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1. Introduction

The ability to compute deflections either for estimation of
rigidity of an element and/or structure, comparison of
theoretical and experimental results, computation of allow-
able deflections, or a post-buckling analysis, has always been
desired. Large deflections of flexible elements have been in the
center of attention to a number of researchers who tried to
understand, model and determine their states. There exist
many assumptions which gave rise to theories for modeling
large deflections. Namely, for slender beams, where the
influence of shear stresses and the inner axial force can be
neglected in comparison to the dominating inner bending
moment, Euler–Bernoulli beam theory is the most appropriate
and frequently used. For thicker beams more accurate

kinematic descriptions of the beams that consider the
presence of shear stresses can be used, e.g. Timoshenko's or
Reissner's description.

In recent years, effects of geometrical nonlinearities are
being complemented by studies of material nonlinearities. In
particular, Lewis and Monasa [1] and Lee [2] dealt with large
deflections of thin cantilever beams of non-linear Ludwick
type materials subjected to an end moment and combined
loading consisting of uniformly distributed load and one
vertical point load at the free end, respectively. Large
deflections of a nonlinearly non-prismatic cantilever beam
subjected to an end moment and static stability of nonlinearly
elastic Euler's columns made from materials obeying the
modified Ludwick constitutive law was investigated by Brojan
et al. [3,4], respectively. Furthermore, in the works by Baykara
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a b s t r a c t

The paper discusses governing differential equation for determining large deflections of

slender, non-homogeneous beam subjected to a combined loading and composed of a finite

number of laminae, which are made of nonlinearly elastic, modified Ludwick's type of

material with different stress–strain relations in tension and compression domain. The

material properties are varying arbitrarily through the beam's thickness. When the thick-

ness of laminae is sufficiently small and the variation of mechanical properties is close to

continuous, the beam can be considered as made of functionally graded material (FGM). The

derived equations are solved numerically and tested on several examples. From a compari-

son of the results obtained and those found in the literature a good agreement was observed.
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et al. [5] and Brojan et al. [6], nonlinear bimodulus material was
considered. Al-Sadder and Shatarat [7] developed a technique
for a large deflection problem of a prismatic composite
cantilever beam made of two different nonlinear elastic
materials and subjected to an inclined tip concentrated force.

In the last two decades, demands for advanced materials
that are capable of withstanding high temperature environ-
ment and exhibiting adequate mechanical performance, have
stimulated the study, development and fabrication technolo-
gies of functionally graded materials (FGMs). With FGMs,
where the material properties (e.g. Young's modulus, density,
heat conductivity) of two or more constituents continuously
vary as a function with respect to prescribed spatial directions,
the desired performance of components can be tuned. Today
FGMs have become widely used in aerospace, aircraft,
automotive and civil structural, thermal, optical and electronic
applications.

One of the first studies of modeling and design of multi-
layered and graded materials was published by Suresh [8].
Sankar [9] obtained an elasticity solution for a simply
supported FGM beam. Furthermore, Zhong and Yu [10,11]
presented analytical solutions for orthotropic functionally
graded beams with arbitrary elastic moduli variations along
the thickness direction under different boundary conditions.
Using the displacement function method an analytical
solution of a FGM beam with arbitrary graded material
properties was investigated by Nie et al. [12]. A new beam
element based on the first order shear deformation theory to
study the thermoelastic behaviour of FGM beam structures
was developed by Chakraborty et al. [13]. Li [14] gave a unified
approach for analyzing static and dynamic behaviours of FGM
Timoshenko and Euler–Bernoulli beams. Kang and Li [15,16]
investigated the effects of depth-depended Young's modulus
and the non-linearity parameters on the large deflections of
the FGM beam. Similar problem was investigated by Kocatürk
et al. [18], where Timoshenko beam theory and FEM are used.
Soleimani and Saddatfar [19,20] presented large deflections of
axially functionally graded beam using shooting method.

The present paper considers the problem of large deflec-
tions of slender, non-homogeneous cantilever beam subjected
to a combined loading consisting of the distributed continuous
loads and point loads at the free end. The material of which the
beam is made is assumed to be nonlinearly elastic and only
locally homogeneous. The mechanical properties are varying
arbitrarily through the beam's thickness with different stress–
strain relations in tensile and compressive domain.

The main focus of the paper is to derive the governing
differential equations for determining large deflections of the

beam composed of a finite number of laminae. Each lamina is
in general characterized by their constant thickness and
material properties. Some of the results obtained in this study
are compared to those found in the available literature.

2. Definition of the problem

Consider a slender, initially straight elastic cantilever FGM
beam of length L and uniform rectangular cross-section of
thickness h and width b. The beam is subjected to the
distributed continuous loads qx(s), qy(s) and point loads at the
free end, i.e. F0x, F0y and M0, see Fig. 1. This FGM beam is
composed of n laminae which are different in general, each
characterized by their constant thickness and material
properties.

The mathematical model of the discussed problem is based
on the elastica theory with the following assumptions:

� the material of which each lamina is made is assumed to be
incompressible, isotropic, nonlinearly elastic and homoge-
neous. No slip condition between particular laminae is
considered. They are rigidly bonded together;

� different nonlinear relations between the stress and strain
in tensile and compressive domain are considered, see Fig. 3;

� the stress–strain relationship is assumed to be governed by
the modified Ludwick constitutive model, mathematically
described by the following expression

siðeÞ ¼
st;iðeÞ ¼ Et;i ðe þ e0t;iÞ1=kt;i � e

1=kt;i
0t;i

� �
for e 	 0;

sc;iðeÞ ¼ �Ec;i ð�e þ e0c;iÞ1=kc;i � e
1=kc;i
0c;i

� �
for e < 0:

8<
: ;

(1)

Fig. 1 – Deflected state of the cantilever FGM beam.

Fig. 2 – Cross-section of the FGM cantilever beam.
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for i 2 {1, 2, . . ., n}, where st,i(e) and sc,i(e) represent stress–
strain relations and Et,i, e0t,i, kt,i and Ec,i, e0c,i, kc,i represent
material constants in tensile and compressive domain of the
ith lamina, respectively, cf. Refs. [17,3]. In practice, the
material constants are obtained from experimental data;

� shear stresses in the beam are negligible compared to
normal stresses since the length–height ratio of the beam is
large;

� Euler–Bernoulli hypothesis, which states that cross-sections
which are perpendicular to the neutral axis before deforma-
tion, remain plain and perpendicular to the neutral axis in
the deformed state of the beam and do not change their
shape and area.

The Cartesian coordinate system xy0 is introduced such that
the x-axis coincides with the longitudinal axis of the unde-
formed beam and the coordinate origin is located at its clamped
end. Let s, 0 � s � L, be the curvilinear coordinate along the
neutral axis measured from the clamped end of the beam and W
(s) the angle of inclination at local point s, see Fig. 1 and Fig. 5.
Here dv and dhdesignate vertical and horizontal deflection of the
free end with respect to the unloaded configuration.

3. Problem formulation

3.1. Inner axial force

The inner axial force is determined by the known expression, i.
e.

NðsÞ ¼
Z
A
sðeÞ dA ¼

Z
AtðsÞ

stðeÞ dA þ
Z
AcðsÞ

scðeÞ dA: (2)

Since in general the position of the neutral axis is unknown,
there exists n possible variants of the expression for the inner

axial force, see Fig. 4. In the present paper only the positive
curvature of the deformed neutral axis is taken into consider-
ation. Due to the description above, index j is the function of
the neutral axis position a(s),

j ¼

1 if ht;1 � aðsÞ < hb;1;

..

.

i � 1 if ht;i�1 � aðsÞ < hb;i�1;
i if ht;i � aðsÞ < hb;i;
i þ 1 if ht;iþ1 � aðsÞ < hb;iþ1;

..

.

n if ht;n � aðsÞ � hb;n:

8>>>>>>>>>><
>>>>>>>>>>:

; (3)

where ht,i and hb,i are (distances to) the top and bottom surface
of the ith lamina measured from the top surface of the beam
(y ¼ 0), respectively, cf. Fig. 4,

ht;1 ¼ 0; ht;i ¼ hi�1; hb;i ¼ hi: (4)

For the jth variant it follows

NjðsÞ ¼
Xj�1
i¼1

Z hb;i

ht;i

st;iðeÞb dy þ
Z aðsÞ

ht; j

st; jðeÞb dy

þ
Z hb; j

aðsÞ
sc; jðeÞb dy þ

Xn
i¼ jþ1

Z hb;i

ht;i

sc;iðeÞb dy: (5)

The known normal strain–curvature expression is given by
e ¼ �rðsÞ�1y1, where r(s) is the radius of curvature of the
neutral axis and the coordinate y1 is measured from the
neutral axis position, Fig. 2. Due to the coordinate y, which is
measured from the top surface of the beam, the normal strain–
curvature expression can be written as

eðyÞ ¼ aðsÞ � y
rðsÞ : (6)

Substituting the normal strain–curvature expression (6)
and geometrical relation r�1(s) = W0(s) into Eq. (5) leads to

NjðsÞ ¼ Aj þ
b

#0ðsÞB1; j; (7)

where

Aj ¼ At; j þ Ac; j þ Atc; j; (8)

At; j ¼ �
Xj�1
i¼1

bEt;ie
1=kt;i
0t;i ðhb;i � ht;iÞ; (9)

Fig. 3 – Stress–strain diagram of ith lamina.

Fig. 4 – Some possible variants of the strain distributed over the beam's cross-section due to the neutral axis position.
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Ac; j ¼
Xn
i¼ jþ1

bEc;ie
1=kc;i
0c;i ðhb;i � ht;iÞ; (10)

Atc; j ¼ �bEt; je
1=kt; j

0t; j ðaðsÞ � ht; jÞ þ bEc; je
1=kc; j

0c; j ðhb; j � aðsÞÞ; (11)

B1; j ¼ B1t; j þ B1c; j þ B1tc; j; (12)

B1t; j ¼ �
Xj�1
i¼1

Et;ikt;i
1 þ kt;i

C
1þ1=kt;i
tb;i � C

1þ1=kt;i
tt;i

� �
; (13)

B1c; j ¼ �
Xn
i¼ jþ1

Ec;ikc;i
1 þ kc;i

C
1þ1=kc;i
cb;i � C

1þ1=kc;i
ct;i

� �
; (14)

B1tc; j ¼ � Et; jkt; j

1 þ kt; j
e
1þ1=kt; j

0t; j � C
1þ1=kt; j

tt; j

� �
� Ec; jkc; j

1 þ kc; j

� C
1þ1=kc; j

cb; j � e
1þ1=kc; j

0c; j

� �
; (15)

Ctt;i ¼ e0t;i þ ð�ht;i þ aðsÞÞ#0ðsÞ; (16)

Ctb;i ¼ e0t;i þ ð�hb;i þ aðsÞÞ#0ðsÞ; (17)

Cct;i ¼ e0c;i þ ðht;i � aðsÞÞ#0ðsÞ; (18)

Ccb;i ¼ e0c;i þ ðhb;i � aðsÞÞ#0ðsÞ (19)

and ‘‘0’’ denotes differentiation with respect to variable s.

3.2. Inner bending moment

The inner bending moment is determined by the following
expression,

MðsÞ ¼ �
Z
A
sðeÞy dA ¼ �

Z
AtðsÞ

stðeÞy dA �
Z
AcðsÞ

scðeÞy dA: (20)

According to the unknown position of the neutral axis, as
before, n possible variants of the expression for the inner
bending moment can be assumed, Fig. 4. For the jth variant
it follows

MjðsÞ ¼ �
Xj�1
i¼1

Z hb;i

ht;i

st;iðeÞyb dy �
Z aðsÞ

ht; j

st; jðeÞyb dy

�
Z hb; j

aðsÞ
sc; jðeÞyb dy �

Xn
i¼ jþ1

Z hb;i

ht;i

sc;iðeÞyb dy: (21)

Substituting the normal strain–curvature expression (6)
and geometrical relation r�1(s) = W0(s) into Eq. (21) leads to

MjðsÞ ¼ 1
2
bD2; j; (22)

where

D2; j ¼ D2t; j þ D2c; j þ D2tc; j; (23)

D2t; j ¼
Xj�1
i¼1

Et;iðh2
b;i � h2

t;iÞe
1=kt;i
0t;i �

Xj�1
i¼1

2Et;ikt;i
ð1 þ kt;iÞð1 þ 2kt;iÞ#0ðsÞ

� mtt;iC
1þ1=kt;i
tt;i � mtb;iC

1þ1=kt;i
tb;i

� �
; (24)

D2c; j ¼ �
Xn
i¼ jþ1

Ec;iðh2
b;i � h2

t;iÞe
1=kc;i
0c;i

þ
Xn
i¼ jþ1

2Ec;ikc;i
ð1 þ kc;iÞð1 þ 2kc;iÞ#0ðsÞ

� �mct;iC
1þ1=kc;i
ct;i þ mcb;iC

1þ1=kc;i
cb;i

� �
; (25)

D2tc; j ¼ Et; jðaðsÞ2 � h2
t; jÞe

1=kt; j

0t; j � Ec; jðh2
b; j � aðsÞ2Þe1=kc; j

0c; j

� 2Et; jkt; j

ð1 þ kt; jÞð1 þ 2kt; jÞ#0ðsÞ

� mtt; jC
1þ1=kt; j

tt; j � e
1þ1=kt; j

0t; j

kt; je0t; j

#0ðsÞ þ ð1 þ 2kt; jÞaðsÞ
� �� �

þ 2Ec; jkc; j

ð1 þ kc; jÞð1 þ 2kc; jÞ#0ðsÞ

� mcb; jC
1þ1=kc; j

cb; j þ e
1þ1=kc; j

0c; j

kc; je0c; j

#0ðsÞ � ð1 þ 2kc; jÞaðsÞ
� �� �

;

(26)

mtt;i ¼ ht;i þ ht;ikt;i þ kt;iaðsÞ þ kt;ie0t;i
#0ðsÞ ; (27)

mtb;i ¼ hb;i þ hb;ikt;i þ kt;iaðsÞ þ kt;ie0t;i
#0ðsÞ ; (28)

mct;i ¼ ht;i þ ht;ikc;i þ kc;iaðsÞ � kc;ie0c;i
#0ðsÞ ; (29)

mcb;i ¼ hb;i þ hb;ikc;i þ kc;iaðsÞ � kc;ie0c;i
#0ðsÞ : (30)

3.3. Derivative of the neutral axis position with respect to
s S a0(s)

Static equilibrium of an infinitesimal element of the deflected
beam together with geometrical relations

x0ðsÞ ¼ cos #ðsÞ and y0ðsÞ ¼ sin #ðsÞ; (31)

Fig. 5 – Infinitesimal element of the deflected beam.
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see Fig. 5, results in

M0
jðsÞ þ FxðsÞsin #ðsÞ þ FyðsÞcos #ðsÞ ¼ 0: (32)

It can be observed, that in M0
jðsÞ the derivative of the neutral

axis position a0(s) (which is in general unknown) appears. The
influence of the inner axial force on the deformation of slender
beams can be neglected as shown in Ref. [6]. By considering
that the deformation of the beam is caused only by the inner
bending moment it follows that the resultant in terms of force
of normal stresses in any cross-section equals zero, i.e. Nj(s)
= 0. Furthermore, from the derivative of the expression (7) with
respect to s, i.e. N0jðsÞ ¼ 0, it can be found

a0jðsÞ ¼ #00ðsÞGj; (33)

where

Gj ¼ �B1; j þ #0ðsÞB2; j

#0ðsÞ2B3; j

; (34)

B2; j ¼ B2t; j þ B2c; j þ B2tc; j; (35)

B2t; j ¼
Xj�1
i¼1

Et;i ðht;i � aðsÞÞC1=kt;i
tt;i � ðhb;i � aðsÞÞC1=kt;i

tb;i

� �
; (36)

B2c; j ¼ �
Xn
i¼ jþ1

Ec;i ðht;i � aðsÞÞC1=kc;i
ct;i � ðhb;i � aðsÞÞC1=kc;i

cb;i

� �
; (37)

B2tc; j ¼ Et; jðht; j � aðsÞÞC1=kt; j

tt; j þ Ec; jðhb; j � aðsÞÞC1=kc; j

cb; j ; (38)

B3; j ¼ B3t; j þ B3c; j þ B3tc; j; (39)

B3t; j ¼ �
Xj�1
i¼1

Et;i C
1=kt;i
tt;i � C

1=kt;i
tb;i

� �
; (40)

B3c; j ¼
Xn
i¼ jþ1

Ec;i C
1=kc;i
ct;i � C

1=kc;i
cb;i

� �
; (41)

B3tc; j ¼ Et; j e
1=kt; j

0t; j � C
1=kt; j

tt; j

� �
þ Ec; j e

1=kc; j

0c; j � C
1=kc; j

cb; j

� �
: (42)

3.4. Derivative of the inner bending moment with respect
to s S M0(s)

M0
jðsÞ ¼ #00ðsÞbD1; j; (43)

D1; j ¼ D1t; j þ D1c; j þ D1tc; j; (44)

D1t; j ¼ �
Xj�1
i¼1

Et;i

ð1 þ 2kt;iÞ#0ðsÞ2
"

kt;i
1 þ kt;i

� �mtt;iC
1þ1=kt;i
tt;i þ mtb;iC

1þ1=kt;i
tb;i

� �
þ #0ðsÞ �mgt; j;iC

1=kt;i
tt;i mtt;i þ mgb; j;iC

1=kt;i
tb;i mtb;i

� �

� k2t;i
ð1 þ kt;iÞ#0ðsÞ

ðe0t;i � Gj#
0ðsÞ2Þ C

1þ1=kt;i
tt;i � C

1þ1=kt;i
tb;i

� �#
; (45)

D1t; j ¼
Xn
i¼ jþ1

Ec;i

ð1 þ 2kc;iÞ#0ðsÞ2

�
"

kc;i
1 þ kc;i

mct;iC
1þ1=kc;i
ct;i � mcb;iC

1þ1=kc;i
cb;i

� �

þ #0ðsÞ �mgt; j;iC
1=kc;i
ct;i mct;i þ mgb; j;iC

1=kc;i
cb;i mcb;i

� �

� k2c;i
ð1 þ kc;iÞ#0ðsÞ

ðe0c;i þ Gj#
0ðsÞ2Þ C

1þ1=kc;i
ct;i � C

1þ1=kc;i
cb;i

� �#
; (46)

mgt; j;i ¼ ht;i � aðsÞ � Gj#
0ðsÞ; (47)

mgb; j;i ¼ hb;i � aðsÞ � Gj#
0ðsÞ; (48)

D1tc; j ¼ aðsÞGj Et; je
1=kt; j

0t; j þ Ec; je
1=kc; j

0c; j

� �
� Et; j

ð1 þ 3kt; j þ 2k2t; jÞ#0ðsÞ3

� kt; je
1þ1=kt; j

0t; j H1t; j þ C
1=kt; j

tt; j ½H2t; j þ kt; j#
0ðsÞH3t; j


h i
� Ec; j

ð1 þ 3kc; j þ 2k2c; jÞ#0ðsÞ3

� kc; je
1þ1=kc; j

0c; j H1c; j þ C
1=kc; j

cb; j ½H2c; j þ kc; j#
0ðsÞH3c; j


h i
; (49)

H1t; j ¼ #0ðsÞðaðsÞ � Gj#
0ðsÞÞð1 þ 2kt; jÞ þ 2kt; je0t; j; (50)

H2t; j ¼ ht; j#
0ðsÞ2ðaðsÞ � ht; j þ Gj#

0ðsÞÞ � 2k2t; jðe0t; j

þ aðsÞ#0ðsÞÞðe0t; j � Gj#
0ðsÞ2Þ; (51)

H3t; j ¼ #0ðsÞðaðsÞ2 � h2
t; j þ Gje0t; jÞ � 2ht; jðe0t; j � Gj#

0ðsÞ2Þ
þ aðsÞðe0t; j þ Gj#

0ðsÞ2Þ; (52)

H1c; j ¼ #0ðsÞð�aðsÞ þ Gj#
0ðsÞÞð1 þ 2kc; jÞ þ 2kc; je0c; j; (53)

H2c; j ¼ hb; j#
0ðsÞ2ðaðsÞ � hb; j þ Gj#

0ðsÞÞ � 2k2c; jðe0c; j

� aðsÞ#0ðsÞÞðe0c; j þ Gj#
0ðsÞ2Þ; (54)

H3c; j ¼ #0ðsÞðaðsÞ2 � h2
b; j � Gje0c; jÞ þ 2hb; jðe0c; j þ Gj#

0ðsÞ2Þ
þ aðsÞð�e0c; j þ Gj#

0ðsÞ2Þ: (55)

Finally, substituting Eq. (43) into Eq. (32), jth governing
differential equation of the problem can be deduced in the
following form

#00ðsÞ ¼ � FxðsÞsin #ðsÞ þ FyðsÞ cos #ðsÞ
bD1; j

; (56)

where j, j 2 {1, 2, . . ., n}, depends on the neutral axis position a
(s) as it is described above and D1,j = f(W0(s)). According to
Figs. 1 and 5, the inner forces Fx(s) and Fy(s) are given by
expressions

FxðsÞ ¼ �F0x �
Z L

s
qxðsÞ ds (57)
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FyðsÞ ¼ F0y þ
Z L

s
qyðsÞ ds (58)

respectively.
The governing second order nonlinear differential equation

(56) is solved numerically using Runge–Kutta–Fehlberg (RKF)
integration method together with accompanying initial con-
ditions, i.e. W(0) = 0 and W0(0) = m, where m is the unknown
curvature of the deformed neutral axis at the clamped end. It
should be noted, that a(s) is solved numerically from Eq. (7) and
Nj(s) = 0 whereas value of j is determined using Eq. (3) for each
step of the RKF method. Since there is an unknown parameter
in the numerical calculation, i.e. m, the solution of W(s) is
obtained by employing the Newton's iterative method to
satisfy the boundary condition at the free end within
prescribed tolerance ep, i.e.

Mjðs ¼ LÞ ¼ M0;
#0ðs ¼ LÞ ¼ 0;

(59)

if the cantilever beam is subjected or not to an end moment M0,
respectively. It should be mentioned that in the Newton's
method the derivative is generated numerically using a fixed
increment Dm = 10�8. Furthermore, the Cartesian coordinate of
the points along the neutral axis of the beam can be deter-
mined from the geometrical relations (31) and boundary con-
ditions x(s = 0) = 0, y(s = 0) = 0.

4. Numerical examples

The equations and numerical procedure presented above were
tested on several problems found in literature. The obtained
deflection states are shown in the figures and tables below.
The boundary condition at the free end is satisfied within a
tolerance ep = 10�9.

4.1. Example 1

A nonlinear bimodulus cantilever beam of length L = 400 mm
and uniform rectangular cross-section of thickness h = 5 mm
and width b = 20 mm, which is subjected to an end moment
M0 = 20 � 103 Nmm, Fig. 6, was investigated by Baykara et al.
[5], where different material behaviour in tensile and
compressive domain is considered.

For this case, where n = 1 and h1 = h, in all numerical
calculations, Et,1 is taken to be 105 MPa. Since the Ludwick type
of the stress–strain relationships is considered, the material
constants e0t,1 and e0c,1 are set to be zero, i.e. e0t,1 = e0c,1 = 0.0.
The vertical and horizontal deflections at the free end are for
various material behaviour listed in Table 1, whereas the
deflected states of the beam are shown in Fig. 7. A good
agreement of the results can be observed.

If now length L, thickness h and width b of the beam are
taken to be 1000 mm, 25 mm and 50 mm, respectively, and
material constants as Et,1 = Ec,1 = 43.2735 MPa, kt,1 = kc,1 = 1.5

Fig. 6 – Cantilever beam subjected to an end moment M0.

Table 1 – Vertical and horizontal deflections at the free end.

# Ec,1 (MPa) kc,1 kt,1 dv (mm) dv (mm) [5] dh (mm) dh (mm) [5]

1 50,000 0.8 1.0 216.706 216.70 93.713 93.71
2 25,000 2.0 1.0 29.995 29.99 1.503 1.503
3 75,000 1.0 0.8 170.202 170.20 53.258 53.25
4 25,000 1.0 2.0 84.840 84.83 12.259 12.25
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Fig. 7 – Deflected states of the cantilever beam subjected to
an end moment (Baykara's problem).
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and e0t,1 = e0c,1 = 0.07, Brojan's problem is obtained, cf. [3]. The
results of radii of curvature for various end moments are listed
in Table 2. A perfect agreement of the results is observed.

4.2. Example 2

Kang and Li [15] presented results for large deflection of a non-
linear cantilever functionally graded material beam of length
L = 508 mm and rectangular cross-section with h = 6.35 mm
and b = 25.4 mm, subjected to an end moment
M0 = 15 � 103 Nmm, see Fig. 8. The same relations in tensile
and compressive domain are considered. The Young's modu-
lus EðyÞ of the FGM beam is assumed to vary over the beam
thickness in a continuous way as follows

EðyÞ ¼ E0 1 þ 2
y
h
� 1
2

� �				
				

� �
; (60)

where E0 = 458.501 MPa. In the present work this FGM beam is
assumed to be composed of n laminae which are characterized
by their constant thickness D = h/n and constant material
properties. Accordingly, from the known expression for deter-
mining average value of a function for ith lamina it follows

Et;i ¼ Ec;i ¼
1
D

Z iD

ði�1ÞD
EðyÞ dy; (61)

i 2 {1, 2, . . ., n}. The vertical and horizontal deflections at the
free end upon the number of laminae n and material constants
are presented in Tables 3 and 4, where the Ludwick type of the
stress–strain relationships is considered (e0t,i = e0c,i = 0.0). Vari-
ation of the Young's modulus upon number of laminae n is
depicted in Fig. 9. A good agreement of the results can be
observed.

Fig. 8 – FGM cantilever beam subjected to an end moment M0.

Table 2 – The radii of curvature.

# M0 (�10�3 Nmm) r (mm) r (mm) [3]

1 1.0 4535.17 4535.17
2 10.0 435.212 435.212
3 200.0 13.7097 13.7097
4 600.0 3.07637 3.07637

Table 3 – Vertical deflections at the free end, M0 = 15 T 103 Nmm (example 2).

kt,i = kc,i dv;n¼1 (mm) dv;n¼4 (mm) dv;n¼10 (mm) dv;n¼40 (mm)

1/0.209 0.498 0.323 0.289 0.283
1/0.463 274.615 231.067 220.379 218.547

kt,i = kc,i dv;n¼100 (mm) dv;n¼400 (mm) dv;n¼1000 (mm) dv (mm) [15]

1/0.209 0.283 0.283 0.283 0.283
1/0.463 218.445 218.427 218.426 218.425

Table 4 – Horizontal deflections at the free end, M0 = 15 T 103 Nmm (example 2).

kt,i = kc,i dh,n=1 (mm) dh,n=4 (mm) dh,n=10 (mm) dh,n=40 (mm)

1/0.209 3.289 � 10�4 1.385 � 10�4 1.105 � 10�4 1.063 � 10�4

1/0.463 118.368 78.609 70.629 69.320

kt,i = kc,i dh,n=100 (mm) dh,n=400 (mm) dh,n=1000 (mm)

1/0.209 1.060 � 10�4 1.060 � 10�4 1.060 � 10�4

1/0.463 69.248 69.235 69.234
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4.3. Example 3

Fig. 10 shows a FGM cantilever beam of length L = 500 mm and
rectangular cross-section with h = 5 mm and b = 25 mm,
subjected to a combined load consisting of a linearly
distributed vertical load qy(s) = s � 0.25 � 10�3 N/mm2 and
point load at the free end, i.e. F0x.

The Young's modulus EðyÞ of the FGM beam is assumed to
vary over the beam thickness in a continuous way as follows

EðyÞ ¼ E0 1 þ exp �g y
h

� �b
  !  !

; (62)

where E0 = 458.501 MPa, g = 13.4 and b = 1.8. As in previous
example, for ith lamina, i 2 {1, 2, . . ., n}, it follows D = h/n and
Et,i = Ec,i, where equation (61) is used. The remaining material
constants are assumed to be kt,i = kc,i = 2.3 and e0t,i = e0c,
i = 6 � 10�5. The vertical and horizontal deflections at the free
end upon the number of laminae n and applied end load are
listed in Tables 5 and 6, whereas the deflected states of the
beam are shown in Fig. 11. Variation of the Young's modulus
upon number of laminae n is depicted in Fig. 12.

4.4. Example 4

In particular, taking L = 500 mm, rectangular cross-section
with h = 20 mm, b = 10 mm and a constantly distributed

vertical load qy(s) = 75 N/mm, cf. Fig. 13, a special case
considered in Ref. [18] is obtained.

The Young's modulus EðyÞ is assumed to vary over the
beam's thickness in a continuous way as follows

EðyÞ ¼ ðEt � EbÞ � y
h
þ 1

� �b

þ Eb; (63)

where Et = 151 MPa and Eb = 70 MPa and represent Young's
modulus of the top and the bottom surfaces of the beam,
respectively. Hooke's type of material and the same relations
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Fig. 9 – Young's modulus upon the number of laminae n
(example 2).

Fig. 10 – FGM cantilever beam subjected to a combined loading.
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Fig. 11 – Deflected states of the cantilever beam subjected to
a combined loading (n = 100).
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Fig. 12 – Young's modulus upon the number of laminae n
(example 3).
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in tensile and compressive domain are considered (Et,i = Ec,i, kt,
i = kc,i = 1 and e0t,i = e0c,i = 0, i 2 {1, 2, . . ., n}). The vertical and
horizontal deflections at the free end are listed in Table 7,
whereas the variation of the Young's modulus is depicted in
Fig. 14. Although Kocatürk et al. [18] have solved this problem
using Timoshenko beam theory and finite element method, a

good agreement of the results can be observed, since the beam
is still relatively thin, cf. Table 7.

5. Conclusion

The study discusses large deflections of slender, non-homo-
geneous cantilever beams subjected to a combined loading
consisting of the distributed continuous loads and point loads
at the free end. An exact inner axial force, inner bending
moment, derivative of the neutral axis position and derivative
of the inner bending moment with respect to the curvilinear
coordinate as a function of curvature formulas are derived for
uniform rectangular non-homogeneous beams composed of a
finite number of laminae. Each lamina is made of nonlinearly
elastic, modified Ludwick's type of material with different
stress–strain relations in tension and compression domain. In
the case when the material properties vary through the beam's
thickness, the deflected states depending upon the number of
laminae are presented. A good agreement with the results
from the previously published studies has been established.
When the thickness of laminae is sufficiently small and the
variation of material properties in the laminae is (close to)

Table 5 – Vertical deflections at the free end, qy(s) = s T 0.25 T 10S3 N/mm2 (example 3).

# F0x (N) dv;n¼1 (mm) dv;n¼10 (mm) dv;n¼40 (mm) dv;n¼100 (mm)

1 0.0 222.010 207.452 206.730 206.690
2 �20.0 422.160 412.039 411.463 411.431
3 �50.0 383.398 390.101 390.434 390.453

Table 6 – Horizontal deflections at the free end, qy(s) = s T 0.25 T 10S3 N/mm2 (example 3).

# F0x (N) dh,n=1 (mm) dh,n=10 (mm) dh,n=40 (mm) dh,n=100 (mm)

1 0.0 58.143 50.340 49.970 49.950
2 �20.0 309.676 281.045 279.582 279.501
3 �50.0 655.221 640.705 639.954 639.913

Table 7 – Vertical and horizontal deflections at the free end, n = 400 (example 4).

# b dv (mm) dv (mm) [18] dh (mm)

1 0 341.043 341.628 160.770
2 0.3 361.960 361.759 187.369
3 1 382.002 381.061 216.889
4 3 393.309 392.313 235.719
5 EðyÞ ¼ Eb 415.231 416.287 278.004

Fig. 13 – FGM cantilever beam subjected to a constantly distributed vertical load.

Fig. 14 – Variation of the Young's modulus (example 4).
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continuous, the beam can be considered as to be made of
functionally graded material.

The presented governing differential equations can be used
successfully for determining large deflections of beams made
of modified Ludwick's, Ludwick's or Hooke's type of material,
with arbitrary FGM distribution function. To investigate the
beams with arbitrary boundary conditions, differential equa-
tions for both positive and negative curvature of the deformed
neutral axis may be introduced in a similar manner as shown
in this paper for the cantilever example.
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