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1. Introduction

Extensive use of circular plates in particular purposes such as
bridge decks, turbine disk, thrust bearing plates and clutches,
tanks, structural components for diaphragms, and deck plates
in launch vehicles, engineering and spatial structures reflects
the importance of circular plates. Since scientists focus on
functionally graded material (FGM) to such an extent in

engineering field recently, in this paper, FG circular plate is
considered. FGMs are new materials, microscopically inho-
mogeneous continua, where continuous variation of the
mechanical properties, from metal to ceramic, happens
gradually without any sudden changes. For the first time in
an industrial application, Japanese scientists proposed FGM
for thermal barriers in aerospace structures [1].This kind of
new composites can be found in aerospace structures, nuclear
reactors, chemical plants, semiconductors and biomedical
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a b s t r a c t

This paper is concerned with static analysis of functionally graded (FG) circular plates resting

on Winkler elastic foundation. The material properties vary across the thickness direction so

the power-law distribution is used to describe the constituent components. The differential

transforms method (DTM) is utilized to solve the governing differential equations of bending

of the thin circular plate under various boundary conditions. By employing this solution

method, governing differential equations are transformed into recurrence relations and

boundary/regularity conditions are changed into algebraic equations. In this study, the plate

is subjected to uniform/non-uniform transverse load in two cases of boundary conditions

(clamped and simply-supported). Some numerical examples are presented to show the

influence of functionally graded variation, different elastic foundation modulus, and varia-

tion of the symmetrical transverse loads on the stress and displacement fields. Based on the

results, the obtained out-plane displacement coincide with the available solution for a

homogenous circular plate. It can be concluded that the applied method provides accurate

results and it is easily used for static analysis of circular plates on an elastic foundation.
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industries. Comprehensive works on static and dynamic
responses of FG plates are available in the literature. Next,
we briefly concentrate on some recent works related to the
static behavior of FG circular plates.

Reddy et al. [2] investigated the axisymmetric bending of
functionally graded circular and annular plates. They studied
the bending behavior of plate based on the first order shear
deformation Mindlin plate theory. In their study, the Mindlin
solution of FG circular plate was obtained for the conditions
where the Kirchhoff solution for thin plate was formerly
known. Li et al. [3] developed the incremental load technique
for solving the governing differential equation of thin circular
plate bending with large deformations. In this technique, total
applied load was divided into different small steps so that
linear stress analysis for the plate was reasonable. Civalek [4]
employed differential quadrature method (DQM) and harmon-
ic differential quadrature method (HDQM) in analyzing static
and vibration of columns as well as circular and rectangular
plates. He compared accuracy of the two methods in structural
analysis and showed that HDQM needs less grid points than
DQM to achieve accurate results. Li and Ding [5], investigated
bending of transversely isotropic circular plates, whose elastic
compliance coefficients are arbitrary functions of the thick-
ness coordinate, exposed to a transverse load as a power
function of radius. Zheng and Zhong [6] investigated axisym-
metric bending problem of FG circular plates under two
boundary conditions, rigid slipping and elastically supported,
subjected to transverse normal and shear loadings. They
utilized Fourier–Bessel series as the displacement function.
Civalek and Ersoy [7] studied free vibration and bending of
Mindlin circular plates based on the discrete singular
convolution method (DSCM) with the use of regularized
Shannon's delta kernel. They obtained the frequency param-
eters, deflections, and bending moments and showed that the
singular convolution method is an exact method. Sahraee and
Saidi [8] investigated axisymmetric bending of functionally
graded circular plates under uniform transverse loadings
using the fourth-order shear deformation plate theory. They
studied the effect of various percentages of ceramic–metal
volume fractions on maximum out-plane displacement and
shear stress. Their results were compared with those obtained
based on the first-order shear deformation plate theory, the
third-order shear deformation plate theory of Reddy and the
exact three-dimensional elasticity solution and found good
agreement between them. Sahraee et al. [9] analyzed bending
and buckling of thick circular FG plate based third-order shear
deformation plate theories. They applied the shear–free
constraint on the top and bottom of the plate and obtained
the static response and critical buckling loads in bending and
bucking analysis of functionally graded circular plates using
unconstrained shear stress theory in terms of the correspond-
ing quantities of the homogeneous plates based on the
classical plate theory. Yun et al. [10] carried out bending
analysis of transversely isotropic circular plates under arbi-
trary symmetric transverse loads. They expanded the trans-
verse loading as Fourier–Bessel series. In their work, the
material properties varied arbitrarily along the thickness of the
plate. They used the direct displacement method for obtaining
the analytical solution. Chen [11] suggested an innovative
technique for solving nonlinear differential equations for

bending problem of a circular plate. He used a type of pseudo-
linearization to obtain the final solution for large deformations
of the circular plate. Alipour and Shariat [12] proposed stress
analysis for axisymmetric bending of circular FG sandwich
plates subjected to transversely distributed loads. They
derived the governing equations based on elasticity-equilibri-
um-based zigzag theory. They employed a semi-analytical
Maclaurin-type power-series solution.

In numerous engineering applications, the plate is contin-
uously supported within the span. In the case where the
support is linear elastic, its reaction is proportional to the local
deflection of the structure (so-called Winkler's elastic founda-
tion). Accordingly, if the plate is supported by an elastic
foundation, it experiences a local deflection w, and the
reaction (counter-pressure) applied by the foundation to the
plate is kw where k is a proportionality coefficient called the
modulus of the foundation [13]. In other words, Winkler's
elastic foundation is assumed to behave linearly. It should be
noted that interaction between plate and elastic foundation is
a complicated issue which is not easy to be explored. In many
practical engineering applications, this kind of model provides
satisfied results. It is worth mentioning that the plates resting
on an elastic foundation have been greatly used in modern
engineering structures such as building footings, reinforced
concrete pavements of high runways, foundation of deep
wells, storage tanks, base of machines, aerospace, biome-
chanics, petrochemical, civil, mechanical, electronic, nuclear
and foundation engineering. Providing the exact solution for
governing equations of static behavior and dynamic response
of any kind of plate in shape under various form of loading is
not always feasible. So the researchers attempt to employ the
semi-analytical and numerical methods when involved the
problems in this field of study. For the first time, differential
transformation method (DTM) was introduced by Zhou [14] for
solving linear and nonlinear initial value problems in electric
circuit analysis. This method is a semi-analytical-numerical
technique based on Taylor series expansion developed for
various types of differential equations. Differential transforms
method solves a series extremely shorter and faster than high
order Taylor series method. It also significantly reduces the
computation cost of linear and nonlinear problems and is
easily applicable. By using DTM, governing differential
equations are reduced to the recursive relations together with
associated boundary conditions which can be transformed to a
set of algebraic equations. Furthermore, this method reduces
the computational difficulties of the other methods since all
the calculations can be made with a simple iterative process
[15]. Another advantage of this method is exact results which
can be obtained with a rapid convergence.

DTM has recently attracted the attention of scientists in
various fields of engineering. Yalcin et al. [16] represented free
vibration analysis of circular plates by differential transfor-
mation method. Özdemir and Kaya [17] investigated flap wise
bending vibration of a rotating tapered cantilever Bernoulli–
Euler beam by differential transforms method. Balkaya and
Kaya [18] employed differential transforms method to predict
the vibrating behavior of Euler–Bernoulli and Timoshenko
beams resting on an elastic foundation (elastic soil). They
showed that it is a useful tool for analytical and numerical
solutions and that the solution procedure can be easily applied
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to governing equation of beam vibration and. Attarnejad et al.
[19] utilized DTM for calculating natural frequency of a
Timoshenko beam resting on two-parameter elastic founda-
tion. Soltanizadeh [20] utilized two dimensional DTM for
solving the hyperbolic telegraph equation. He carried out some
numerical tests to show the advantages and disadvantages of
the proposed method.

As seen in the literature above, the differential transforms
method (DTM) has been used for solving a vast range of
problems in different fields of engineering. To the best
knowledge of the authors, no research effort has been devoted
so far to find the solution of bending of a functionally graded
circular plate resting on an elastic foundation by employing
DTM. In our work, bending analysis of functionally graded
circular plates resting on Winkler elastic foundation is carried
out using differential transforms method (DTM). The plate is
subjected to axisymmetric transverse load that is assumed to be
represented by a power law distribution along the radial
direction of the plate. This study attempts to incorporate both
the effect of elastic foundation modulus and FG power index on
out-plane displacement of the plate resting on elastic founda-
tion. Also, the distributions of radial and circumferential
stresses along the radius and across the thickness are obtained.
The results are compared with the published literature and
Finite Element Method to demonstrate the applicability and the
computational efficiency of the proposed method.

2. Governing equation of bending of FG
circular plate subjected to symmetric transverse
load

Consider a circular plate subjected to uniform/non-uniform
transverse loading while resting on an elastic foundation as
shown in Fig. 1. Geometric parameters Rand h are radius and
thickness of the plate, respectively, and kw is the foundation
elastic modulus.

Differential equation of a circular plate subjected to the
symmetric transverse load in the form of q0(r/R)

p, where p�0
and is a finite even number, rested on Winkler elastic
foundation, according to the classical plate theory (CPT) [13],
is given as follows:

r4w ¼ q0ðr=RÞp � kww
D

(1)

where w stands for the out-plane displacement (deflection) of
any point of the plate mid-surface, the radial coordinate is
denoted by r, kw is the Winkler foundation modulus, q0 is a

constant value, D is the flexural rigidity of plate, and r4 is the
bi-harmonic operator, which is defined as follows in a polar
cylindrical coordinate system:

r4w ¼ d2

dr2
þ 1

r
d
dr

d2w
dr2

þ 1
r
dw
dr

  !! 
(2)

Upon substituting r4w into Eq. (2), the simplified form is
obtained as

d4w
dr4

þ 2
r
d3w
dr3

� 1
r2

d2w
dr2

þ 1
r3

dw
dr
¼ q0ðr=RÞp � kww

D
(3)

By definition the following non-dimensionless parameters:

’ ¼ r
R
; W ¼ w

R
; Kw ¼ kwR4

D
; q ¼ q0R

3

D

The governing Eq. (1) can be rearranged in the non-
dimensional form below:

’3
d4W
d’4

þ 2’2
d3W
d’3

� ’
d2W
d’2

þ dW
d’

þ Kw’
3W � q’mþ3 ¼ 0 (4)

Young modulus of a functionally graded plate, E(z),
smoothly changes based on the power-law distribution across
the thickness direction from metal to ceramic, i.e.,

EðzÞ ¼ ðEc � EmÞ z
h
þ 1
2

� �g

þ Em (5)

where Em and Ec are the Young modulus of metal and ceramics,
respectively, and (g is volume fraction index in which g=0
(g!1) represents a fully ceramic (homogeneous metal) plate.
Poisson's ratio is considered as a constant ratio throughout the
thickness.

The differential Eq. (1) is utilized for an isotropic homoge-
nous plate in which physical neutral surface and geometric
middle surface are the same. Based on the asymmetric
mechanical properties of FGM plates with respect to the
middle plane, the position of the physical neutral plane
(where the strain and stress are zero), is not located on the
middle plane. Also, there is stretching–bending coupling
effect in the governing equations of functionally graded plate
for static behavior and dynamic response. By selecting the
proper reference plane (which is called physical neutral
surface), the governing differential equations of FG thin plates
have the simple form as those of classical thin plate theory for
homogeneous isotropic materials. The position of this plane
(z0) from the middle surface is introduced as follows [21]:

z0 ¼
R h=2
�h=2 zEðzÞdzR h=2
�h=2 EðzÞdz

(6)

where z is the direction along the thickness.
Consequently, the elastic flexural rigidity is determined as

follows:

D ¼
Z h=2

�h=2

ðz � z0Þ2EðzÞ
1 � n2

dz (7)

D can be derived in terms of thickness, Poisson ratio, neutral
position from middle plane, ceramic and metal Young modu-
lus, as follows [22]:

Fig. 1 – Geometric and foundation parameters of FG circular
plate.
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D ¼ h
ð1 � n2Þ

(
Emh

2

12

�
1 þ 9

ðg þ 1Þðg þ 2Þðg þ 3Þ
�

þ ðEc � EmÞh2

4

�
1 � 6g

ðg þ 1Þðg þ 2Þðg þ 3Þ
�)

� z0h
gðEc � EmÞ
ðg þ 1Þðg þ 2Þ þ z20

�
Em þ ðEc � EmÞ

g þ 1

�
(8)

3. Boundary and regularity conditions

Out-plane displacement (deflection), w, must satisfy the
boundary conditions at the outer edge of the circular plate
(r=R) for clamped, simply supported plate and regularity
condition at the center of the circular plate. The boundary/
regularity conditions can be written in terms of dimensionless
deflection as shown in Table 1.

4. The definition and operation of differential
transforms method

The differential transforms method (DTM) provides an
analytical solution procedure in the form of polynomials to
solve ordinary and partial differential equations. In this
method, differential transformation of mth derivative function
f(r) and differential inverse transformation (DT) of F[m] are
respectively defined as follows:

F½m� ¼ 1
m!

 
dm f ðrÞ
drm

!
r¼r0

(9)

where

f ðrÞ ¼
X1
m¼0

F½m�ðr � r0Þm (10)

In Eq. (9), F[m] is denoted as the tranformed function
(T-function). The lower case and upper case letters represent
the original and transformed functions, respectively, and r=r0
represent any point in the domain. The function f(r) is
considered analytic in a domain R and is intruduced as a
finite power series whose center is located at r0. Therefore,
Eq. (10) can be expressed as

f ðrÞ ¼
XN
m¼0

F½m�ðr � r0Þm (11)

in which N determines the convergence of non-dimensional
deflection which implies that f ðrÞ ¼P1

m¼Nþ1 F½m�ðr � r0Þm is
negligible. By combining Eqs. (9) and (10), the following relation
is obtained:

f ðrÞ ¼
X1
m¼0

ðr � r0Þm
m!

 
dm f ðrÞ
drm

!
r¼r0

(12)

As is seen, the concept of differential transformation is
based upon the Taylor series expansion. From the definitions
of DTM in Eqs. (9) and (10), fundamental theorems of
differential transforms method [23–25] can be performed that
are listed in Table 2.

5. Application of DTM in the governing
equations and boundary/regularity conditions

5.1. Differential transformation of the governing equation

The non-dimensional form of the differential equation
of circular plates resting on Winkler elastic foundation
(Eq. (5)) can be solved using the above differential transforms
theorems at r0=0. Let W[m] to be the differential transform
of w(r); Applying Table 1, the differential transform version
of Eq. (3) can be exploited from the solution approach below:

Xm
m1¼0

dðm1 � 3Þð4 þ m � m1Þð3 þ m � m1Þð2 þ m � m1Þð1 þ m � m1ÞW½4 þ m � m1�

þ2
Xm
m1¼0

dðm1 � 2Þð3 þ m � m1Þð2 þ m � m1Þð1 þ m � m1ÞW½3 þ m � m1�

�
Xm
m1¼0

dðm1 � 1Þð2 þ m � m1Þð1 þ m � m1ÞW½2 þ m � m1� þ ð1 þ mÞW½m þ 1�

þKw

Xm
m1¼0

dðm1 � 3ÞW½m � m1� � qdðm � ð p þ 3ÞÞ ¼ 0form � 0

(13)

Table 1 – The dimensional/ non-dimensional boundary/regularity conditions.

Type of boundary
condition

Dimensional
boundary condition

Non-dimensional
boundary condition

Regularity condition (R.C.)

Dimensional R.C. Non-Dimensional R.C.

Clamped edge w|r=R=0 W|w=1=0 dw
dr jr¼0 ¼ 0 dW

d’ j’¼0 ¼ 0
dw
dr jr¼R ¼ 0 dW

d’ j’¼1 ¼ 0

Simply Supported w|r=R=0 W|w=1=0
Mrjr¼R ¼ �Dðd2w

dr2
þ n

r
dw
dr Þ ¼ 0 �Dð’ d2W

d’2
þ y dW

d’ Þ ¼ 0

Table 2 – Fundamental theorems of one-dimensional
DTM.

Original function Transformed function

f(r) = y(r) � z(r) F [m] = Y [m] � Z [m]

f(r) = ly(r) F [m] = lY [m]

f(r) = y(r) . z(r) F½m� ¼
Xm
m1¼0

Y½m1�Z½m � m1�

f ðrÞ ¼ dpyðrÞ
dr p F½m� ¼ ð pþmÞ!

m! Y½m þ p�

f(r) = rp F½m� ¼ dðm � pÞ ¼
(
0 ifm 6¼ p
1 ifm ¼ p
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By utilizing the last theorem of Table 1 and simplified form
of the equation above, the following recurrence relation is
acquired:

W½m þ 1� ¼ 1

ðm þ 1Þ2ðm � 1Þ2 ðqdðm � ð p þ 3ÞÞ � KwW½m � 3�Þ

for m � 3 (14)

Eq. (14) can be classified according to the last theorem in
Table 1 as

W½m þ 1� ¼ 1

ðm þ 1Þ2ðm � 1Þ2 ½q � KwW½m � 3��

for m ¼ p þ 3

(15a)

W½m þ 1� ¼ 1

ðm þ 1Þ2ðm � 1Þ2 ð�KwW½m � 3�Þ

for m > p þ 3

(15b)

Obviously, letting m=p+3 in the recurrence relation (15a), it
can be more specific for various power values in function of
transverse loads:

i f p ¼ 0 ) W½4� ¼ 1

ð4Þ2ð2Þ2
ðq � KwW½0�Þ

i f p ¼ 2 ) W½6� ¼ 1

ð6Þ2ð4Þ2 ðq � KwW½2�Þ

i f p ¼ 4 ) W½8� ¼ 1

ð8Þ2ð6Þ2 ðq � KwW½4�Þ

i f p ¼ 6 ) W½10� ¼ 1

ð10Þ2ð8Þ2 ðq � KwW½6�Þ

i f p ¼ 8 ) W½12� ¼ 1

ð12Þ2ð10Þ2 ðq � KwW½8�Þ (16)

It should be noted that p=0 corresponds to uniform
transverse loads. It is deduced that, depending to p, only W
[p+4] gets influence from the constant q.

5.2. Differential transformation of boundary conditions

The differential transformed of boundary and regularity
conditions are shown in Table 3 using the DTM rules listed
in Table 3.

6. Solution procedure of the problem

To derive deflection equation for the circular FG plate resting
on Winkler elastic foundation, the recurrence relation (14) and

boundary/regularity conditions in Table 3 are imposed
simultaneously. As a result, for m=0,1 DT of deflection function
W[0], W[2] is expressed in terms of geometric parameters and
mechanical properties of the plate. For m=2, it yields W[3]=0. It
is possible to evaluate each T-function W[m] in terms of two
terms namely W[0], W[2]. To show this, we calculate W[4],. . . W
[10] from the recurrence relation (14) for m=4,. . .,10 as follows:

For p=0 (or uniform transverse loading):

W½4� ¼ q � W½0�Kw

42 � 22
; W½5� ¼ �W½1�Kw

52 � 32
; W½6� ¼ �W½2�Kw

62 � 42

W½7� ¼ �W½3�Kw

72 � 52
; W½8� ¼ �W½4�Kw

82 � 62
; W½9� ¼ �W½5�Kw

92 � 72
;

W½10� ¼ �W½6�Kw

102 � 82
For p ¼ 2 (17)

W½4� ¼ �W½0�Kw

42 � 22
; W½5� ¼ �W½1�Kw

52 � 32
; W½6� ¼ q � W½2�Kw

62 � 42

W½7� ¼ �W½3�Kw

72 � 52
; W½8� ¼ �W½4�Kw

82 � 62
; W½9� ¼ �W½5�Kw

92 � 72
;

W½10� ¼ �W½6�Kw

102 � 82
(18)

For the sake of brevity, the procedure for finding T-
function W[k] corresponding to p=4, 6, 8. . . are omitted here.
From the relations above, it can be concluded that W[5],W[7],
W[9] get zero values. In general, for odd values of k, W[k]
equals zero. Therefore, by expanding Eq. (11) as non-
dimensional out-plane displacement W in terms of w as
non-dimensional parameter, we have respectively for p=0, 2,
4, 6 and 8:

Wð’Þ ¼ a þ b’2 þ q � aKw

42 � 22
’4 � bKw

62 � 42
’6 � ðq � aKwÞKw

82 � 62 � 42 � 22
’8

þ bKw
2

102 � 82 � 62 � 42
’10 þ . . .

Wð’Þ ¼ a þ b’2 � aKw

42 � 22
’4 þ q � bKw

62 � 42
’6 þ aKw

2

82 � 62 � 42 � 22
’8

� ðq � bKwÞKw

102 � 82 � 62 � 42
’10 þ . . .

Wð’Þ ¼ a þ b’2 � aKw

42 � 22
’4 � bKw

62 � 42
’6 þ 82q þ aKw

2

82 � 62 � 42 � 22
’8

þ bKw
2

102 � 82 � 62 � 42
’10 þ . . .

Wð’Þ ¼ a þ b’2 � aKw

42 � 22
’4 � bKw

62 � 42
’6 þ aKw

2

82 � 62 � 42 � 22
’8

þ 242q þ bKw
2

102 � 82 � 62 � 42
’10 þ . . .

Wð’Þ ¼ a þ b’2 � aKw

42 � 22
’4 � bKw

62 � 42
’6 þ aKw

2

82 � 62 � 42 � 22
’8

þ bKw
2

102 � 82 � 62 � 42
’10

þ 1

ð12Þ2ð10Þ2 q � aKw
3

82 � 62 � 42 � 22

  !
’12 þ . . . (19)

where W[0] and W[2] are introduced as a and b, respectively.
As mentioned before, DT method implies an iterative

procedure to obtain the high-order Taylor series solution of
differential equations. The Taylor series method requires a
long computational time for large orders, whereas one
advantage of employing DTM in solving differential equations
is a fast convergence rate and a small calculation error [23]. By
neglecting the terms greater than N, we have:

Table 3 – Transformed conditions for clamped and simply
supported circular plate.

Boundary/regularity condition DT form

Clamped edge

PN
m¼0W½m� ¼ 0PN
m¼0mW½m� ¼ 0

(

Simply supported

PN
m¼0W½m� ¼ 0PN
m¼0mðm � 1 þ nÞW½m� ¼ 0

(

Regularity condition W[1]=0
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Wð’Þ ¼
XN
m¼0

W½m�’m

¼ W½0�’0 þ W½1�’1 þ þW½2�’2 þ . . . W½N�’N (20)

6.1. Convergence and correctness of the solution method

In order to show that differential transform method is an
effective and reliable tool for calculating the out-plane
displacement (deflection) of circular plate resting on
elastic foundation, homogeneous isotropic clamped
circular plate subjected to uniform transverse loading is
considered.

6.1.1. Clamped circular plate
Using the transformed boundary and regularity conditions in
Table 3, W[0] and W[2] are determined as follows:

W½0� ¼ 576q þ 0:25qKw � ð512qK2
w � qK3

wÞ=14745600
36864 þ 384Kw þ 0:3K2

w � ð512K3
w � K4

wÞ=14745600
(21a)

W½2� ¼ �1152q þ qKw

36864 þ 384Kw þ 0:3K2
w � ð512K3

w � K4
wÞ=14745600

(21b)

Using Eqs. (21a) and (21b) in (19) for p=0 and assuming
(Kw=0), the non-dimensional out-plane displacement function
W(w) is achieved as

Wð’Þ ¼ q
64
� q’2

32
þ q’4

64
(22)

Substituting the non-dimensional variables w=r/R, W=w/R,
q=q0R

3/D, we get:

w ¼ q0
64D

ðR2 � r2Þ2 (23)

This deflection equation is exactly the same as the one
reported by Timoshenko and Woinowsky [26].

6.1.2. Simply supported circular plate
For simply supported circular plate, W[0] and W[2] are
determined as follows:

By substituting relations (24a) and (24b) into (20) and
assuming (Kw=0), non-dimensional deflection function is
obtained as

Wð’Þ ¼ 5q0R
3 þ q0R

3n

64Dð1 þ nÞ � ’2ð3q0R3 þ q0R
3nÞ

32Dð1 þ nÞ þ q0R
3’4

64D
(25)

Finally, the deflection equation can be summarized as
follows:

w ¼ q0ðR2 � r2Þ
64D

ðð5 þ nÞ
ð1 þ nÞR

2 � r2Þ (26)

The equation above for out-plane displacement of circular
isotropic homogenous plates is exactly the same as the one
reported by Timoshenko and Woinowsky [26].

7. Numerical results and discussion

7.1. Error analysis of the solution method

To indicate the accuracy of the solution approach, error of the
solution method (DTM) is evaluated according to Taylor's
theorem in the following form [27]:

e ¼WNþ1ðcÞ
ðN þ 1Þ! ð’ � ’0ÞNþ1 (27)

where c is an arbitrary number in the interval w0�c�w . In this
paper, w0=0,=1.

Based on the proposed formulation, a MATLAB program is
developed to investigate the accuracy of the presented
procedure. The calculations presented in the following
examples adopt a value of h=0.01 m, R=0.6 m, q0=0.1 MPa.
The FGM circular plate is considered here to consist of Alumina
(Al2O3) as the ceramic ingredient and Aluminum as the
metallic one. Young's moduli of Alumina and Aluminum
are Ec=380 GPa, Em=70 GPa, respectively, whereas Poisson's

Fig. 2 – Evaluation of error in the interval 0=c=1.

W½0� ¼ 576ðn þ 5Þq þ 0:25ðn þ 9ÞqKw � ð512ðn þ 13ÞqKw
2 � ðn þ 17ÞqKw

3Þ=14745600
36864ð1 þ nÞ þ 384ð5 þ nÞKw þ 0:3ð9 þ nÞKw

2 � ð512ðn þ 13ÞKw
3 � ðn þ 17ÞÞKw

4Þ=14745600 (24a)

W½2� ¼ �1152ðn þ 3Þq þ ðn þ 7ÞqKw

36864ð1 þ nÞ þ 384ð5 þ nÞKw þ 0:3ð9 þ nÞKw
2 � ð512ðn þ 13ÞKw

3 � ðn þ 17ÞKw
4Þ=14745600 (24b)
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ratio remains constant v=0.3. In this paper, we use conver-
gence test to confirm (N=4) is sufficient to get precise values
when determining the deflection of a circular plate exposed to
uniform transverse loading, p=0. Also, for other values of p,
more terms are sufficient to achieve the converged results. For
instance, for p=2, 6 terms are needed to provide the accurate
solution. In case of non-zero elastic foundation, kw6¼0, with
N=10 convergence is obtained. For N=10, Therefore, the
absolute value of error can be obtained from Eq. (27) as follows:

e ¼W11ðcÞ
ð11Þ! (28)

The error is evaluated and graphical results are depicted in
Fig. 2. As it is shown, the maximum error value in this interval
occurs at c=0. The error is reduced during the interval so that at
c=1 then reaches to the infinitesimal value. Accordingly, it can
be concluded that this method is very precise.

However, the present results indicate that only the
summation of a limited number of terms is required to
achieve the converged results. Also, it is worth mentioning
that the computational time on a standard PC is less than 3 s
for these numerical examples.

7.2. Bending analysis

For different values of Winkler foundation modulus, abso-
lute value of non-dimensional central deflection of ceramic,
FGM and metallic isotropic circular plates are presented
in Table 4 for clamped and simply-supported as denoted by
C and S, respectively. It can be observed that the plate
experiences less deflection under clamped boundary condi-
tion when compared to simply-supported case. This differ-
ence reduces with increasing the elastic foundation
modulus kw.

Table 4 – Absolute value of non-dimensional central deflection (W1) of ceramic, FG and homogenous isotropic circular plates
for different Winkler foundation modulus [kw(MPa/m)].

kw Ceramic (g=0) FGM (g=1) FGM (g=10) FGM (g=100) Metal

C S C S C S C S C S

0 0.0097 0.0395 0.0195 0.0793 0.0324 0.1320 0.0470 0.1915 0.0526 0.2146
5 0.0082 0.0221 0.0141 0.0306 0.0198 0.0358 0.0243 0.0386 0.0257 0.0393
10 0.0070 0.0153 0.0110 0.0186 0.0141 0.0201 0.0161 0.0206 0.0167 0.0207
20 0.0055 0.0093 0.0076 0.0102 0.0088 0.0104 0.0093 0.0102 0.0095 0.0101
50 0.0033 0.0041 0.0038 0.0041 0.0039 0.0039 0.0038 0.0037 0.0038 0.0036
100 0.0019 0.0020 0.0019 0.0019 0.0019 0.0018 0.0018 0.0017 0.0018 0.0017

Table 5 – Absolute value of non-dimensional central deflection (W1) of FG circular plates for different values g, p, kw=0.

p g=0 g=1 g=5 g=10

C S C S C S C S

0 0.0097 0.0395 0.0195 0.0793 0.0295 0.1202 0.0324 0.1320
2 0.0022 0.0121 0.0043 0.0243 0.0066 0.0368 0.0072 0.0404
4 8.0822e-4 0.0058 0.0016 0.0116 0.0025 0.0176 0.0027 0.0193
6 3.8795e-4 0.0034 7.7832e-4 0.0068 0.0012 0.0103 0.0013 0.0113
8 2.1553e-4 0.0022 4.3240e-4 0.0044 6.5526e-4 0.0067 7.1939e-4 0.0074

Fig. 3 – Non-dimensional deflection of FG circular plates along non-dimensional radius direction for p=2 and different values
of kw, in the case of g=10, (a) for clamped and (b) for simply supported boundaty condition.
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To study the influence of power load index, p, on central
deflection of FG plate, Table 5 is presented. Increasing the
values of m decreases the non-dimensional central deflection
(W1). This is caused by reduction in the resultant transverse
load. To explain more, the resultant transverse load, that is
cited here as Fv, is derived as follows:

Fv ¼
Z R

0
q0

r
R

� �p
2prdr ¼ 2

p þ 2
q0pR

2 (29)

Fv ¼

p ¼ 0 q0pR
2

p ¼ 2
1
2
q0pR

2

p ¼ 4
1
3
q0pR

2

:
:
:

8>>>>>>>>><
>>>>>>>>>:

(30)

For more numerical examples, Figs. 3 and 4 are presented to
illustrate variations of the non-dimensional deflection versus
the non-dimensional radius direction of FGM circular plates
under clamped and simply boundary condition for various
values of Winkler foundation modulus kw and corresponding to
p=2,6. It is seen that, for a constant power load index p, increase
in Winkler foundation modulus in the range from zero up to
20 MPa/m, significantly restricts deflection of the plate. One
remarkable result indicates that maximum deflection occurs in
a location other than the center of the plate.

7.3. Stress analysis

One of the important issues in static analysis of the plates is
determination of stress components. Following to obtaining
the deflection function in Eq. (19), one can find relations which

Fig. 5 – Non-dimensional radial stress of FG circular plate
along non-dimensional radius with p=0, kw=0 and j=0.5, (a)
for clamped plate and (b) for simply supported circular
plate.

Fig. 4 – Non-dimensional deflection of FG circular plates
along non-dimensional radius direction for p=6 and
different values of kw in the case of g=10, (a) for clamped
edge and (b) for simply supported.
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describe the radial and circumferential stresses in circular
plates using appropriate derivatives with respect to the
deflection function as follows:

srðr; zÞ ¼ � zEðzÞ
1 � n2

d2w
dr2

þ n

r
dw
dr

  !
(31a)

suðr; zÞ ¼ � zEðzÞ
1 � n2

1
r
dw
dr
þ n

d2w
dr2

  !
(31b)

in which sg and su are radial and circumferential stresses,
respectively. Upon substituting Eq. (20) and putting zero for
the odd values of T-function W[k] as mentioned before, expres-
sions of the radial and circumferential stresses can be obtained
as

srðr; zÞ ¼ � zEðzÞ
1 � n2

XN
k¼0

2kð�1 þ v þ 2kÞW½2k�r2k�2 (32)

suðr; zÞ ¼ � zEðzÞ
1 � n2

XN
k¼0

2kð1 � v þ 2kvÞW½2k�r2k�2 (33)

In this stage, to show the capabilities of the presented
method, distribution of stress components along the radial
direction across the thickness are illustrated in an FG circular
plate for various elastic foundation modulus, gradient index
materials, power load indices and two boundary conditions. By
introducing the non-dimensional parameter Sg=sg/Ec, Su=su/Ec,
j=z/h and assuming that the elastic foundation modulus is
zero (kw=0) and thickness ratio is j=0.5, the results are
presented in non-dimensional form in Fig. 5 for different
values of the volume fraction index g from zero to 10. The plate
is subjected to a uniform transverse load under clamped and
simply supported boundary conditions. It is observed that

Fig. 6 – Non-dimensional radial stress of FG plate across the
non-dimensional thickness under clamped edge, with p=0,
kw=0 and w=0.

Fig. 7 – Non-dimensional radial stress of FGM circular plates
along non-dimensional radius with p=0, g=10 and j=0.5, (a)
for clamped circular plate and (b) for simply supported
circular plate.
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radial and circumferential stresses increase with the larger
amount of volume fraction index, g, due to the reduction of
flexural rigidity that enhances the deflection and curvature.

The asymmetric mechanical properties of FG plates with
respect to the middle plane causes the physical neutral plane
not to be located on the middle plane. Consequently, stress
components of FG plate in the middle surface would not be
zero as it can be observed in Fig. 6 unless in the case of g=0
corresponsin to a homogeneous isotropic ceramic plate. As is
shown, the non-dimensional radial stress across the FGM
thickness is not linear (g 6¼0) whereas it is linear for the
ceramic one (g=0). To show the effect of elastic foundation on
the radial stress variation along r and z directions for an FG
clamped plate, Figs. 7–9 are depicted for different values of the

Winkler foundation modulus kw[MPa/m]. As it shown in Fig. 7
the values of radial stress are significantly reduced by
increasing the foundation modulus. Variation of radial stress
across the dimensionless thickness of the clamped FG plate
are shown for different values of the Winkler foundation
modulus for g=10 in the center of the plate in Fig. 8. It can be
seen that stress of FG plate would not be zero in the middle
plane for nonzero volume fraction FG index. In addition,
dimesionless radial stress deceases effectively with increase
in the amount of Kw.

In Fig. 9, variation of non-dimensional radial stress in
middle plane of FG circular plate is plotted for three different

Fig. 8 – Non-dimensional radial stress of FG circular
clamped plate across non-dimensional thickness(j), with
g=10 and w=0.

Fig. 9 – Non-dimensional radial stress of FG circular plates
along non-dimensional radius in the middle plane (j=0)
with kw=20, (a) for clamped circular plate and (b) for simply
supported circular plate.
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sets of volume fraction index g (g=2.5, 5, 10). As it is seen, due to
asymmetrical mechanical properties respect to middle sur-
face, the radial stress is not zero for various values of FG
volume index g.

To illustrate the influence of transverse load power index, p,
on radial and circumferential stresses along radial direction,
Figs. 10 and 11 are depicted. As observed, the point, at which
non-dimensional radial and circumferential stresses are
minimum, approaches to the outer edge as m increases.
Moreover, the stresses reduce due to decrease in the resultant
transverse load by increasing p.

In order to validate the present solutions, we compare them
with the results taken from reference [2] and reference [5], as
depicted Table 6. The following FGM is used in this case:

EðzÞ ¼ Em
h � 2z
2h

g þ Ec

 
1 � h � 2z

2h

� �g
!
; n ¼ constant

! 
(34)

In which the numerical values are [2,5]
q0 ¼ 1MPa; R ¼ 0:1m; h ¼ 0:03m; W1 ¼ w=w1ð0Þ;
w1ð0Þ ¼ q0R

4=64Dx204e;; Dx204e; ¼ Ech
3=12ð1 � n2Þ; n ¼ 0:288;

Em ¼ 110:25GPa; Ec ¼ 278:41GPa;

where w1(0) is the central deflection of a homogeneous isotro-
pic plate subjected to uniform transverse load under clamped
boundary condition. As is seen, the results are in full agree-
ment with the ones obtained in the reference papers.

To show the correctness and validity of DTM results,
central deflection of homogenous isotropic plate is compared

Fig. 10 – Non-dimensional radial and circumferential
stresses of FG circular plates along non-dimensional radius
with p=2, j=0.5, kw=10 and g=10 (a) for clamped and (b) for
simply supported boundary conditions.

Fig. 11 – Non-dimensional radial and circumferential
stresses of FG circular plates along non-dimensional radius
with p=6, j=0.5, kw=10 and g=10 (a) for clamped and (b) for
simply supported boundary condition.
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with the results acquired by finite element method (FEM)
using ABAQUS 6.10 under two boundary conditions as
depicted in Table 7. In the FE results, 4337 Standard-Quadratic
3D stress elements were used. The obtained results were
compared with FEM ones that gave good agreement between
them.

Table 8 compares the present results for central deflections
(W1D/q0R

4) with the numerical findings of discrete singular
convolution method (DSCM) reported by Civalek and Ersoy [7]
for various thickness-to-radius ratios. A good agreement is
seen between the results.

8. Conclusions

In this study, the applicability of differential transformation
method (DTM) to investigate the static analysis of functionally
graded plates resting on Winkler foundation subjected to
variable symmetric transverse loading is investigated. This
method provides a semi-analytical solution which is able to
consider the influence of load power index on the static
response of FG plate too. In order to evaluate the validity and
high-performance of this method, some numerical examples
are presented. The obtained results exactly match with the
results of classical plate theory (CPT) for homogeneous
isotropic circular plates. Furthermore, the obtained results
in FG plates are compared with the ones in the literature. It is
shown that the gradient of material properties has a great
effect on stress distribution and bending response of uniform-
ly loaded FG circular plates. Moreover, the influence of elastic
foundation on restricting the amount of stresses and bending
results is studied under simply supported and clamped edges.

Consequently, it is observed that stress and out-plane
displacement of a plate can be easily controlled by changing
the elastic foundation modulus and material gradient index. It
is also found that variation of volume fraction index of FG
circular plates has a remarkable influence on static behavior of
plate. Moreover, elastic foundation effectively reduces bend-
ing deflections and stresses of circular plates.
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