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Abstract 
This paper presents an anthropomorphic prosthetic hand using flexure hinges, which is controlled by the surface

electromyography (sEMG) signals from 2 electrodes only. The prosthetic hand has compact structure with 5 fingers and 4
Degree of Freedoms (DoFs) driven by 4 independent actuators. Helical springs are used as elastic joints and the joints of each
finger are coupled by tendons. The myoelectric control system which can classify 8 prehensile hand gestures is built. Pattern
recognition is employed where Mean Absolute Value (MAV), Variance (VAR), the fourth-order Autoregressive (AR) coefficient 
and Sample Entropy (SE) are chosen as the optimal feature set and Linear Discriminant Analysis (LDA) is utilized to reduce the
dimension. A decision of hand gestures is generated by LDA classifier after the current projected feature set and the previous 
one are “pre-smoothed”, and then the final decision is obtained when the current decision and previous decisions are
“post-smoothed” from the decisions flow. The prosthetic hand can perform prehensile postures for activities of daily living and
carry objects under the control of EMG signals. 
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1  Introduction 

The anthropomorphic prosthetic hand is often 
mounted on an amputee and can be controlled by EMG. 
The sEMG signal is a noninvasive electrical biosignal 
which can represent the muscles activities. Myoelectric 
control has been widely used to control peripheral de-
vices[1,2], especially prosthetic limb[3], through extracting 
the information from the sEMG and evaluating the con-
traction state of the muscles. 

 
1.1 Multifunctional anthropomorphic prosthetic 

hand 
The ideal prosthetic hand is supposed to be the 

same with the human hand in shape and features. Ac-
cording to the performance, the prosthetic hands can be 
divided into cosmetic hand, body-powered hand and 
EMG prosthetic hand. During the last decade, several 
multifunctional anthropomorphic prosthetic hands with 
EMG control have been developed by some companies 
and research institutions[4–12]. Underactuation[4], vari-
able compliance couplings and module design are often 

adopted in the multi-DoF hands which have functions 
similar to the human hand. The i-Limb hand has five 
independently controlled fingers which is controlled by 
simple open and close signals from two electrodes[5]. 
Dalley et al. developed a hand with 16 joints driven by 5 
independent actuators which provided 8 hand postures[6]. 
The Smarthand consists 5 fingers and 4 DoFs, with 40 
sensors used for automatic control and feedback deliv-
ery[7]. The Southampton Remedi-Hand has 5 fingers and 
6 DoFs, which are controlled by feedback control 
system with dynamic force sensors and piezo-resistive 
resistors[8]. The UB hand III is a humanoid robot hand 
which is based on an endoskeleton made of rigid links 
connected with elastic hinges, and is actuated by sheath 
routed tendons[9]. The HIT/DLR prosthetic hand has 
strong capability of self adaptation with multi sensors 
and 5 fingers actuated by 3 motors[10]. The hand with 
three articulated fingers driven by 4 DC motors through a 
special underactuated transmission was developed by 
Zollo et al.[11] The Fluidhand is actuated with flexible 
fluidic actuators which constitutes a new hybrid concept 
of an anthropomorphic five fingered hand and a three 
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jaw robotic gripper[12]. The hands mentioned above all 
have appearance and size similar to human hand and can 
perform prehensile postures for activities of daily living. 

 
1.2  EMG pattern recognition method 

To meet the increasing DoFs of prosthetic hands 
and provide more reliable and dexterous control[13],  the 
pattern recognition method in a supervised way is widely 
used[14,15]. The fundamental preprocessing parts of the 
pattern recognition method includes data preprocessing, 
data windowing, feature extraction and classification[14]. 
The corresponding features are extracted from various 
muscle activities, and then the features are assigned to 
classes which represent relevant limb motions, that are 
the patterns. These patterns are learned by an algorithm 
which is then used to classify the limb motions[16]. The 
accuracy of the pattern recognition in sEMG greatly 
depends on the selection and extraction of features. A 
variety of EMG features has been used to represent the 
original EMG signals, which can be divided into 3 
categories: time domain, frequency domain and 
time-frequency domain[1]. The time domain features are 
calculated from the time series of raw EMG signals. It 
has good classification property and enables simple 
calculation. Hudgins et al. used 5 time domain features 
including MAV, Mean Absolute Value Slope (MAVS), 
Zero Crossings (ZC), Slope Sign Changes (SSC) and 
Waveform Length (WL) to recognize 4 forearm motions 
and gained an average accuracy rate of 91%, which 
proved the effectiveness of time domain features[17]. Kim 
et al. successfully classified four wrist movements by 
using Integrated Absolute Value (IAV) and Root Mean 
Square (RMS)[18]. Features in frequency domain mainly 
reflect the fatigue of the muscle and the recruitment of 
motion unit, which usually contain Mean Frequency 
(MNF), Middle Frequency (MDF), Peak Frequency 
(PKF), Mean Power (MNP) and Total Power (TTP)[19]. 
However, Phinyomark et al. found that frequency do-
main features had worse performance than that in time 
domain when using MNF and MDF to recognize the 
hand gestures[20]. Features in time-frequency domain 
mainly contain Wavelet Packet Transform (WPT) and 
Short-time Fourier Transform (STFT), which can ana-
lyze signals in time domain and frequency domain at the 
same time though the calculation is complex. Englehart 
et al. used WPT and LDA to classify four kinds of hand 
and wrist motions and gained an average accuracy rate of 

98%[21]. 
Due to the instability and stochasticity of sEMG 

signals, it is difficult for only one feature to represent the 
relevant hand gesture[22]. Therefore, feature set (the 
combination of different features) is often used to de-
scribe the sEMG signals[17,18,23–25]. However, high di-
mension feature vector will result in redundant data and 
classification burden. Principal Component Analysis 
(PCA)[26–29] and LDA are often used in dimension re-
duction[30,31]. Hargrove et al. obtained a higher classifi-
cation accuracy when using individual PCA to pre-
process raw EMG signals[29]. Chu et al. recognized nine 
movements of forearm, wrist and palm with 4 electrodes 
and obtained the accuracy of 97.4%, by utilizing LDA to 
reduce the dimension of the features extracted by WPT 
from 1024 to 8[8]. Khushaba et al. used LDA to reduce a 
series of features to the dimension of 9 and got the ac-
curacy of 90% when recognizing 10 independent and 
associated motions of fingers[31]. 

Based on our previous research[32,33] on the off-line 
test and on-line recognition, an anthropomorphic pros-
thetic hand is presented and its myoelectric control 
system is built. MAV, VAR, the 4th AR and SE are 
selected as the optimal feature set, and LDA is utilized to 
reduce the dimension of the features. A combination of 
“pre-smoothing” and “post-smoothing” method makes 
the recognition of continuous gestures possible. A virtual 
hand is built to display the recognition result. All those 
compose the myoelectric control strategy of the EMG 
prosthetic hand to execute grasping tasks. 

2  Prosthetic hand design 

An anthropomorphic prosthetic hand (Fig. 1) is de-
signed, which is made of aluminium alloy. The pros-
thetic hand has 5 fingers, 15 joints and 4 DoFs, with 
similar appearance and size to the human hand. The 
thumb and forefinger have independent movements, 
while the middle, ring and little fingers move  
 

 
Fig. 1  The prosthetic hand.          
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Fig. 2  The exploded view of the finger. 

 
simultaneously. Each finger has a single DoF, as the 
movements of the distal and middle phalanxes (the 
thumb has only the distal phalanx) are coupled with the 
proximal phalanx. Flexure hinges are used to connect 
each phalanx as the finger joints. The prosthetic hand is 
actuated by 4 DC motors, which are settled in the palm. 
The prosthetic hand is light with compact structure. 
 
2.1  Tendon driven finger 

Module design is adopted that the forefinger, mid-
dle, ring and little fingers have the same structure. As 
shown in Fig. 2, the finger of the prosthetic hand has 
three phalanxes, proximal, middle and distal phalanx. 
Each phalanx is connected by 2 equal length extension 
springs placed side by side, which compose a flexure 
hinge. The tendons go through the phalanxes and drive 
the fingers to open or close by pulling or releasing the 
ropes. 

Compliant mechanism is adopted in the joint design 
of the prosthetic hand. The joint will need only one 
positive actuator to ensure the basic motions like grasp-
ing, as additional tendons for finger extension are not 
necessary. When the finger flexes (Fig. 3), the extension 
spring will bend to a certain extent, having a relatively 
large displacement without any permanent deformation 
or torsion. In order to limit the transverse motion of the 
flexure hinge, two springs are set abreast in each joint. 

Tendon-driven mechanisms are used for prosthetic 
hand transmissions. As show in Fig. 4, in the com-
pliance coupling that the proximal joint moves following 
the palm joint, the tendon passes through the whole 
proximal phalanx and is fasten to both of the palm and 
middle phalanx. As the same, in the compliance cou-
pling that the distal joint moves following the proximal 
joint, the tendon passes through the whole middle pha-
lanx and is fasten to both of the proximal phalanx and 
distal phalanx. As a result, when the palm joint rotates, 
the proximal and distal joint will rotate the same angle 
under the action of the tendons. 

 
Fig. 3  The flexion of the finger. 

 

 
Fig. 4  The tendon route of the finger. 

 

 
Fig. 5  The internal view of the palm. 

 
2.2  Integrated palm 

The EMG prosthetic hand is a highly integrated 
system with mechanical system, sensors, control and 
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driving system. As show in Fig. 5, the driving system of 
the prosthetic hand is set up inside the palm with 4 in-
dependent actuators in order to control 5 fingers with 4 
DoFs including the rotation of the thumb around palm, 
the flexion and stretch of the thumb and forefinger, and 
the simultaneous movement of the middle, ring and little 
fingers. The driving mechanisms of the flexion and 
stretch motion of the forefinger and the simultaneous 
movement of the middle, ring and little fingers are the 
same that they are driven by an independent actuator 
respectively through a pair of bevel gears and a pair of 
cylindrical gears whose transmission ratio is 10:26. The 
rotation of the thumb is through a gear train of 4 cylin-
drical gears, and the flexion and stretch motion of the 
thumb is through a pair of cylindrical gears and a pulley 
which is fastened with a tendon. Their transmission ratio 
is 10:26. 

 
2.3  Driving and control system 

In order to control the 4 independent motors to 
rotate to the appropriate position so as to let the pros-
thetic hand finish the specified grasp tasks, the SPiiPlus 
NTM controller and the UDMlc motion driver from ACS 
Motion Control company are selected, and the matched 
software is SPiiPlus MMI Application Studio. The DC 
graphite brush micro motors from Maxon company are 
used as the motors for the prosthetic hand, and planetary 
gearboxes as the reducers for the micro motors. Encod-
ers with 2 channels and line driver from Maxon company 
are adopted as the encoders for the micro motors. 

Due to the transmission ratio of the rotation of the 
palm, proximal and distal joint is 1, the positional equa-
tion of the fingertip can be calculated as: 
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where L1, L2 and L3 are the length of the proximal, 
middle and distal phalanx, respectively. �1, �2 and �3 are 
the rotation angle of the palm, proximal and distal joint, 
respectively. c1 = cos �1, s1 = sin �1, c12 = cos(�1 + �2) = 
c1c2 � s1 s2, s12 = sin(�1 + �2) = c1 s2 + s1c2, etc. Ac-
cording to the position equation, the movement path and 
function space of the fingertip are shown in Fig. 6. 
Therefore, the prosthetic hand can be easily controlled to  
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Fig. 6  The movement path and function space of the fingertip. 

 

 
Fig. 7  The framework of the whole system. 

 
do the specified tasks by controlling the rotation angles 
of the 4 motors. 

3  Myoelectric control system 

The myoelectric control system of the EMG 
prosthetic hand consists of 4 basic parts, signal source 
(the sEMG signals from the forearm of healthy sub-
jects), data collection, data processing and prosthetic 
hand control. Fig. 7 shows the relations between each 
part. The sEMG signals are collected from 2 electrodes 
into acquisition device. The data processing part in-
cludes preprocessing and windowing, feature extraction, 
dimension reduction and feature classification. The final 
decision is sent to the motion controller and drives the 
prosthetic hand through motion driver. 

 
3.1  Data collection 

The eight prehensile hand gestures based on Taylor 
et al.[34] (Fig. 8) are designed to test the myoelectric 
control   system   and   the   hand  design,  which  include  
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Fig. 8  Eight prehensile hand gestures. 

 
cylindrical, hook, lateral, point, rest, spherical, tripod 
and tip. These hand gestures can complete most grasp 
tasks in activities of daily living, whose main functions 
are described as: 

(1) Cylindrical: For grasping cylindrical objects like 
a bottle or a glass. 

(2) Hook: For carrying or pulling objects through 
four fingers, such as a briefcase. 

(3) Lateral: For holding objects between the thumb 
and the lateral of the forefinger, such as a key or a card. 

(4) Point: For showing directions or punching but-
tons. 

(5) Rest: A platform posture for holding a plate or a 
book. 

(6) Spherical: For grasping objects by the whole 
hand, such as a tennis ball. 

(7) Tripod: For grasping small objects between the 
thumb, forefinger and the middle finger, such as a bottle 
cap. 

(8) Tip: For pinching smaller objects like pins. 
As these hand gestures mainly involve the flexion 

of both the thumb and the rest four fingers, the Flexor 
Pollicis Longus (FPL) and Flexor Digitorum Superfici-
alis (FDS) (Fig. 9) are selected as the revelent muscles for 
the acquisition of sEMG signals. Two DE-2.1 differen-
tial EMG sensors (Delsys Inc., Boston, MA) are used to 
collect the sEMG signals and placed above the corre-
sponding muscles, respectively. The sEMG signals are 
sampled at 1000Hz per channel with the acquisition 
device (National Instruments, PCI-6220). A Labview 
Virtual Instrument (VI) is developed for collecting, 
displaying and storing the sEMG signals for further 
processing. 

Five male subjects and one female subject who are 
able-bodied with no neurological or muscular disorders 
participate in the experiments. First of all, the skin 
preparation is conducted to reduce the impedance be-
tween the electrode and skin, which includes removing 
the hair, scrubbing  the skin  and cleaning the skin with  

 
Fig. 9  The position of FPL and FDS[35]. 

 

 
Fig. 10  The position of electrodes on the right forearm. 

 

water[36]. Then, the two electrodes are placed on the skin 
above FPL and FDS shown in Fig. 10. Before the ex-
periment, each subject is given half an hour to practice 
the series of the hand gestures until he or she is familiar 
with them and the contractions are considered repeat-
able. At the same time, the sEMG signals are observed to 
check the contact condition between the electrodes and 
the skin and guarantee high Signal Noise Ratio (SNR). 

 
3.2  Feature extraction 

When segmenting the raw sEMG signals, the over-
lapping windowing scheme is used. Fig. 11 shows the 
difference between overlapping windowing scheme and 
nonoverlapping windowing scheme. The time from the 
onset of muscle contraction until the system generates a 
corresponding class decision should be less then 
300ms[37]. Due to the nonstationarity of sEMG signals, it 
is very difficult for one window to generate the correct 
decision. One possible solution is to obtain as many 
decisions as possible and to smooth these decisions to 
get the final decision. The overlapping windowing 
scheme can solve the problems. The number of windows 
can be calculated as: 

  .   1,
 

data length window sizeNo of windows
window increment

�
� �     (2) 

The window length is defined as 250ms[38] and the in-
crement is 70ms in this paper. 

The raw sEMG signal is not suitable for classifica-
tion, as it has large quantity of data and redundant in-
formation, which will burden the classifier and reduce 
recognition rate. A set of appropriate features is needed    
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Fig. 11  The comparison of overlapping and nonoverlapping windowing scheme. 

 
to represent the classification information of the ges-
tures. According to our previous research, the optimal 
feature set for the recognition system includes MAV, 
VAR, the 4th AR and SE. MAV[19] equals the mean of 
absolute value of sEMG signal amplitude in a window. 
s(i) {1 � i � N} is used to denote the i-th point in a sEMG 
window. N is the length of the window. Therefore, MAV 
can be calculated as: 

� �
1

1 .
N

i
MAV s i

N �

� >                         (3) 

VAR[19] is calculated by squaring the differences 
between each value of sEMG signals in a window and 
the mean, and diving the sum of the squares by the length 
of the window. As the mean of the sEMG signals is 
supposed to be zero, VAR of the sEMG signals can be 
obtained by: 

� �2

1

1 ,
1

N

i
VAR s i

N �

�
� >                            (4) 

The 4th AR[19] is a time series model of sEMG 
signals. When fitting the auto-regressive model to a 
sEMG window, s(i) can be expressed by: 
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1

,
P

k
k

s i w i a s i p
�

� � �>                    (5) 

where p is the model order (p = 4), ak is AR coefficients 
and w(i) is the residual white noise. SE[19] is a single 
robust feature, which can be calculated as[39]: 

(1) For a certain sEMG window s(i) {1 � i � N}, 
form N – n + 1 vectors: 

� � � �, 1 1 ,n j j N n= = � �x                     (6) 

where xn(j) is the n-dimension vector of data points from 
s(j) to s( j + n � 1). 

(2) The distance between x(j) and x(k) is defined as: 

� � � �A B � � � �4 5
� �
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                                 1 1, ,
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x x
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(3) For every xn(j), if the distance d[x(j), x(k)] is 
less than the given tolerance r, increase the counter Nn (j) 
by one. 

Define the function: 
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1

1
1 .

nN n
n

j

N j
B r N n

N n

� �
�

�

� � �
�>           (8) 

(4) Similarly, calculate the 
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(5) Therefore, SE can be obtained by: 
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� �

1

, , ln ,
n

n

B r
SE n r N

B r

�

� �               (10) 

The specific parameters for SE are the dimension n 
and tolerance r. n is set as 2 and r is set as 0.25 × 
 in this 
paper. 
 is the standard deviation of the sEMG signals in 
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each analysis window, respectively.  
 

3.3  Dimension reduction 
It will increase the burden of classifier and the rec-

ognition time if the feature vector is directly fed into the 
classifier. Hence, feature reduction is necessary. LDA 
algorithm is used to reduce the feature dimension. 

The basic idea of LDA is to seek a projection matrix 
W which projects the original dataset into a new coor-
dinate system where the class separability is maximized 
by making the between-class scatter (Sb) largest and the 
within-class scatter (Sw) smallest[28]. 

Before projected, the mean vector for each class is 
defined to be: 

1

1 ,
iN

i j
jiN �

� >� x                         (11) 

where Ni is the number of samples of each class, and xj 
denotes the original feature vectors of each class. Then, 
the projected mean vector can be calculated as: 

T ,i i��u W �                            (12) 

For the between-class scatter (Sb), the distance between 
the mean vector for each class μi and the mean vector for 
all classes μ is: 
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where Sb is defined as: 
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For the within-class scatter Sw, the variance of dataset of 
each class is: 
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Then the sum of Si is: 
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Sw is defined as: 
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where C is the number of class. And the optimal projec-

tion matrix W can be obtained by: 
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,
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w

J �
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                        (18) 

Then the original feature matrix (M × N) is projected by: 
T ,�y W x                                   (19) 

The matrix y stands for the projected feature vectors with 
R-dimensionality (R � M, R � C�1), where M is the di-
mension of original feature vectors and C is the number 
of categories. To obtain the best recognition accuracy, 
the proper value for R is 7. 

 
3.4  Feature classification 

Half of the samples of each hand gesture are used 
for training, which can be represented by 14-dimension 
feature vectors after feature extraction. In order to ob-
serve the distribution of Projected Feature Vectors 
(PFVs), R is chosen as 3. After dimension reduction, the 
distribution of PFVs is shown in Fig. 12. The black dots 
which are in the middle of the PFVs of each hand gesture 
in Fig. 12 are the averages of the PFVs of the hand ges-
tures, named label dots. It can be found that the most 
PFVs of each hand gesture are obviously around its cor-
responding label dots, though some individual PFVs 
deviated from it seriously. So the label dots represent the 
position information of each hand gesture that the LDA 
algorithm can be used in classification. When the PFV of 
a test sample is sent into the LDA classifier, it is com-
pared with the label dots of each hand gesture and the 
decision of hand gestures is obtained according to the 
distance between the PFV and the label dots. 

4. Experiments and results 

4.1  Off-line recognition 
As the data collection scheme mentioned in  

 

Z

 
Fig. 12  The distribution of PFVs. 
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section 3.1, the off-line recognition signals are collected 
by the Bagnoli-4 EMG System (Delsys Inc., Boston, 
MA). When the subjects make hand gestures and hold 5 
seconds during each contraction, 5000 data points are 
acquired. Since a step voltage exists at the very begin-
ning of sEMG signals due to the settings of the Data 
Acquisition Card, the first 250 data points are removed 
to avoid the influence. After segmenting the data points 
by the overlapping windowing scheme, 65 windows are 
obtained during each contraction. So there are 650  
(65 × 10) samples for each hand gesture, the first 325 of 
which are used for training and the rest are for off-line 
testing. During the off-line training, the feature set in-
cluding MAV, VAR, the 4th AR and SE is extracted from 
each window, generating 2600 (325 × 8) feature vectors 
which are 14-dimension in total. Then the dimension 
reduction through LDA algorithm is conducted. The 
14-dimension feature vectors are projected into 
7-dimension, generating a projection matrix W and label 
dots matrix P which is the mean values of PFVs from 
each hand gesture and represents different hand ges-
tures. During the off-line testing, the later 325 samples 
of each hand gesture are projected by the projection 
matrix W after feature extraction, generating 
7-dimension PFVs. Each PFV is compared with the 
label dots of each hand gesture in the matrix P to obtain 
the decision of hand gestures. Figs. 13 and 14 show the 
flowchart and facility of the off-line training. 

In the off-line training system, the sEMG signals of 
8 hand gestures of 6 subjects are acquired. The subjects 
are instructed by the hand gestures shown on the screen 
to elicit a corresponding contraction and hold for 5 
seconds. Every hand gesture is repeated 10 times with a 
resting time of 6 seconds between each contraction. 
Once a hand gesture with 10 repetitions is finished, the 
subjects have 5 minutes for rest to avoid muscle fatigue 
before the next hand gesture. In the dimension reduction 
part, LDA algorithm is used and the optimal value of R is 
the largest value in the available range which retains the 
most information of different hand gestures and 
achieves the best accuracy. The LDA classifier is also 
utilized in the feature classification part. In the off-line 
recognition, “pre-smoothing” is used to average the 
current PFV and the previous PFV before the classifi-
cation. This method improves the average accuracy rate 
of each hand gesture from 95.94% to 98.12%, and the 
stand deviation of each hand gesture is less than 6%.  

 
Fig. 13  Flowchart of the off-line training. 

 

Human hand

EMG acquisition 
system

 
Fig. 14  Facility of the off-line training. 

 
Compared with the original feature set including MAV, 
VAR and the 4th AR, the optimal feature set can raise the 
off-line average accuracy rate form 98.12% to 99.04%, 
and decrease the standard deviation from 1.69% to 
0.65%. 

 
4.2  On-line recognition 

After the subjects finish the off-line training, they 
are tested by the on-line realtime recognition. An ef-
fective realtime recognition system should meet the 
requirements of accuracy rate and time delay limitation. 
Therefore, a combination of “pre-smoothing” and 
“post-smoothing” is applied to realize the realtime 
recognition. The “pre-smoothing” is a smoothing 
process before the classification, which averages the 
current projected sample produced from the relevant 
window and the previous n projected samples to avoid a 
lengthy delay. The “post-smoothing” is a process of 
smoothing the decisions flow after the classification and 
gets the final decision. Each window will yield a deci-
sion during the increment assuming that the processing 
can take place while new data are being acquired. For a 
certain window, the current decision and the previous m 
decisions are compared, and the final decision is the one 
that occurs most often among the m + 1 decisions. If two 
decisions are equal, then the later decision in the deci-
sions flow is taken as the final decision. On the basis of 
test, every 2 projected samples are averaged (n = 1) in the 
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“pre-smoothing” and the best value of m is defined as 12 
in the “post-smoothing”. 

The flowchart of realtime recognition is shown in 
 

 
Fig. 15  Flowchart of the realtime recognition. 

 

 
Fig. 16  The skeletons and joints of human hand and virtual hand. 

Fig. 15. During the realtime recognition, the myoelectric 
control system collects the sEMG signals from the fore-
arm of the subjects continuously, performs the data win-
dowing, feature extraction, dimension reduction, 
“pre-smoothing” and “post-smoothing”, and generates a 
final decision every window increment (70 ms), until the 
user interrupt the program. 

In the on-line test, a virtual hand is shown on the 
screen to display the recognition result. Each subject is 
required to perform each hand gesture for 10 seconds in 
the following order: cylindrical, hook, lateral, point, rest, 
spherical, tripod and tip. Between every two hand ges-
tures, the subjects are given 1 minute to rest. That is, the 
rest gesture is inserted into every two hand gestures. As 
expected, the average accuracy rate for all the subjects is 
consistently high. The method of “post-smoothing” 
using majority vote improves the on-line average ac-
curacy rate to 97.35%. This scheme can also achieve 
high accuracy rate when the subject performs the hand 
gestures in a random order which does not have to per-
form the rest gesture between two different gestures. 
When some subjects participate in the experiment for the 
first time, the accuracy rate is much lower compared to 
their off-line training result for lack of sufficient 
training. However, it is anticipated that the on-line ac-
curacy rate can be much closer to the off-line accuracy 
rate after a large number of training. 

 
4.3  Virtual hand 

In order to display the on-line recognition result 
visually, a virtual hand is developed using Virtual Reality 
Modeling Language (VRML). The virtual hand has 5 
fingers with 19 DoFs, which has appearance similar to 
the skeleton of human hand which is shown in Fig. 16. 
The fingers flex when the angle values of the joints 
changes. So that, through adjusting the joints to the 
proper rotate angles, the virtual hand can be controlled to 
do the 8 hand gestures (Fig. 17). Therefore, the  
 

 
Fig. 17  The virtual hand gestures. 
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myoelectric control system of the prosthetic hand can be 
examined by the virtual hand. 

A human hand can perform these gestures in a 
random order and the fingers move in a nature way. 
Therefore, a control strategy was proposed to make the 
virtual hand move naturally. First, the target angle values 
of all knuckles for each gesture were set. Second, when a 
final decision x was sent into the controller, the algo-
rithm would calculate the total difference between the 
current knuckle values and the target ones. To make full 
use of decisions flow, the difference was divided into nx 
parts equally. For a certain x, only one of the nx parts was 
used to drive the virtual hand if its value was bigger than 
the threshold and nx was bigger than 1. And then, the 
value of nx decreased by 1 and the current knuckle val-
ues were updated in each loop. The initial value of nx 
was set as 10 in this paper. The subscript x in nx denotes 
from 1 to 8. Therefore, for each gesture, the virtual hand 
would take 10 steps to reach the target knuckle values 
from current ones. The threshold was set as 0 to make 
sure that nx can be reset as 10 when the virtual hand had 
reached the target knuckle values. Fig. 18 showed the  
 

Initialization

Final decision

Dif = Tar � Cur

Abs(Dif) > Threshold?
nx > =1?

Control = Dif/nxnx
> = nx � 1

Drive virtual hand:
Cur = Cur + Control

nx=10 N

Y

 
Fig. 18  The flowchart of driving the virtual hand. 

 

 
Fig. 19  The movement of the virtual hand. 

flowchart of driving the virtual hand. 
Fig. 19 shows the movement of the virtual hand. In 

the experiment, the subject switches the hand gestures 
continuously in the order of point, spherical and tripod. 
The virtual hand moves following the human hand under 
the control of sEMG signals. 

 
4.4  Prosthetic hand 

The prototype of the prosthetic hand is shown in 
Fig. 20. The prosthetic hand can meet the requirements 
of cosmetic appearance and the grasp tasks in daily 
living. The shape and size of the prosthetic hand are 
similar to the human hand. Because the palm joints lack 
the DoF of swing, the prosthetic hand cannot achieve the 
spherical gesture. Therefore, the spherical gesture is 
defined the same as cylindrical gesture. As mentioned in 
section 2.3, the prosthetic hand can achieve the 8 hand 
gestures by simply controlling the motors to rotate to the 
specified angles. Fig. 21 shows the 8 hand gestures of the 
prothetic hand when gasping objects. 

Fig. 22 shows the overall system of the experiment. 
The control system consists of SPiiPlus NTM motion 
controller, UDMlc motion driver, and the matched soft-
ware SPiiPlus MMI Application Studio from ACS Mo-
tion Control Company. The control programming of the 
motors is host-based, where the Labview Virtual In-
strument is adopted to combine the myoelectric control 
system and the motor control system, through calling the 
 

 
Fig. 20  The prototype of the prosthetic hand. 

 

Rest Spherical Tripod Tip

Cinlydircal Hook Lateral Point

 
Fig. 21  The prosthetic hand gestures. 
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Fig. 22  The overall system. 

 

 
Fig. 23  The movement of the prosthetic hand. 

 
functions from the Component Object Model (COM) lib 
to control the motors. There are 3 basic parts in the 
control program of the prosthetic hand including acti-
vating the specified motors, getting current position of 
the motors, and driving the motors to the designated 
position. In the on-line recognition system, the final 
decision of the hand gestures is generated every 70 ms. 
However, the motors can not finish a hand gesture 
command all the time in every 70 ms when the prosthetic 
hand is moving. Hence, the motion controller will stop 
the motors and get the error message when the com-
mands are crowded. To solve the problem, the control 
system reads the hand gesture command every  
500 ms. Fig. 23 shows the movement of the prosthetic 
hand controlled by the EMG signals in real time. From 
the experimental results, we showed that the proposed 
method is applicable for realtime myoelectric hand con-
trol without a perceived operation time delay. 

5  Conclusion 

In this paper, an anthropomorphic prosthetic hand 
using flexure hinge is designed, which is under the 
control of a realtime myoelectric control system using 
only 2 electrodes and classifying 8 hand gestures. The 
prosthetic hand consists of 5 fingers with 4 DoFs driven 
by 4 independent actuators. The phalanxes are connected 

by helical springs which make the joints elastic linkages. 
The movement of each joint is combined by coupled 
mechanism with tendons. All the 4 actuators are inte-
grated in the palm which simplifies the design of the 
prosthetic hand. As a result, the hand is designed with 
cosmetic appearance and shape similar to human hand, 
which can accomplish most grasping tasks in the daily 
living. Pattern recognition is adopted in the myoelectric 
control system. MAV, VAR, the 4th AR and SE are 
selected as the optimal feature set, and the dimension is 
reduced by LDA algorithm. The “pre-smoothed” and 
“post-smoothed” are combined to smooth the output in 
the on-line recognition. Using the proposed method, we 
have recognized the 8 hand gesture from 2 channel EMG 
signals and controlled the prosthetic hand in real time. 
From the experiment, the prosthetic hand can grasp the 
objects by the control of EMG signals. In the future, the 
force feedback system will be added into the prosthetic 
hand to complete the whole system. Also, the relation-
ship between the force level of contraction and the rec-
ognition accuracy rate will be explored. 
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