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2D tolerance and asymptotic models in
elastodynamics of a thin-walled structure
with dense system of ribs
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1. Introduction

Introduce the orthogonal Cartesian coordinate system Ox1x2x3

in the physical space occupied by a plate structure under
consideration. Let J ¼ ð0; L1Þ � ð0; L2Þ be the midplane (the
symmetry plane) of the structure. It is assumed that thickness
of the plate h and thickness of the ribs b are small compared to
the minimum length dimension of the midplane of the plate,
h; b � minðL1; L2Þ. At the same time the thicknesses h and b are
supposed to be small compared to the width of the stiffened
ribs H, h; b � H (Figs 1 and 2).

Subsequently it will be assumed that number n of the ribs is
very large, 1=n � 1, and the maximum distance l between ribs
is very small when compared to L1. Hence l ¼ L1=n will be
treated as a microstructure length parameter. At the same

time, the thickness h of the plate is supposed to be small
compared to the microstructure length parameter l, h � l.

The aim of this contribution is to formulate 2D macroscopic
models of dynamic behaviour of the plate under consideration.
These models will be referred to as asymptotic and tolerance,
respectively. By the 2-dimensional macroscopic model we
shall understand mathematical model governed by averaged
equations of motion with smooth coefficients and unknown
functions dependent on coordinates x1 and x2.

The formulation of averaged mathematical models of the
considered plane structure will be based on the tolerance
averaging technique. The general modelling procedures of this
technique are given by Woźniak et. al. in books [9,10]. Some
applications of the tolerance averaging technique for the
modelling of various dynamic problems for elastic micro-
heterogeneous structures are given in a series of papers by
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The object of analysis is a plane structure reinforced by a system of thin parallel-distributed

ribs. It will be assumed that the number of the ribs is very large. The thickness of

neighbouring ribs can smoothly change. The aim of contribution is to derive 2D-macroscopic

mathematical models describing elastodynamic behaviour of the plate structure in plane-

stress state. The consideration will be based on the tolerance averaging technique [9,10]. The

general results of the contribution will be illustrated by the analysis of the free vibrations of a

structure under consideration.
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Baron [1], Jędrysiak [2], Michalak [3], Michalak and Wirowski
[4], Nagórko and Woźniak [5], Tomczyk [6], Wągrowska and
Woźniak [7], and Wierzbicki and Woźniak [8].

Throughout the paper, indices i, k, l,. . . run over 1, 2, and 3,
indices a; b; g; . . . run over 1, 2 and t stand for the time
coordinate. Subsequently we shall use denotations
x ¼ x1; @1 ¼ @=@x1; @2 ¼ @=@x2. The summation convention
holds all aforementioned sub- and superscripts.

2. Formulation of the modelling problem

The considerations will be based on the well-known equations
for the plane-stress state in the plate structure. It is assumed
that the undeformed midplane of the plate occupies region
J ¼ ð0; L1Þ � ð0; L2Þ. Denoting by l distance between the ribs
of the plate structure, every Di, where xi ¼ l=2 þ ði � 1Þl,
i ¼ 1; 2; . . . ; n; ð1=n � 1Þ, will be referred to the cell in J

with centre at xi (Fig. 3). Let V ¼ [ Di � ½0; L2� be region in
the physical space occupied by plate structure and
intð [ DiÞ-cross section of V by every x2 2 ð0; L2Þ-plane. Let
subcells DP

i , DS
i , and DSP

i be parts of every cell DiðxÞ; belonging
to plate, ribs-stiffeners and part belonging both to plate and
stiffeners, respectively.

The model equations for the dynamic behaviour of the
plate structure under consideration will be obtained for plane-
stress state in the plate.

Subcells DP
i . Plane stress in plane Ox1x2, n33 ¼ 0, hence

n11 ¼ hE
1 � n2

ðe11 þ ne22Þ; n22 ¼ hE
1 � n2

ðe22 þ ne11Þ;

n12 ¼ hE
1 þ n

e12; (1)

where eab is strain tensors.

Subcells DSP
i . In this region of the structure we consider

3D-stress state
n11¼ hðlþ2mÞe11þ hlðe22þe33Þ; n22¼ hðlþ2mÞe22þhlðe11þe33Þ;
n33¼ hðlþ2mÞe33þ hlðe11þe22Þ; n12¼ hE

1þn
e12;

(2)

where l and m will be Lame's constants.
Subcells DS

i . Plane stress in plane Ox2x3, n11 ¼ 0, hence

n22 ¼ hE
1 � n2

ðe22 þ ne33Þ; n33 ¼ hE
1 � n2

ðe33 þ ne22Þ; n12

¼ hE
1 þ n

e12: (3)

Bearing in mind that h � H � L2 we shall assume approxima-
tion e33ffi � ne22 in subcell DS

i and e33ffi 0 in subcell DSP
i .

Averaging formulae (2), (3) in JS (Fig. 4) over
ð�ðh þ HÞ=2; ðh þ HÞ=2Þ, with above assumptions, we have

N11 ¼ hðl þ 2mÞe11 þ hle22; N22

¼ ½HE þ hðl þ 2mÞ�e22 þ hle11; N12 ¼ hE
1 þ n

e12; (4)

and in JP averaging formulae (1) over ð�h; hÞ
n11 ¼ hE

1 � n2
ðe11 þ ne22Þ; n22 ¼ hE

1 � n2
ðe22 þ ne11Þ;

n12 ¼ hE
1 þ n

e12; (5)

we derive constitutive equations for 2-dimensional model of
the heterogeneous structure under consideration.

Fig. 1 – Fragment of a plate structure with periodic system of
stiffeners.

Fig. 2 – Fragment of a cross-section of the stiffened plate
structure.

Fig. 3 – The basic cell of the stiffened plate structure.

Fig. 4 – Midplane of the plate structure.
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2.1. 2-Dimensional model of the plate structures
under consideration

Let displacement of the midplane of the plate be denoted by
waðxb; tÞ, external forces by paðxb; tÞ and by ~r the mass density
averaged over the plate thickness related to the midplane.

In the framework of the linear theory for plane-stress state
we have well-known equations of motion

@a ~N
ab þ pb � ~r €wb ¼ 0; (6)

where

~r ¼ rh in JP;
rðh þ HÞ in JS;

�
(7)

~N
ab ¼ nab in JP;

Nab in JS:

�
(8)

Constitutive equations we shall write in the form

~N
ab ¼ Dabgdegd; (9)

where
~N
11 ¼ D1111e11 þ D1122e22; ~N

22 ¼ D2211e11 þ D2222e22;

~N
12 ¼ D1212e12: (10)

It can be seen that the coefficients in the above equations are
discontinuous and highly oscillating. These equations are too
complicated to be used in the engineering analysis and will be
used as a starting point in the tolerance modelling procedure.

3. Modelling technique

In order to derive averaged model equations we applied
tolerance-averaging approach. The general modelling proce-
dures of this technique are given in books [9,10]. We mention
some basic concepts of this technique [10].

The fundamental concept of the modelling technique in the
modelling procedure is the averaging of an arbitrary integrable
function f(�) over the cell Di

h f i ¼ 1
Di

Z
Di

f ðy; x2Þdy; (11)

for every y 2 DðxiÞ, x2 2 ½0; L2�.
The important assumption of this technique is that values

of functions belonging to region V can be determined only
within to the assumed accuracy d. Tolerance relation 	 for an
arbitrary positive d is defined by

ð 8 ðx1; x2Þ 2 X2Þ½x1 	 x2, x1 � x2kX 
 d
�� �

; (12)

where d will be said to be the tolerance parameter.
Let @k f be the kth gradient of function f ðxÞ; x 2 V; k ¼ 0; 1; . . . ;

a, ða � 0Þ, @0 f � f . Function f 2 HaðVÞ will be called the tolerance
periodic function (with respect to cell D(xi) and tolerance
parameter d), f 2 TPad ðV; DiÞ, if the following conditions hold

ð 8 x 2 VÞð 9 ~f
ðkÞðx; �Þ 2 H0ðDiÞÞ ½jj@k f jVx

ð�Þ � ~f
ðkÞðx; �ÞjjH0ðVxÞ 
 d�;Z

Dð�Þ
~f
ðkÞð�; yÞdy 2 C0ðVÞ:

(13)

Function ~f
ðkÞðx; �Þ is referred to as the periodic approximation

of @k f in D(xi).

Function F 2 HaðVÞ will be called the slowly varying function
(with respect to the cell D(xi) and tolerance parameter d),
F 2 SVa

d ðV; DiÞ, if

F 2 TPad ðV; DiÞ;
ð 8 x 2 VÞ½~FðkÞðx; �ÞjDðxiÞ ¼ @kFðxÞ; k ¼ 0; . . . ; a�: (14)

It is possible to notice that periodic approximation ~F
ðkÞ

of @kFð�Þ
in D(xi) is a constant function for every x 2 V. If F 2 SVa

d ðV; DiÞ
then ð 8 x 2 VÞðjj@kFð�Þ � @kFðxÞjjH0 DðxiÞð Þ 
 d; k ¼ 0; 1; . . . ; aÞ.

Function ’ 2 HaðPÞ will be called the highly oscillating
function (with respect to the cell D(xi) and tolerance
parameter d), ’ 2 HOa

d ðV; DiÞ, if

’ 2 TPad ðV; DiÞ;
ð 8 x 2 VÞ½~’ðkÞðx; �ÞjDðxiÞ ¼ @k~’ðxÞ�: (15)

If F 2 SVa
d ðV; DiÞ then f � ’ F 2 TPad ðV; DiÞ and these functions

satisfy condition

ðkÞðx; �ÞjDðxiÞ ¼ FðxÞ@k~’ðxÞjDðxiÞ: (16)

If a = 0 then we denote ~f �~f
ð0Þ
.

Let g(�) denote a highly oscillating function, g 2 HO1
d ðV; DiÞ,

continuous in V. Its gradient @g is a piecewise continuous and
bounded. Function g(�) will be called the fluctuation shape
function of the first kind, if it depends on l as a parameter and
satisfies conditions:

1� @1g 2 Oðl0Þ;

2� hrgiðxÞ 	 0 for every x 2 VD;

where r > 0 is a certain tolerance periodic function.

4. Macroscopic models

4.1. Tolerance model

The first assumption in the tolerance modelling is micro-
macro decomposition of the displacement field

waðx; x2; tÞ ¼ uaðx; x2; tÞ þ gðxÞVaðx; x2; tÞ (17)

for xa 2 J and t 2 ðt0; t1Þ.
The modelling assumption states that ua(�) and Va(�) are

slowly varying functions with respect to the argument
x 2 ð0; L1Þ. Functions uað�; x2; tÞ 2 SV1

d ðJ; DÞ and Vað�; x2; tÞ 2
SV1

d ðJ; DÞ are the basic unknowns of the tolerance model.
Function g(x) is known, dependent on the microstructure
length parameter l, fluctuation shape function.

Let ~gð�; xÞ, @1~gð�; xÞ stand for periodic approximation of g(�),
@1gð�Þ in Di, respectively. Due to the fact that wað�; x2; tÞ are
tolerance periodic functions, it can be observed that the
periodic approximation of wahð�; x2; tÞ and @bwahð�; x2; tÞ in Di(x),
x 2 J have the form

wahðy; x2; tÞ ¼ uaðxb; tÞ þ ~gðy; xÞVaðxb; tÞ;
@bwahðy; x2; tÞ ¼ @buaðxg ; tÞ þ @1~gðy; xÞVaðxg ; tÞ þ ~gðy; xÞ@2Vaðxg ; tÞ;
_wahðy; x2; tÞ ¼ _uaðxb; tÞ þ ~gðy; xÞ _Vaðxb; tÞ;

(18)

for every xb 2 J, almost every y 2 Di and every t 2 ðt0; t1Þ.
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The modelling assumption states that if in every cell Di(x),
x 2 J will define residual forces

rb ¼ @a ~N
ab þ pb � ~r €wb (19)

then the following orthogonality conditions hold

hrbiTðx1Þ ¼ 0; hgrbiTðx1Þ ¼ 0; (20)

where operator h�iT(x) stands for tolerance averaging over the
cell Di(x).

Substituting the right-hand side of formula (17) into Eq. (19)
and bearing in mind orthogonality conditions (20), we obtain
the following system of equations of motion

@aðhDabgdi@gudþ hDab1d@1giVdþ hDab2dgi@2VdÞ þ h pbi
�h~ri€ub� h~rgi€Vb ¼ 0;

@2ðhD2bgdgi@gudþ hgD2b1d@1giVdþ hgD2b2dgi@2VdÞ � hD1bgd@1gi@gud

�h@1gD1b1d@1giVd� h@1gD1b2dgi@2Vdþ hpbgi � h~rgi€ub � hg~rgi€Vb ¼ 0:

(21)

The above results represent the system equations for averaged
displacements uaðxb; tÞ, and displacements' fluctuation ampli-
tudes Vaðxb; tÞ. These equations, together with micro–macro
decomposition of displacement fields (17) and physical condi-
tion that solutions have to be slowly varying functions with
respect to the argument x 2 ð0; L1Þ, constitute the tolerance
model of structural plate under consideration.

4.2. Asymptotic model

For asymptotic modelling procedure we retain only the
concept of highly oscillating function. We shall not deal with
the concept of the tolerance periodic function as well as slowly
varying function. Using the asymptotic procedure we intro-
duce parameter e ¼ 1=n, n ¼ 1; 2; . . .. Let el, eh, eH and eb be the
scaled dimensions of the cell D(xi). A scaled cell will be defined
by De� ð�el=2; el=2Þ and DeðxiÞ ¼ xi þ De is a scaled cell with a
centre at xi 2 J.

The mass density ~rð�Þ and tensor of elastic moduli Dabgdð�Þ
are assumed to be highly oscillating discontinuous functions,
~rð�Þ, Dabgdð�Þ 2 HO0

d ðJ; DÞ, for almost every x 2 J. If ~rð�Þ, Dabgdð�Þ
2 HO0

d ðJ; DÞ are highly oscillating function then for every x 2 J

there exist functions ~rðy; xÞ and ~D
abgdðy; xÞ which are periodic

approximation of functions ~rð�Þ and Dabgdð�Þ, respectively.
The fundamental assumption of the asymptotic modelling

is that we introduce decomposition of displacement as family
of fields

waeðy; x; x2; tÞ ¼ uaðy; x; tÞ
þ e~g

y
e
; x

� �
Vaðy; x; tÞ; y 2 DiðxÞ; t 2 ðt0; t1Þ; (22)

where ~gð�; xÞ are periodic approximation of highly oscillating
functions gð�Þ 2 HO1

d ðJ; DÞ. From formula (22) we obtain

@bwaeðy; x; x2; tÞ ¼ @buaðy; x2; tÞ þ @1~g
y
e
; x

� �
Vaðy; x2; tÞ

þ e~g
y
e
; x

� �
@2Vaðy; x2; tÞ;

_waeðy; x; x2; tÞ ¼ _uaðy; x2; tÞ þ e~g
y
e
; x

� �
_Vaðy; x2; tÞ:

(23)

Bearing in mind that by means of property of the mean value,
Jikov et. al. (1994), function ~gðy=e; x2Þ, y 2 DeðxÞ is weakly bounded

and has under e ! 0 weak limit. Under limit passage e ! 0 for
y 2 DeðxÞ we obtain

uaðy; x2; tÞ ¼ uaðxb; tÞ þ OðeÞ; @buaðy; x2; tÞ ¼ @buaðxg ; tÞ þ OðeÞ;
Vaðy; x2; tÞ ¼ Vaðxb; tÞ þ OðeÞ; @bVaðy; x2; tÞ ¼ @bVaðxg ; tÞ þ OðeÞ;
_uaðy; x2; tÞ ¼ _uaðxb; tÞ þ OðeÞ; _Vaðy; x2; tÞ ¼ _Vaðxb; tÞ þ OðeÞ:

(24)

By means of (24) we rewrite formulae (22) and (23) in the form

waeðy; x2; tÞ ¼ uaðxb; tÞ þ OðeÞ;
@bwaeðy; x2; tÞ ¼ @buaðxb; tÞ þ @1~g

y
e

� �
Vaðxb; tÞ þ OðeÞ;

_waeðy; x2; tÞ ¼ _uaðxb; tÞ
(25)

Using formulae (25) for orthogonality conditions (20) we obtain
equations

@aðhDabgdi@gud þ hDab1d@1giVdÞ þ h pbi � h~ri€ub ¼ 0;
hD1bgd@1gi@gud þ h@1gD1b1d@1giVd ¼ 0:

(26)

Eliminating Vd from Eqs. (26)

Vd ¼ � hD1bgd@1gi
h@1gD1b1d@1gi

@gud; (27)

and denoting effective elastic moduli

Dabgm
e f f ¼ hDabgdi � hD

ab1t@1gihD1mgd@1gi
h@1gD1m1t@1gi

; (28)

we arrive at the following equation of motion for the averaged
displacements of the plate midplane uaðxb; tÞ

@aðDabgd
e f f @gudÞ þ h pbi � h~ri€ub ¼ 0: (29)

Eqs. (27)–(29) represent the asymptotic model of the structural
plate under consideration.

5. Example of application

5.1. Non-periodic distribution of ribs

In order to analyse the influence of non-periodic distribution of
thickness of the ribs on the free vibration frequencies we
consider the simple one-dimensional problem of vibrations.
We restricted the analyses to the first vibration frequency for
the asymptotic model.

Asymptotic model: After a simple manipulation we obtain
from Eq. (29) the following differential equation describing
one-dimensional vibrations of the plate structure

@1ðD1111
e f f ðxÞ@1u1Þ � h~ri€u1 ¼ 0: (30)

We assume that thickness of the ribs is given by function
bðxÞ ¼ 2ðbe � b0Þx=L þ b0 where we have denoted: b0 – thickness
of the rib in the middle of plate, be – thickness on boundaries,
where L – span of the plate band.

The plane-stress state of the plate structure under consid-
eration is described by strain tensor with the first gradient of
the displacements. Hence, we assume the saw-like fluctuation
shape function g(�) corresponding to the cell Di(x) (Fig. 5).

Volume fraction nðxÞ ¼ bðxÞ=l of material of the ribs is
assumed to satisfy condition l=@1nðxÞ � 1.
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Restricting consideration to harmonic vibrations we look
for a solution to Eq. (30) in the form

u1 x; tð Þ ¼ u01ðxÞeivt: (31)

Substituting (31) into (30) and bearing in mind formulae (28) for
effective module, we obtain equation

Lðu01; xÞ ¼ 0 (32)

with differential operator

Lðu01; xÞ ¼ @1 hD1111i � hD
1111@1gihD1111@1gi
h@1gD1111@1gi

  !
@1u01

" #
� h~riv2u01:

(33)

For non-periodic distribution of the ribs the differential operator
(33) has functional coefficients. Hence, we shall look for the
approximate solution of Eq. (32) using the Galerkin method

Z L=2

�L=2
Lðu01; xÞ f ðxÞdx ¼ 0: (34)

For simply supported plate band with span L we assume the
approximate solution in the form

u01ðxÞ ¼ u f ðxÞ; (35)

where trial function f ðxÞ ¼ cosðpx=LÞ.
This function satisfies the boundary conditions for simply

supported plate band.
Substituting the operator (33) with function (35) into Eq. (34)

we derive a value of the free vibration frequencies v2 ¼
ðEh=ðð1 � n2ÞrhL2ÞÞw for the plate structure under consideration.

Numerical results: Calculations were conducted for three
different distributions of width of the ribs. Let us assume that
the volume fraction nðxÞ ¼ bðxÞ=l of material of the ribs is given
by functions

n1ðxÞ ¼ n0ðnb=n0 � 1Þð2x=LÞ4 þ n0;

n2ðxÞ ¼ n0ðnb=n0 � 1Þð2x=LÞ2 þ n0;

n3ðxÞ ¼ n0ðnb=n0 � 1Þð�2x=LÞ þ n0 x 2 h�L=2; 0i;
n0ðnb=n0 � 1Þð2x=LÞ þ n0 x 2 h0; L=2i;

� (36)

where n0 – part of the ribs in the centre and nb – part of the ribs
on the boundaries of the plate structure.

Fig. 6 shows parameter w of the free vibration frequencies
ðv2 ¼ ðEh=ð1 � n2ÞrhL2ÞwÞ versus ratio m ¼ nb=n0. The height of
ribs is 10 times greater than the thickness of the plate, n0 ¼
1=25 and Poisson's ratio n ¼ 0:2. The diagrams in Fig. 6 refer
appropriately to: wp – for periodic distribution of thickness of

the ribs, wn1ðmÞ – for non-periodic distribution given by
function n1(x) from formulae (36), wn2(m) – for non-periodic
distribution given by function n2(x) and wn3(m) – by function n3
(x). Plots in Fig. 6 show that the biggest differences in relation to
the periodic distribution are generated by linear distribution of
thickness of the ribs.

5.2. Periodic distribution of ribs

The aim of this subsection is to analyse vibrations and wave
propagation in the framework of the tolerance model for the
plate with periodic distribution of ribs. It is assumed that the
analysis of free vibrations will be restricted to one-dimension-
al problem. In this case Eq. (21) takes the following form

hD1111i@11u1 þ hD1111@1gi@1V1 � h~ri€u1 ¼ 0;

hD1111@1gi@1u1 þ h@1gD1111@1giV1 þ hg~rgi€V1 ¼ 0:
(37)

We can observe that above equations have solutions

u1 x1; tð Þ ¼ 0; V1 x1; tð Þ ¼ Acosðv̂tÞ þ Bsinðv̂tÞ (38)

where A and B are arbitrary constants. The constant v̂ we can
refer as the free micro-vibrations frequency

ðv̂Þ2 ¼ h@1gD
1111@1gi
hgrgi (39)

We look for a solution to Eqs. (37) in the form

u1ðx; tÞ ¼ u01ðxÞeivt V1ðx; tÞ ¼ V0
1ðxÞeivt (40)

Substituting (40) into (37) we obtain

hD1111i@11u01 þ hD1111@1gi@1V0
1 þ h~riv2u01 ¼ 0;

hD1111@1gi@1u01 þ h@1gD1111@1giV0
1 þ hgrgiv2V0

1 ¼ 0:
(41)

Introducing the micro-vibration frequency v̂ after simple
manipulation, Eqs. (41) takes the form

De f f

hD1111i �
v

v̂

� �2  !
@11u01ðxÞ þ h~ri

hD1111iv
2 1 � v

v̂

� �2� �
u01ðxÞ ¼ 0; (42)

Fig. 5 – Fluctuation shape function.

Fig. 6 – Diagrams of free vibration frequency parameters:
wp, wn1(m), wn2(m), wn3(m) for the distribution function of
material of the ribs n(x) (36) versus ratio m ¼ nb=n0.
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where we have defining

De f f ¼ hD1111i � ðhD
1111@1giÞ2

h@1gD1111@1gi
: (43)

We can observe that v̂ > v and then from Eq. (42) it follows that

(i) if ðDe f f =hD1111iÞ > ðv=v̂Þ2 then there exist sinusoidal vibra-
tions u01 ¼ AcosðkxÞ, V0

1 ¼ BsinðkxÞ.
(ii) if ðDe f f =hD1111iÞ > ðv=v̂Þ2 then there exist exponential

vibrations u01 ¼ AcoshðkxÞ, V0
1 ¼ BsinhðkxÞ. This case exists

only for micro heterogeneous plate.

For homogeneous plate we have hD1111@gi ¼ 0, then only
sinusoidal vibration exists.

Case of sinusoidal vibrations: Substituting u01ðxÞ ¼ AcosðkxÞ,
V0
1ðxÞ ¼ BsinðkxÞ into Eqs. (41) and introducing the micro-

vibration frequency v̂ we obtain

v2 ¼ De f f

h~ri k2 þ v2 � hD
1111i
h~ri k2

� �
v

v̂

� �2
: (44)

The second term in Eq. (44) describes the dispersion effect (the
nonlinear relation between v and k) due to the non-homoge-
neous structure of the plate under consideration.

Bearing in mind that u01ð�Þ and V0
1ð�Þ have to be slowly

varying functions, the obtained results have a physical sense
only if kl � 1. Treating kl as a small parameter we derive from
Eq. (44) the formula for free vibrations frequency

v2 ¼ De f f

h~ri k2 1 � ðklÞ2 h@1gD1111i
h@1gD1111@1gi

  !2
0
@

1
Aþ OðklÞ4: (45)

Case of exponential vibrations: Substituting u01ðxÞ ¼ AcoshðkxÞ,
V0
1ðxÞ ¼ BsinhðkxÞ into Eqs. (41) and introducing the micro-

vibration frequency v̂ we obtain

v2 ¼ hD1111i
h~ri

v

v̂

� �2
� De f f

h~ri

  !
k2 þ v2 v

v̂

� �2
: (46)

Bearing in mind that u01ð�Þ and V0
1ð�Þ have to be slowly varying

functions, the obtained results have a physical sense only

if kl � 1. Treating kl as a small parameter we derive from
Eq. (46) free vibrations frequency for case of exponential
vibrations.

v2 ¼ De f f

h~ri k2 1 þ ðklÞ2 2
hD1111i

h@1gD1111@1gi
� h@1gD1111i
h@1gD1111@1gi

  !2
0
@

1
A

þ OðklÞ4: (47)

Calculations of the frequency parameters b(kl) (v2 ¼ ðE=rÞk2bðklÞ)
are investigated in the framework of these cases. Diagrams of
frequency parameters b(kl) versus a dimensionless wave number
g = kl are presented in Fig. 7. Values of parameter b1(kl) are
obtained for the case of sinusoidal vibrations and values of
parameter b2(kl) for the case of exponential vibrations. These
values are calculated for the Poisson's ratio n = 0.2 and for
volume fraction of the ribs n ¼ b=l ¼ 0:2. Diagrams in Fig. 7 show
that dispersion effects are much more observable for the case
of exponential vibrations.

6. Conclusions

The obtained results justify formulating the following con-
clusions:

1. The modelling approach used in this contribution makes it
possible to obtain 2D – model equations for the plane
structure reinforced by system thin parallel ribs.

2. We can observe that the microheterogeneity of the plane
structure under consideration implies the existence of
dispersion effect and exponential waves.

3. The tolerance averaging approach makes it possible to
replace the governing differential equations with highly
oscillating and non-continuous coefficients by equations of
motion involving only smooth coefficients.

4. Since the proposed model equations have smooth func-
tional coefficients then solutions to specific problems for
the plane structure under consideration can be obtained
using well-known numerical methods.

5. The coefficients in the model equations depend on the
volume fraction n(x) of material of the ribs. In every specific
case this fraction is assumed to be known. However, this
fraction can be assumed as unknown if we are going to
design the material structure in order to derive the required
vibrations frequency.

6. The tolerance model equations describe the dispersion
effect due to the microheterogeneous structure of the plate
under consideration. These equations lead to the dispersion
effect and to exponential vibrations which cannot be
analysed in the framework of the asymptotic models.
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