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1. Introduction

The material properties of functionally graded material (FGM)
usually considered and depended on the temperature of
environment. Magnetostrictive material usually applied and
controlled to the fields of sensors and actuators. In 2013, Kugler
et al. [1] used the low-order shell element numerical method to
investigate the beam-shell structures for FGM shells. In 2012,
Mollarazi et al. [2] used an axis-symmetric weak form mesh-
less method to analyze the free vibration of FGM cylinders. In
2012, Guz et al. [3] presented the dissipative heating induced

vibration analysis for three-layer beam with piezoelectric
layers. In 2012, Alibeigloo et al. [4] presented the numerical free
vibration analysis for FGM cylindrical shell embedded thin
piezoelectric layers. In 2011, Chen et al. [5] used the average
stress method to investigate the thermal buckling for ceramic-
FGM-metal plates. In 2011, Ootao et al. [6] analyzed and
calculated the transient thermal stress for FGM strip com-
posed of piezoelectric and magnetostrictive layers due to non-
uniform surface heating. In 2007, Civalek [7] used the discrete
singular convolution (DSC) approach method to solve linear
vibration problem of isotropic conical shells. In 2007, Civalek [8]
investigated the free vibration parameterization of rotating
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The vibration and transient response of rapid heating on inner surface of the functionally

graded material (FGM) circular cylindrical shells with outer magnetostrictive layer is inves-

tigated and computed by using the generalized differential quadrature (GDQ) method. The

effects of heat flux value, power law index value, environmental temperature value and

control gain value on Terfenol-D FGM circular cylindrical shell subjected to two edges

clamped condition due to the not very high temperature fluid rapidly flow into the circular

cylindrical shells from one side to the end of axial length direction are analyzed. The higher

amplitudes of displacement and thermal stress can be obtained under the higher rapid heat

flux value. With suitable product of coil constant and control gain value can reduce the

amplitudes of displacement and thermal stress into a smaller value. The displacement of

Terfenol-D FGM circular cylindrical shell versus the Terfenol-D thickness is stable for all

power law index values. The Terfenol-D FGM circular cylindrical shell can stand against the

higher temperature of environment with some values of power law index under rapid

heating.

# 2013 Politechnika Wrocławska. Published by Elsevier Urban & Partner Sp. z o.o. All

rights reserved.

* Tel.: +886 919037599; fax: +886 4 24961187.
E-mail address: cchong@mail.hust.edu.tw.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: http://www.elsevier.com/locate/acme

1644-9665/$ – see front matter # 2013 Politechnika Wrocławska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
http://dx.doi.org/10.1016/j.acme.2013.10.012



laminated cylindrical shells by using the DSC method. In 2006,
Civalek [9] presented the free vibration analysis of composite
conical shells by using the DSC algorithm. In 2006, Bhangale
et al. [10] used the first-order shear deformation theory (FSDT) of
finite element method (FEM) to investigate the thermal buckling
and free vibration behaviors for FGM conical shells in a high-
temperature environment. In 2004, Manoach and Ribeiro [11]
presented the nonlinear large amplitude vibrations of moder-
ately thick beams under short heat flux and mechanical
harmonic loading. In 2001, Cho and Kardomateas [12] presented
a numerical dynamic thermal shock stresses result for a thick
orthotropic cylindrical shell due to rapidly change of tempera-
ture. In 2000, Wojciechowski [13] presented the controlled
purposes development of FGM in mechanical engineering
usually composited of particular layers of piezoelectric, mag-
netostrictive, electrostrictive and shape memory alloys. In 1994,
Chang and Shyong [14] used the FEM to compute and find the
transient response results for laminated circular cylindrical
shell under thermal impact. In 1993, Huang and Tauchert [15]
used the FEM to calculate the large-amplitude vibration result
for graphite-reinforced aluminum cylindrical panels during a
sudden rise in surface temperature. In 1980, Manolis and Beskos
[16] used the general numerical method to investigate the
vibrations response of beam structures under rapidly thermal
loads. In 1982, Shirakawa [17] presented the numerical dynamic
responses of displacements and stresses for an orthotropic
cylindrical shell due to rapid heating.

In the literature same title problem can be solved via
different approach. The main superiority of presented method
generalized differential quadrature (GDQ) used to solve the title
problem, get acceptable results with less grid and computation-
al time in the not higher modes. Namely, by using the axis-
symmetric elements FEM is more effectively used for title
problem in the higher modes. The author has some computa-
tional experiences and solutions in the piezoelectric shells and
magnetostrictive plates by using the GDQ method. In 2013, Hong
[18] investigated transient response of stress and displacement
for magnetostrictive FGM square plates under rapid heating. In
2012, Hong [19] investigated the stress and displacement of
magnetostrictive FGM plates in rapid heating by considering the
effects: thickness of Terfenol-D, control gains, rapid heating flux
and power law index of SUS304-Si3N4 materials. In 2010, Hong
[20] computed and presented the solutions of thermal transient
response of magnetostrictive plates. In 2010, Hong [21]
investigated the behaviors of displacement and stresses of
piezoelectric shells under the electromechanical loads. In 2009,
Hong [22] investigated and obtained the thermal vibration of
axial, circumferential and normal displacements of laminated
shells under rapid heating. Usually the FGM shell work is
motivated in the higher temperature environment as shielding
and might be induced vibration due to rapid heating. A reducing
vibration subject of practical solution might be the use of
magnetostrictive material layer onto the surface of FGM shells.
It is interesting to study the thermal vibration and transient
responses of displacement and stress, with and without the
effect of velocity feedback, respectively in the magnetostrictive
FGM shell under rapid heating due to the not very high
temperature fluid rapidly flow into the circular cylindrical shells
from one side to the end of axial length direction by using the
GDQ method.

2. Formulation

2.1. FGM

The Young's modulus is usually in great value of GPa (109 N/
m2) unit, so it is the main and dominant properties
when compared with others. For the calculation simplifica-
tion in stiffness integrations of FGM circular cylindrical
shell, it is reasonable to assume only the Young's modulus
is in the power law function of two-material FGM shell,
the others properties are all in the average forms.
The Young's modulus for the power law function of two-
material FGM circular cylindrical shell as shown in Fig. 1 is
expressed in the following equation in 2006 by Chi and
Chung [23]

E fgm ¼ ðE2 � E1Þ z þ h=2
h

� �Rn

þ E1; (1a)

k fgm ¼
k2 þ k1

2
; (1b)

a fgm ¼
a2 þ a1

2
; (1c)

r fgm ¼
r2 þ r1

2
; (1d)

n fgm ¼
n2 þ n1

2
: (1e)

where z is the thickness coordinate, h is the thickness of
FGM shells. Rn is the power law index. Efgm, E1 and E2 are
the Young's modulus, kfgm, k1 and k2 are the thermal
conductivities, afgm, a1 and a2 are the thermal expansion
coefficients, rfgm, r1 and r2 are the densities, nfgm, n1 and n2

are the Poisson's ratios, respectively to the FGM shells,
the constituent FGM material 1 and FGM material 2. The
term of properties E1, E2, k1, k2, a2, a1, r1, r2, n1 and n2 can
be expressed corresponding to the individual properties
term Pi in constituent material equation Pi = P0(P�1T

�1 + 1
+ P1T + P2T

2 + P3T
3) in which P0, P�1, P1, P2 and P3 are the

temperature coefficients, T is the temperature of environ-
ment.

2.2. Stress–strain relations with magnetostrictive effect

A thin multilayered of magnetostrictive FGM circular cylindri-
cal shells subjected to rapid heating on inner surface is
considered as shown in Fig. 1, the thermo elastic stress–strain
relationship of the kth layer (denoted in the subscript (k))
including thermal strain and magnetostrictive coupling effect
are expressed in the following equations in 2006 by Lee et al.
[24].

sx

su

sxu

8<
:

9=
;
ðkÞ

¼
Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

2
4

3
5
ðkÞ

ex � axDT
eu � auDT
exu � axuDT

8<
:

9=
;
ðkÞ

�
0 0 e31
0 0 e32
0 0 e36

2
4

3
5
ðkÞ

0
0
~Hz

8<
:

9=
;
ðkÞ

: (2)
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where sx, su and sxu are thermal stresses. ax and au are the
coefficients of thermal expansion, axu is the coefficient of
thermal shear in the kth layer, they are corresponding to a1

in the FGM material 1 layer, corresponding to a2 in the FGM
material 2 layer and use the magnetostrictive coefficients in
the magnetostrictive layer. DT is the temperature difference
between the shell and curing area. Qi j is the stiffness. ex, eu and
exu are strains. ei j is the transformed magnetostrictive coupling
modulus. ~Hz is the magnetic field intensity can be expressed in
the following velocity feedback control equations in 2004 by
Lee et al. [25].

~Hzðx; y; tÞ ¼ kccðtÞ @w
@t

: (3)

in which kc is the coil constant, c(t) is the control gain, w is
displacement component in the z direction, t is the time.

The strains in terms of displacement components without
the effects of shear deformation are expressed in the following
equations.

ex ¼ @u
@x
� @2w

@x2
z; (4a)

eu ¼ 1
R

@

@u
þ w

� �
� 1

R2

@2w

@u2
� @v

@u

� �
z; (4b)

exu ¼ @v
@x
þ 1
R
@u
@u
� 2

1
R

@2w
@x@u

� @v
@x

� �
z: (4c)

in which u and v are displacement components in the x and u

direction, respectively, R is the mean radius. x, u and z are the
cylindrical coordinates system fixed on the middle surface of
the cylinder.

The simple forms of Qi j are used for the FGM and without
considering the angle effects of FGM fiber directions, are
expressed in the following equations in 2007 by Shen [26].

Q11 ¼ Q22 ¼
E fgm

1 � n2fgm
; (5a)

Q12 ¼
n fgmE fgm

1 � n2fgm
; (5b)

Q66 ¼
E fgm

2ð1 þ n fgmÞ
; (5c)

Q16 ¼ Q26 ¼ 0: (5d)

The simple forms of Qi j with Poisson's ratios v = 0 are used
for the layer of magnetostrictive material, are expressed in the
following equations.

Q11 ¼ Q22 ¼ E11; (5e)

Q66 ¼
E11

2
; (5f)

Q12 ¼ Q16 ¼ Q26 ¼ 0: (5g)

in which E11 is the Young's modulus for the magnetostrictive
material.

2.3. GDQ method

The GDQ method is used to approximate the derivatives of
functions by Shu and Richards and reviewed as follows: the
derivative of a smooth function at a discrete point can be
discretized by using a weighting linear sum of the function
values at all the discrete point in1997 by Shu and Du [27].

2.4. Dynamic equilibrium differential equations

For thin multilayered magnetostrictive FGM circular cylindri-
cal shell under the pulsating axial load, the thermally
dynamic equilibrium differential equations without angular
rotating axial speeds and without considering the shear
deformation effects, in terms of displacement components
included the effect of mth layer magnetostrictive loads are
expressed in the following equations in 1998 by Hua and Lam
[28].
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L21 L22 L23
L31 L32 L33

2
4

3
5 u

v
w

8<
:

9=
; ¼

b1
b2
b3

8<
:

9=
;: (6)

in which Lij is the partial derivative terms with coefficients Aij,
Bij and Dij, i = 1, 2, 3, j = 1, 2, 3.

b1 ¼ @Nx

@x
þ 1
R
@Nxu

@u
þ @~Nx

@x
þ 1
R
@~Nxu

@u
;

b2 ¼ @Nxu

@x
þ 1
R
@Nu

@u
þ 1
R
@Mxu

@x
þ 1

R2

@Mu

@u
þ @~Nxu

@x
þ 1
R
@~Nu

@u
þ 1
R
@ ~Mxu

@x

þ 1

R2

@ ~Mu

@u
;

b3 ¼ @2Mx

@x2
þ 2
R
@2Mxu

@x@u
þ 1

R2

@2Mu

@u2
�Nu

R
þ @2 ~Mx

@x2
þ 2
R
@2 ~Mxu

@x@u
þ 1

R2

@2 ~Mu

@u2

�
~Nu

R
;

ðAi j; Bi j; Di jÞ ¼
Z h�=2

�h�=2
Qi jð1; z; z2Þdz;

ðNx; MxÞ ¼
Z h�=2

�h�=2
ðQ11ax þ Q12au þ Q16axuÞDTð1; zÞdz;

Fig. 1 – Geometry of magnetostrictive two-material FGM
shells under rapid heating.
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ðNu; MuÞ ¼
Z h�=2

�h�=2
ðQ12ax þ Q22au þ Q26axuÞDTð1; zÞdz;

ðNxu; MxuÞ ¼
Z h�=2

�h�=2
ðQ16ax þ Q26au þ Q66axuÞDTð1; zÞdz;

~Nx
~Nu
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8<
:

9=
; ¼

XNm

k¼1

Z zkþ1
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e32
e36

8<
:

9=
;
ðmÞ

~Hzdz;

~Mx
~Mu
~Mxu

8<
:

9=
; ¼

XNm

k¼1

Z zkþ1

zk

e31
e32
e36

8<
:

9=
;
ðmÞ

~Hzz2dz:

where Nm is the number of magnetostrictive layer, the sub-
script m denotes the magnetostrictive layer. h* is the total
thickness of magnetostrictive layer and FGM shell. Nx, Nu

and Nxu are expansion force resultants due to temperature
field difference. Mx, Mu and Mxu are expansion moment resul-
tants due to temperature field difference. ~Nx, ~Nu and ~Nxu are
expansion force resultants due to magnetostrictive loads. ~Mx,
~Mu and ~Mxu are expansion moment resultants due to magne-
tostrictive loads.

2.5. Dynamic discretized equations

The thermal vibration case is considered for the condition of
expansion strain distribution which is independent of x, u and
an even function of z, with Nx ¼ �Nax, Na is the pulsating axial
load, DT = (A11/R

2)T0x as the thermally expansion load which is
dependent of x and T0, where T0 is thermal temperature due to
rapid uniform heating on inner surface of FGM circular
cylindrical shells, on the outer surface and edges of the
magnetostrictive FGM circular cylindrical shells are assumed
in thermally insulated, thus the conventional equation of
temperature field T0 is function of z and t, can be used directly
as follows in1987 by Hetnarski [29].

T0 ¼ h�q0
k fgm

� bt
p2 þ

1
2
� z
h�
þ 1
2

� �2

� 1
6
� 2
p2

X1
j¼1

ð�1Þ j
j2

e� j2btcos jp � z
h�
þ 1
2

� �2
4

3
5:

(7a)

in which b = p2kfgm/h
*2, q0 is the applied heat flux.

This conventional equation of temperature field T0 is
developed from the heat transfer equation as follows.

@T0

@t
¼ k fgm

@2T0

@z2
(7b)

and the boundary conductions are specified at inner and outer
surface of the circular cylindrical shells as follows.

k fgm
@T0ð�h�=2; tÞ

@z
¼ q0 (7c)

@T0ðh�=2; tÞ
@z

¼ 0 (7d)

and with the initial condition: T0(z, 0) = 0
The physical investigation for the assumed boundary

condition is to calculate the some DT effects of rapid heating
at the inner surface of FGM shells due to the not very

high temperature fluid rapidly flow into the circular
cylindrical shells from x = 0 to x = L. By the way, the flow
stress due to plastic strain in very high temperature would
happen.

For the A11 calculation in stiffness integrations of
magnetostrictive FGM shells, the following equation can be
obtained.

A11 ¼ h

1 � ððn1 þ n2Þ=2Þ2
RnE1 þ E2

Rn þ 1

� �
þ E11h3: (8)

in which h3 is the thickness of magnetostrictive layer, v1 and v2
are the Poisson's ratios of individual constituent FGMs.

The following displacement components are investigated
in triangular functions.

u ¼ UðxÞcosðnu þ vtÞ; (9a)

v ¼ VðxÞsinðnu þ vtÞ; (9b)

w ¼ WðxÞcosðnu þ vtÞ: (9c)

where U(x), V(x) and W(x) are the amplitude functions of
vibration mode of the displacement components in longitudi-
nal direction. v (rad/s) is the natural circular frequency and
mode shape n is an integer for the circumferential wave
number of the multilayered shells.

The one-dimensional GDQ method is applied to discretize
the equilibrium differential equations and introduce the
following non-dimensional parameters.

X ¼ x
L
; (10a)

U ¼ UðxÞ
L

; (10b)

V ¼ VðxÞ
R

; (10c)

W ¼WðxÞ
h�

; (10d)

Z ¼ z
h�

: (10e)

where L is the length of shell, h* is the total thickness of
magnetostrictive FGM shells.

Considering for two edges are clamped, symmetric (Bij = 0),
orthotropic (A16 = A26 = 0, D16 = D26 = 0, sxu = 0) of laminated
shell under temperature loading, thus the dynamic discretized
equilibrium equations and the following frequency parameter
can be obtained.

f � ¼ vR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt=A11

p
(11a)

rt ¼
Z h�=2

�h�=2
rdz (11b)

in which r is the density of magnetostrictive FGM shell.
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3. Computational results

The standard finite element method common usually used to
solve, apply a problem and more commercial program had
been derived for the source. It is interesting to writing the GDQ
computing program by oneself and solving the rapid heating
problem of Terfenol-D FGM circular cylindrical shells. Type of
boundary conditions and mode numbers usually affect the
best results for the same grid numbers. The following equation
of coordinate is used for the grid point in the GDQ computa-
tion.

xi ¼ 0:5 1 � cos
i � 1
N � 1

p

� �� �
L; i ¼ 1; 2; . . . ; N (12)

where N is the total discrete grid points number used in the x
direction.

The total three-layer magnetostrictive FGM circular cylin-
drical shell as shown in Fig. 1 is considered with the outer
surface magnetostrictive layer is Terfenol-D, the inner layers
of the FGM material 1 is Si3N4, the FGM material 2 is SUS304.
The thickness of FGM material 1 and FGM material 2 is denoted
as h1 and h2, respectively. Considering h1 is equal to h2 in the
GDQ computation. Firstly, the dynamic convergence of the
frequency parameter f* and center displacement W|X=0.5 are
investigated and compared with R/h = 500, L/R = 10, circumfer-
ential wave number n = 4, rapid heat flux value q0 = 2110 J/
(sm2), u = 1 radian, time t = 1 s, Terfenol-D thickness ratio h3/
h* = 0.1, environmental temperature value T = 500 K, Rn = 1 and
without velocity feedback kcc(t) = 0 under clamped–clamped
boundary condition. Table 1 shows the f* value and WjX=0.5
value with respect to grid point N value for rapid heating on
inner surface of the Terfenol-D FGM shells. More accurate
results and less grid points are more suitable for all kind
boundary and higher modes of vibration are investigated by
using the harmonic differential quadrature (HDQ) method in
2004 by Civalek [30]. For the simplification, we only consider
the clamped–clamped boundary condition and modes of
vibration n = 1–9. The central processing unit Intel Pentium
M processor 1.73 GHz of notebook is used in the calculation to
give a preliminary view on the accuracy of the solution and the
computation time. The real computation time took 1 s in each
number of grid point convergence calculation. The accuracy of
f* values is 5.4 � 10�5 for N = 49 grid point, it is acceptable for
the preliminary study. The computational results of grid point
N = 49 are found in the acceptable convergence and can be
used further for the rapid heating responses of displacement
and stress.

The dominant displacement and stress values under rapid
heating are also investigated and compared. Fig. 2a shows the

dominant normal displacement W along X of rapid heating on
inner surface of the Terfenol-D FGM shells under the effects of
control gain values kcc(t) = 0 and �109 cases, h3/h* = 0.1, rapid
heat flux value q0 = 1055 J/(sm2), T = 500 K, Rn = 1, u = 1 radian,
time t = 1 s. The great amplitude of displacement W value is
�1.27 occurred at X = 0.5 when without velocity feedback (kcc
(t) = 0). We find that with velocity feedback and with suitable
control gain value kcc(t) = �109 can reduce the amplitude of
displacement to a smaller value (W = �8.94E�03 at X = 0.5).
The values W versus X are also compared with non-
dimensional deflection w versus L in 2008 by Kadoli et al.
[31], where w ¼ 100WbEmentalh

3=ðFL4Þ, Emental is the Young's
modulus of SUS304 and F is the applied mechanical load. The
referred data as shown in Fig. 2b is re-plotted for the SUS304-
Si3N4 FGM beam included higher order shear deformation with
clamped-clamped ends. Fig. 2 shows the good similar
tendency of W and w versus L, but the different scalar values
occur between two plots are acceptable for the available
referred data in different parameter definitions.

Fig. 3a shows the dominant thermal normal stress sx ¼
sx=E2 on Z = 0.4 along X of rapid heating on inner surface of the

Table 1 – Dynamic convergence of GDQ results in rapid
heating.

N f* Accuracy of f* W|X=0.5

23 0.0107143 �0.881667
29 0.0125000 1.4 � 10�1 �1.88422
33 0.0128564 2.7 � 10�2 �2.52597
49 0.0128571 5.4 � 10�5 �2.53058

Fig. 2 – Comparison of the displacement (deflection) vs. the
length. (a) W vs. X of rapid heating Terfenol-D FGM shells.
(b) w vs. L of FGM beams.
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Terfenol-D FGM shells under the effects of control gain values
kcc(t) = 0 and �109 cases, h3/h* = 0.1, rapid heat flux value
q0 = 1055 J/(sm2), T = 500 K, Rn = 1, u = 1 radian, time t = 1 s.
When without velocity feedback kcc(t) = 0 = 0, the amplitude of
thermal normal stress sxjZ¼0:4 is large, linearly increasing with
X, and have a striking value sx ¼ �6:61E � 04 on the end X = 1
due to the thermal load (DT) effect. When with velocity
feedback and with suitable control gain value kcc(t) = �109, the
amplitude of thermal normal stress sxjZ¼0:4 can be reduced to a
little smaller value. Fig. 3b shows the dominant thermal shear
stress sxu ¼ sxu=E2 on Z = 0.5 along X of rapid heating on inner
surface of the Terfenol-D FGM shells under the effects of kcc(t)
= 0 and �109 cases. When with velocity feedback and with

suitable control gain value kcc(t) = �109, the amplitude of
thermal shear stress sxujZ¼0:5 can be reduced to a little smaller
value. Fig. 3c shows the dominant thermal shear stress sxu on
Z = �0.05 along X of rapid heating on inner surface of the
Terfenol-D FGM shells under the effects of kcc(t) = 0 and �109
cases. When without velocity feedback kcc(t) = 0, the amplitude
of thermal shear stress sxujZ¼�0:05 is large and oscillate in
harmonic with X. There are great shear stress value sxu ¼
�1:64E � 05 on the surface X = 0.195619 of Terfenol-D FGM
shells due to the rapid heating thermal load (DT) effect. The
values sxu versus Z on the surface X = 0.195619 as shown in
Fig. 3d are also compared with the non-dimensional trans-
verse shear stress txz versus Z of some available referred data

Fig. 3 – sxjZ¼0:4 vs. X, sxujZ¼0:5 vs. X, sxujZ¼�0:05 vs. X and sxujX¼0:195619 vs. Z. (a) sxjZ¼0:4 vs. X under control gain values kcc(t). (b)
sxujZ¼0:5 vs. X under control gain values kcc(t). (c) sxujZ¼�0:05 vs. X under control gain values kcc(t). (d) sxujX¼0:195619 vs. Z of
Terfenol-D FGM shells under rapid heating. (e) Comparison txz vs. Z of FGM beams under no thermal load.
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in 2008 by Kadoli et al. [31] of clamped–clamped Ti–6Al–4V–
ZrO2 FGM beams as shown in Fig. 3e is re-plotted under no
thermal load, where txz ¼ txzh

2=ð fL2Þ, txz is the transverse
shear stress, f is the uniformly distributed load. We find
sxujX¼0:195619 have the values �4.96E�05 on the outer surface
greater amplitude than �1.41E�05 on the inner surface of
Terfenol-D FGM shells due to rapid heating. Because without
thermal load, there are no transverse shear stresses on the top
and bottom surfaces in the FGM beams.

Secondly, the thermal effects of heat flux value under rapid
heating are investigated. Fig. 4 shows the dominant normal
displacement W along X of rapid heating on inner surface of
the Terfenol-D FGM shells under the effects of rapid heat flux
values q0 = 0 J/(sm2), 264 J/(sm2), 528 J/(sm2), 1055 J/(sm2),
2110 J/(sm2) and 3165 J/(sm2), T = 500 K, Rn = 1, u = 1 radian,
time t = 1 s, h3/h* = 0.1, kcc(t) = 0. We find the higher amplitude
of displacement can be obtained as in higher rapid heat flux
value. Fig. 5 shows the dominant thermal normal stress sx on
Z = 0.4 along X of Terfenol-D FGM shell under the effects of
rapid heat flux values q0 = 0 J/(sm2), 264 J/(sm2), 528 J/(sm2),
1055 J/(sm2), 2110 J/(sm2) and 3165 J/(sm2), T = 500 K, Rn = 1,
u = 1 radian, time t = 1 s, h3/h* = 0.1, kcc(t) = 0. The higher
amplitude of normal stress can be obtained as in higher rapid
heat flux value. There is no normal stress when there is no
rapid heat flux value (q0 = 0 J/(sm2)). Almost linearly increasing
with X on the Z = 0.4 surface, there are striking normal
stress values on the two ends, sx ¼ �4:18E � 04 at X = 0 and

sx ¼ �1:98E � 03 at X = 1, of rapid heat flux value q0 = 3165 J/
(sm2) of Terfenol-D FGM shells under rapid heat flux effect.

Fig. 6 shows the time response of dominant normal
displacement W at X = 0.5 of rapid heating on inner surface
of the Terfenol-D FGM shells under the effects of control gain
values kcc(t) = 0 and �109 cases, h3/h* = 0.1, rapid heat flux value
q0 = 2110 J/(sm2), T = 500 K, Rn = 1, u = 1 radian. The time step
value 0.1 s is used in the GDQ vibration computation. When
without velocity feedback kcc(t) = 0, the amplitude of displace-
ment W is linearly increasing value from �3.47E�05 to �2.53E
+00 versus t (s) within 1 s. With velocity feedback and with
suitable control gain value kcc(t) = �109, the amplitude of
displacement can be reduced to a smaller value. Fig. 7 shows
the time response of dominant thermal normal stress sx at
X = 1 on Z = 0.4 of rapid heating on inner surface of the
Terfenol-D FGM shells under the effects of control gain values
kcc(t) = 0 and �109 cases, h3/h* = 0.1, rapid heat flux value
q0 = 2110 J/(sm2), T = 500 K, Rn = 1, u = 1 radian. When without
velocity feedback kcc(t) = 0, the amplitude of thermal normal
stress is linearly increasing value from �1.81E�08 to
�1.32E�03 versus t (s) within 1 s. With velocity feedback and
with suitable control gain value kcc(t) = �109, the amplitude of
thermal normal stress can also be reduced to a smaller value.

We also like to investigate the FGM effects of power law
index value, environmental temperature value under rapid

Fig. 4 – W vs. X under rapid heat flux q0.

Fig. 5 – sxjZ¼0:4 vs. X under rapid heat flux q0.

Fig. 6 – WjX¼0:5 vs. t (s) of rapid heating Terfenol-D FGM
shells.

Fig. 7 – sxjX¼1;Z¼0:4 vs. t (s) of rapid heating Terfenol-D FGM
shells.
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heating. Fig. 8 shows the dominant normal displacement W at
X = 0.5 vs. h3/h* of rapid heating on inner surface of the
Terfenol-D FGM shells under the effects of FGM power law
index values Rn = 0.1, 0.2, 0.5, 1, 2, 5 and 10, kcc(t) = �109, rapid
heat flux value q0 = 2110 J/(sm2), T = 500 K, u = 1 radian, time
t = 1 s. We find the amplitudes of displacement decrease firstly
from h3/h* = 0 to h3/h* = 0.1 then keep constant almost equal to
zero from h3/h* = 0.1 to h3/h* = 0.5 for the values of Rn = 0.1 and
10. For the other values of Rn, the amplitudes of displacement
decrease negative firstly from h3/h* = 0 to h3/h* = 0.1 then keep
constant almost equal to zero. The Terfenol-D FGM shell is
stable versus h3/h* for all values of Rnwith suitable control gain
value under rapid heating. Fig. 9 shows the dominant thermal
normal stress sx at X = 1 on Z = 0.4 versus h3/h* of rapid heating
on inner surface of the Terfenol-D FGM shells under the effects
of FGM power law index values Rn = 0.1, 0.2, 0.5, 1, 2, 5 and 10,
kcc(t) = �109, rapid heat flux value q0 = 2110 J/(sm2), T = 500 K,
u = 1 radian, time t = 1 s. We find the amplitudes of thermal
normal stress increase negative firstly from h3/h* = 0 to h3/
h* = 0.1 then keep decreasing negative from h3/h* = 0.1 to h3/
h* = 0.5 for the values of Rn = 0.1 and 10. For the other values of
Rn, the amplitudes of thermal normal stress keep decreasing
negative with h3/h* under rapid heating.

Fig. 10 shows the dominant normal displacement W at
X = 0.5 vs. T of rapid heating on inner surface of the Terfenol-D
FGM shell under the effects of FGM power law index values
Rn = 0.1, 0.2, 0.5, 1, 2, 5 and 10, kcc(t) = �109, rapid heat flux value
q0 = 2110 J/(sm2), h3/h* = 0.1, u = 1 radian, time t = 1 s. We find
the amplitudes of displacement increase negative from
T = 100 K to T = 500 K then decrease negative from T = 500 K
to T = 1000 K (this is an ideal temperature, the actual
maximum temperature for Terfenol-D material is 653 K) for
Rn = 0.5 and 10, almost constant from T = 100 K to T = 500 K
then increase negative from T = 500 K to T = 1000 K for Rn = 2,
increase negative from T = 100 K to T = 500 K then almost

constant from T = 500 K to T = 1000 K for Rn = 1, all decrease
negative for Rn = 0.2, all increase negative for Rn = 0.1, all
constant for Rn = 5. With power law index values Rn = 0.2 and
10, the Terfenol-D FGM shell can stand against the higher
temperature of environment under rapid heating. Fig. 11
shows the dominant thermal normal stress sx at X = 1 on
Z = 0.4 versus T of rapid heating on inner surface of the
Terfenol-D FGM shells under the effects of FGM power law
index values Rn = 0.1, 0.2, 0.5, 1, 2, 5 and 10, kcc(t) = �109, rapid
heat flux value q0 = 2110 J/(sm2), h3/h* = 0.1, u = 1 radian, time
t = 1 s. We find the amplitudes of thermal normal stresses
increase negative from T = 100 K to T = 500 K then decrease
negative from T = 500 K to T = 1000 K for Rn = 1, 2, 5 and 10, all
increase negative for Rn = 0.1, 0.2 and 0.5 under rapid heating.

The effect of the rapid heating q0 values on frequency
parameter f* values for different mode numbers n are
investigated with different power index Rn for FGM material.
The f* values vs. n of Fig. 12a–c with Rn = 0.1, 1 and 10 are
presented for the forced vibration at displacement component
U(L/2), R/h = 500, L/R = 10, T = 500 K, u = 1 radian, t = 1 s, h3/
h* = 0.1, kcc(t) = 0 under q0 = 264, 528, 1055 and 2110 J/(sm2). The
rapid heating q0 values only have small effects on the
frequency parameter f* values for different mode numbers n
at U(L/2), t = 1 s. The compared and referred data as shown
in Fig. 12d is re-plotted for the silicon nitride-nickel FGM
cylindrical shell under external pressure value ke = 1.2531e11,
and the classical shell theory (CST) under simply supported
ends in 2010 by Sepiani et al. [32]. Fig. 12 shows the similar
tendency of f* and non-dimensional fundamental frequency V

versus n, where V ¼ 4pvR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=A11

p
, I1 is the mass inertia, but the

different scalar values between two plots occur are acceptable

Fig. 8 – WjX¼0:5 vs. h3/h* under power law index Rn.

Fig. 9 – sxjX¼1;Z¼0:4 vs. h3/h* under power law index Rn.

Fig. 10 – WjX¼0:5 vs. T under power law index Rn.

Fig. 11 – sxjX¼1;Z¼0:4 vs. T under power law index Rn.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 ( 2 0 1 4 ) 7 1 0 – 7 2 0 717



for the available referred data in different materials and
external forced vibrations.

Finally, the transient responses of displacement and
stress of rapid heating on inner surface of the Terfenol-D
FGM shells under the effects of control gain values kcc(t) = 0

and �109, h3/h* = 0.1, rapid heat flux value q0 = 1055 J/(sm2),
T = 500 K, Rn = 1, u = 1 radian are investigated. The time step
value 0.001 sec is used in the GDQ transient computation.
Fig. 13 shows the transient value of dominant normal
displacement W at X = 0.5 vs. t within 0.2 s. In the case of

Fig. 12 – f* vs. n of q0 for Rn = 0.1, 1 and 10 and compared V vs. n. (a) f* vs. n for Rn = 0.1. (b) f* vs. n for Rn = 1. (c) f* vs. n for Rn = 10.
(d) compared V vs. n.

Fig. 13 – Transient WjX¼0:5 vs. t of rapid heating Terfenol-D
FGM shells.

Fig. 14 – Transient sxjX¼1;Z¼0:4 vs. t of rapid heating Terfenol-
D FGM shells.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 ( 2 0 1 4 ) 7 1 0 – 7 2 0718



control gain values kcc(t) = 0, the amplitude of displacement
diverges with time. In the case of velocity feedback with
suitable control gain value kcc(t) = �109, the amplitude of
displacement can be reduced to a very smaller value near
0.000 under rapid heating. Fig. 14 shows the transient value of
dominant thermal normal stress sx at X = 1 on Z = 0.4 vs. t
within 0.2 s. We find the amplitude of stress diverges with
time in the two cases of control gain values kcc(t) = 0 and �109.
In the case of velocity feedback with suitable control gain
value kcc(t) = �109 can reduce the amplitude of normal stress
to a smaller value under rapid heating.

4. Conclusions

The GDQ method can be applied to calculate the numerical
results of displacement and thermal stresses without the
effects of shear deformation in the magnetostrictive FGM shell
subjected to thermal vibration and transient response of rapid
heating on inner surface of the circular cylindrical shells. By
using the velocity feedback control and with suitable product
of coil constant and control gain value can reduce the
amplitudes of displacement and thermal stresses to a smaller
value. The displacement of Terfenol-D FGM circular cylindrical
shell is stable versus the Terfenol-D thickness for all power law
index values of FGMs. The Terfenol-D FGM shell can stand
against the higher temperature of environment with some
power law index values under rapid heating. The similar
tendency of frequency parameter f* and V versus mode shape
n, but the different scalar values occur between two plots are
acceptable for the available referred data in different materials
and external forced vibrations.
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