vibration have a slightly different value than
during free vibration, this fact would have no bearing on the
main aim of this paper, which was to present the significant
influence of changing the tension in cables on the reduction of
resonant vibration in the cables of a footbridge model. It
should also be highlighted that the numerical model was
tuned in such a way that it took into account the attached
exciter, and thus its possible damping effect on the model
structure. This may be attested to, indirectly, by the close
convergence of the theoretical predicted and experimentally
verified results.

Firstly, stay cable W1P vibration reduction was analyzed.
This cable was harmonically excited with 20 N force with
frequency that equaled to eigenfrequency of the stay cable, i.e.
approx. fw1P = 23.5 Hz. Vibration reduction was accomplished
by a force change in W6P cable, from the initial effort 16.2% to
54.5%. Effort is identified here as force ratio (in %) of a cable
under a certain loading condition to permissible characteristic
load-carrying capacity of this cable. Change of pulling force
(tension) started in 40th second of resonant vibration excita-
tion. After subsequent 5 s, the effort achieved was equal to
54.5%. The result of vibration reduction is presented in blue in
Fig. 9. Red color was used to mark fixed resonant state, i.e. such
damping resonant oscillations which occurred when cable
tension was not changed. As it can be seen (cf. Fig. 9)
significant change (up to 96%) of tension in cable number 6
largely reduces amplitudes of forced resonance oscillations in
cable one.

Fig. 10 shows the result of cable W1P tension reduction
under different value changes of cable W6P tension. The force
change was introduced between 40th to approx. 50th second
after vibration excitation started. Blue color shows recorded
fragment of timing parameters of W1P cable mid-span velocity
under W6P cable effort change ranging from 16.2% to 54.5% of
the initial effort state.

Red color shows influence of effort change by approx.
38.0%, green – 28.4%, yellow – 17.6%, azure – 8.1%. Initial state
was achieved after each effort change on W6P cable initial state
was achieved. It was followed by a series of different effort
changes of stay cables which were measured.

Fig. 11 shows the maximum velocity amplitude of the
resonant transverse vibration of W1P cable mid-span under
few stay cables effort changes. The maximum amplitude was
measured after timing parameters were stabilized and vibra-
tion reduced, i.e. approx. 110–115th second (red color) and also
within vibration stabilizing stage, approx. 80–85th second,
(blue color) and about 60–65th second (green color). With a
6.7% force change on W6P cable it was possible to reduce the
velocity amplitudes of resonant transverse vibrations of the
W1P cable mid-span in the range of 55–65% whereas 17.3%
force reduction on W6P cable caused reduction of velocity
amplitudes of resonant transverse vibration of the W1P cable
mid-span up to 85.7%. Reducing force value in W6P cable by
about 60–80% caused reduction of velocity amplitudes of the
resonant transverse vibrations of W1P cable mid-span by
approximately 96%.

Fig. 9 – Influence of W6P cable tension change on velocity
amplitudes change of resonant transverse vibration of W1P

cable; without W6P cable tension change; the
result of W6P cable tension change.

Fig. 10 – Influence of different W6P cable tension changes on
velocity amplitude change of the resonant transverse
vibrations of W1P cable mid-span.

Fig. 11 – Maximum velocity amplitudes of W1P cable with
variable effort of W6P cable measured in: 110–115 [s],
80–85 [s], 60–65 [s] of vibration reduction process.
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Fig. 12 presents a comparison of the results obtained in
Cosmos/M calculations to the results of measurements. It
shows the maximum velocity amplitudes of forced transverse
vibration of cables W1P as a function of the changes of static
tension force in cables W6P. In the numerical analysis, the
Rayleigh damping model was assumed.

An important conclusion can be drawn after the experi-
mental results analysis. It indicates that slight tension change
of properly selected cable is sufficient to significantly reduce
excessive resonant vibrations in a different stay cable. Theoret-
ical and experimental sensitivity analysis carried out revealed
that tension change in cable number three can effectively
change eigenfrequencies of cables two, three and four (Table 5)
and accordingly experimental verification of resonant vibration
reduction of selected stay cables was performed.

Fig. 13 presents influence of W3P cable tension change on
velocity amplitudes of the forced resonance vibrations of the
W2P cable mid-span. The excitation was performed with
harmonic force of 17 N with frequency equal to eigenfre-
quency ( fw2P � 26.75 Hz) of a stay cable. In this case it can also
be seen that the influence of W3P cable tension change
significantly (up to 97%) reduces amplitudes of forced
resonance oscillations of W2P cable (cf. Fig. 13).

Fig. 14 compares the effect of W2 cable tension reduction
obtained by tension change on one cable (W3P cable) to tension
reduction performed on cable pairs number three, i.e. W3P,
W3L. Nature of vibration disappearance in both cases is similar

and no particular differences in velocity amplitudes over the
period of time are visible. The measurements indicate that it is
enough to change the tension only in one pair of cables to
obtain sufficient vibration reduction effect. It is possible thus
to install less cable tension regulators which lowers the costs
of a vibration reduction system.

9. Conclusions

The experimental and numerical (FEM) studies have demon-
strated that:

� it is possible to significantly change the tension of selected
stay cables without causing considerable changes of
eigenfrequencies corresponding to eigenforms of a deck
and a pylon. It is indicated by low value of logarithmic
sensitivity function related to changes of eigenfrequencies;

� tension change of one or of several stay cables can
significantly reduce forced resonance vibration of any other
stay cable;

� tension change of each of the stay cables always significant-
ly influences the frequency of the cable which was subject to
force change;

� it is sufficient to change the tension in one cable of a pair
since the nature and rate of vibration disappearance is
similar to the one we observe when changing tension in both
cables of a pair;

� sensitivity analysis requires application of second order
theory to describe eigenproblem of the cable-stayed objects;

� there is no need to take into account the influence of large
displacements on eigenproblem of cable-stayed construc-
tions, so it is reasonable to simplify geometrically nonlinear
theory (second order theory) in an algorithm of sensitivity
analysis of eigenproblem with respect to tension change of
stay cables.

10. Summary

The numerical and experimental framework of this paper
demonstrates that the method of reduction of forced reso-
nance oscillations of cables in cable-stayed footbridges by the
change of the static tension in some stay cables is effective and

Fig. 12 – The maximum velocity amplitudes of forced
transverse vibration of cables W1P as a function of the
changes of static tension force in cables W6P;
measured, Cosmos/M.

Fig. 13 – Influence of W3P cable effort change on velocity
amplitude change of W2P cable initial state (without
W3P cable tension change); effect of W3P cable tension
change.

Fig. 14 – Influence of W3P cable effort change ( ) and two
cables W3P and W3L ( ) on velocity amplitude change of
W2P cable.
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is a viable alternative to currently used methods of reduction
of forced resonance oscillations. The method of reduction of
vibrations comes down to changes of static tension forces in
some, selected stay cables. The change of force takes place
automatically, in real-time, i.e. when excessive force reso-
nance oscillations of any stay cables occur. Choice of cables,
which are subject to static tension changes, is not accidental. It
is based on previously performed sensitivity analysis of
eigenproblem with respect to the variability of design
parameters, i.e. stay cables tensions. In sensitivity analysis
the eigenproblem has to be formulated according to the
second order theory.

It has been theoretically and experimentally demonstrated
that proper combination of tension changes in stay cables
ensures significant reduction of not only the excessive force
resonance oscillations of the cables, which were the subject of
tension changes, but also in other cables.

Effectiveness of the vibration reduction method was tested
with resonant forced vibrations. Numerical and experimental
research was carried out under harmonic excitations. Har-
monic excitations may occur in reality in footbridges in the
case of force i.e. caused squats people [24].

Experimental tests and numerical analyses support the
validity of the proposed method of reduction of cable vibration
in cable-stayed footbridges. Practical effectiveness of the
method can be confirmed by the results which indicate that
it is sufficient to attach the tension changing device only to
some, selected cables in order to significantly reduce resonant
vibration in any cable of the whole system. The proposed
method can serve as an alternative to current methods of
vibration reduction which use vibration dampers and elim-
inators. The proposed method of cable vibration reduction in
stay cables is easier than other methods of active reduction of
cable vibration that were presented in scientific works [9,10]
which use dynamic tension changes of cables.

The advantages of using the proposed method are
particularly applicable to long cables since passive and
semi-active vibration eliminators installed in the proximity
of an anchor prove ineffective. Moreover, the proposed
method of vibration reduction recognizes that there is no
need to determine the cause of excessive resonant vibrations.
The aim of this method is to counteract resonant vibration by
changing eigenfrequency values of the cables and not by
changing excitation forces.

The authors hope that this article will significantly broaden
the knowledge of vibration reduction of stay-cabled systems.
They also believe that the method of vibration reduction by the
change of static tension of stay-cables will become a useful
engineering device and its implementation will contribute to
designing and building safer bridge structures.
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