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Abstract 
This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory 

generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, 
and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the 
characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for 
adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the gen-
erated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune 
system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on ir-
regular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with 
varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns. 
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1  Introduction 

Biped locomotion control is fundamental for biped 
robots to work in unknown walking conditions. Many 
biped robots successfully utilize Zero Moment Point 
(ZMP) based locomotion control methods[1–6]. Most 
researches focus on walking stability of biped robots on 
flat terrain or on known uneven terrains. The trajectory- 
based methods are good for a robot to walk according to 
pre-designed trajectories while maintaining its balance. 
However, pre-designed trajectories are fixed and there-
fore, if terrain conditions change, pre-designed trajecto-
ries may fail. Although multiple trajectories for different 
terrains can be designed, and switching is possible while 
walking, they cannot cover all situations a robot might 
encounter.  

For a biped robot walking on different terrains, like 
overcoming obstacle[7], it is necessary to adapt to 
walking terrains with adjustable workspace trajectories. 
As the complexity of walking conditions increases, the 
polynomial interpolation method becomes inefficient. 

The polynomial order becomes too high and its compu-
tation will be too demanding. To overcome this problem, 
Shih[1] proposed a strategy that uses cubic spline inter-
polation to plan foot trajectories. Huang et al.[2] formu-
lated the constraints of foot motion parameters to pro-
duce different types of foot motion for various terrains. 
Park et al.[5] presented a gait trajectory generation 
method based on the combination of sinusoidal func-
tions and 3rd-order polynomial functions to realize free 
gait biped walking. Based on ZMP, a gait synthesis 
technique was employed by Seven et al.[6]. The pitch 
angle reference for the foot sole plane was modified in 
real time using a fuzzy logic system to adapt to various 
walking slopes. 

Human walking does not exhibit the characteristics 
of precise trajectory tracking. Biological researches 
show that the human walking is the consequence of the 
combination of inherent patterns and reflexes[8,9]. Re-
searchers investigated bio-inspired control methods 
based on biomechanics of musculoskeletal system and 
motor neural networks[10,11]. Inspired by Central Pattern 
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Generator (CPG), locomotion control methods have 
been proved workable[12–15]. CPG is a type of oscillator 
network that can produce rhythmic oscillatory signals 
endogenously. Through mutual inhibition of the neurons 
and entrainment with sensory feedback, the movement 
patterns of the network can be adjusted. The CPG-based 
motion control methods have been successfully used in 
swinging and crawling robots[16,17], as well as multi- 
legged robots[18,19]. For the control of biped locomo-
tion[20–23], inspired by Taga’s work[24,25], the walking 
control strategies are exploring in recent years. 

The CPG-inspired motion control strategies are 
usually synthesized into joint-space control method and 
workspace control method. For the joint-space control 
methods, usually using one CPG unit to control one 
Degree of Freedom (DoF) of the robot, and the distrib-
uted oscillator network can generate complex coordi-
nated multi-dimensional signals used as force or torque 
control to realize the coordinated motion. Due to the 
inherent instability of biped walking, the traditional joint 
space CPG control methods are not very feasible. For 
biped walking control, CPGs are usually used as sup-
plements to other controllers.  

For legged animals, the tips of the legs reflect gait 
patterns. Task space based study of animal walking 
mechanism can be an efficient way for CPG-inspired 
walking control of legged robots. Endo et al. [26], Ha et 
al.[27] and Aoi et al.[28] designed motion control strate-
gies in the workspace space of biped robots. By using 
nonlinear oscillators to generate the nominal trajectories 
of the joints and the nominal trajectories are modified 
using feedback information that depend on the posture 
and motion of the biped robot to achieve robust walk-
ing[28]. To further develop the biped environmental 
adaptive walking capability, an online trajectory gen-
eration method should improve the dynamic stability 
and adaptability of any robot. That is, the generated 
trajectories should be modulated online according to the 
terrain conditions. In our previous work[29], using 
nonlinear oscillators, a CoM trajectory generator and a 
workspace trajectory modulator are designed. However, 
the pre-designed fixed foot trajectory limits the envi-
ronmental adaptability. This paper aims to improve the 
walking adaptability on irregular terrain using neural 
oscillators. The adaptive foot trajectory and robust CoM 
trajectory can be generated online. In this paper, the 
following contributions are achieved:  

(1) A new workspace trajectory generation method 
is presented based on a neural network consisted of four 
coupled nonlinear oscillators. The output signals of the 
neural network are transformed into the workspace tra-
jectories for the two legs of a biped robot; 

(2) A staged process is designed to evolve the pa-
rameters of the control system offline (using Webots 
platform). Firstly, numerical simulation is employed to 
analyze the effect of each parameter on the oscillatory 
output. Then, an NSGA-based method is used to realize 
the walking pattern evolution; 

(3) Through the entrainment of the oscillators and 
the feedback signals of the biped robot, the generated 
CoM and foot trajectories can be modulated online ac-
cording to the walking conditions to realize adaptive 
walking. 

The motion engine will be used to realize the 
mapping from workspace to joint space (Ref. [30]). Thus, 
the adaptive joint control signals can drive all leg joints 
to realize the desired motion. The advantages of this 
proposed method are that it does not require prior in-
formation on the terrain conditions, nor does it rely on 
range sensor information for surface topology meas-
urement. Both Webots simulations and real experiments 
are designed to demonstrate the efficiency of the pre-
sented control system. The rest of this paper is organized 
as follows: Section 2 introduces the design methods of 
the trajectory generators, the feedback path design and 
the parameter evolution of the control system. Section 3 
describes the humanoid robot NAO and presents the 
simulation and experimental results of the various ir-
regular terrain adaptive walking. The conclusion and 
discussion of this work and the future work are stated in 
Sections 4. 

2  Control system 

For a biped robot to realize adaptive walking, the 
swing foot trajectory needs to be adjusted online to re-
alize various walking patterns. In order to best improve 
the stability and adaptability, the modulation of swing 
foot trajectory and CoM trajectory should be combined. 
In the following sections, the trajectory generation 
methods are presented. 

 
2.1  CPG-based trajectory generators  
2.1.1  CPG model 

A neural oscillator model evolved from  
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Refs. [19,31] is used as the CPG model as: 
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where the subscripts i, e and f denote the ith oscillator, an 
Extensor Neuron (EN) and a Flexor Neuron (FN), re-
spectively. ui is the inner state, vi represents the degree of 
the self-inhibition effect; Parameters Tr and Ta are time 
constants; wfe is the connecting weight between FN and 
EN; wij is the weight of the inhibitory synaptic connec-
tion between the ith and jth neurons; � represents the 
degree of the self-inhibition influence on the inner states 
ui, s0 is the external input. Feedi

{e,f} represents the sen-
sory feedback. 
 
2.1.2  Foot trajectory generator 

The structure of the proposed swing foot trajectory 
generator is shown in Fig. 1, which is composed of a 
CPG network and a transform function. The transform 
function is designed to map the oscillatory outputs with 
specific phase relationships to the positions of the toes of 
the biped robot. 

Using the proposed foot trajectory generator, the 
swing foot trajectories of the two legs can be generated 
in real time. The oscillatory networks are very suited to 
integrate sensory feedback signals, so when entrained 
with the feedback information from the robot and envi-
ronment interaction, the expected adaptive foot trajec-
tories can be generated.  

It is known that swing movements in the x-direction 
(forward) and z-direction (vertical) for the same leg need 
a phase difference of �/2. For bipedal systems, the posi-
tions of both legs along z direction and x direction differ 
symmetrically with a phase difference of �. If the con-
nection weights between oscillators are designed as 
inhibitory connections, the phase difference between Fx

r 
(Fx

l) and Fz
r (Fz

l) can be obtained as �/2, and the phase 
difference between Fx

r (Fz
r) and Fx

l (Fz
l) can be realized 

as �. In this study, the weights Wij = (wij)4×4, inhibitory 
connections, are set as wij = �1 (i � j). Oscillation signals 
with specific phase differences required can  be obtained  

l l r r, , ,x z x zF F F F

 
Fig. 1  The structure of the foot trajectory generator. 
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Fig. 2  The generated oscillatory outputs (where Tr = 0.2, Ta = 0.4, 
s0 = 0.6, � = 3.5, wfe = 2.0). 

 
as shown in Fig. 2. 

The transform functions are proposed to map the 
oscillatory outputs with amplitude transitions to the 
swing foot trajectories for two legs. The mapping proc-
esses only consider the positive part of the oscillation 
signals as follows  

The mapping function for the left leg: 

l
0 2

l
0 4

,x x

z z

F x A r
F z A r

*� � +
,

� � +-
                                    (2) 

where r2 and r4 are the output signals of oscillator-2 and 
oscillator-4 as shown in Fig. 1. Therefore, Fx

l and Fz
l 

have a �/2 phase difference. Parameters Ax and Az are the 
amplitude scaling factors and parameters x0 and z0 are 
the foot position offsets.  

The mapping function for the right leg: 

r
0 1

r
0 3

,x x

z z

F x A r
F z A r

*� � +
,

� � +-
                                  (3) 

where r1 and r3 are the output signals of oscillator-1 and 
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oscillator-3, so Fx
r and Fz

r have a �/2 phase difference. 
The phase difference between Fx

l (Fz
l) and Fx

r (Fz
r) is the 

same phase relationship as that between r2 (r4) and r1 (r3), 
namely, �. 

Due to the dynamic properties of the neural oscil-
lators, modulation of the oscillator model parameters 
allows easy adjustment of the cycle period and the am-
plitude of the outputs. Here, the various biped walking 
patterns can be realized. This is a critical step to realize 
adaptive walking robust to various environment. 

 
2.1.3  CoM trajectory generator 

Three neural oscillators are used to generate three 
dimensional components of a CoM trajectory as: 

CoM 1_ CoM

CoM 2 _ CoM

CoM 3_ CoM

CoM

CoM ,

CoM

x x x f

y y y

z z z

offset K r K t
offset K r
offset K r

*� � �
+

� � ,
+� � -

          (4) 

where offsetx , offsety and offsetz are position offsets, 
parameters Kx, Ky, Kz and Kf are the gain coefficients, 
r1_CoM, r2_CoM and r3_CoM are output signals of the neural 
oscillators. By Modulated the adjustable parameters in 
Eq. (4) can generate robust CoM trajectory. 

 
2.2  Improvement of stability and adaptability  

Entrainment with the sensory feedback information 
is a good way to improve the adaptability of the robot 
walking[32–35]. In this work, as Fig. 3 shows, the body 
attitude information and ZMP information are used as 
 

qj

Feedback information 
transformer

�pitch

Gyro 
accelerometer

,
ZNP
r lfeed

Y

Z

X

FSR (force sensitive resistors)

CoM

 
Fig. 3  The structure of feedback loop. 

feedback information to modulate the generated trajec-
tories online to improve the walking quality. 

 
2.2.1  Body-attitude-based feedback path 

In this work, the body attitude angle �pitch is applied 
to automatically modulate the generated swing foot 
trajectory and CoM trajectory to mimic this reflex, to 
adjust the position of the tip of legs and the position of 
the CoM according to the walking condition. The sen-
sory feedback loop is designed as: 

VSR VSR pitch ,feed K ��                          (5) 

where KVSR is the gain coefficient. 
 

2.2.2  ZMP-based feedback 
This work wants to modulate in real time the out-

puts of the oscillators corresponding to the foot trajec-
tories in coupling with the ZMP feedback. The distance 
between the ZMP and the sole edge is an important in-
dicator of stability in walking. The ZMP should be kept 
as far from the boundary as possible to counter unex-
pected perturbations from environment (in this work, the 
measured variable is the Center of Pressure (CoP)), so 
the feedback path can be formulated as: 

& 'e,f
ZMP ZMP ,sfeed K D�                          (6) 

where KZMP is the gain coefficient, and Ds is the stability 
margin, namely, the smaller value of Dsx = ZMPx � Sx 
and Dsy = ZMPy � Sy (Sx and Sy are x and y positions of 
the sole edges). 

 
2.3  Staged system parameters evolution 

As there is no proven methodology for CPG pa-
rameter tuning, two main alternative methods, i.e., the 
trial-and-error method and the Evolutionary Algorithms 
(EA)-based methods[20,22,26,36], are usually used. A staged 
evolution is used to derive the parameters. Firstly, nu-
merical simulation is used to analyze the effect of each 
parameter on the output signal and accelerates the pre-
liminary parameters setting. Secondly, a NSGA-based 
approach is applied to evolve the CoM trajectory gen-
erator, which is based on a fixed foot trajectory. Thirdly, 
NSGA-based evolution method is used to evolve pa-
rameters of the foot trajectory generator[37]. Finally, 
during the irregular terrain walking evolution, by en-
training several paths of sensory feedback, adaptive 
walking patterns can be realized.  
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(1) Parameters analyses of CPG model  
The first stage aims to find the general relationships 

between parameters and the oscillatory outputs (the 
parameter analysis method can be found in our previous 
work[38,39]). The connection weights between oscillators 
are set as inhibitory relationship in order to get desired 
output phase relationships as shown in Fig. 2.  

(2) GA-based CoM trajectory generation 
The second stage uses GA to evolve the three os-

cillators’ parameters to generate the CoM trajectory. 
Here, genomes are coded as array of neural oscillator 
model parameters. The mapping parameters are adjusted 
and set as constants based on the evolution results of the 
oscillators for CoM trajectory. The feedback term is set 
to zero during the parameter evolution process. 

 The distance fitness measure takes into account the 
straight-line walking distance along a pre-specified di-
rection (in this case, the x-direction), the robot reaches in 
a fixed time. It is described as: 

� �2
dis end 0 ,fitness x x� �                  (7) 

where x0 and xend are the initial position of the robot on 
the ground and the position of the robot at the end of the 
simulation, respectively. This fitness function expresses 
the distance traveled in a straight line (in the x-direction) 
to go from the first position of the robot to its last posi-
tion. This fitness function achieving minimum means 
that the robot travels both far and straight in the desired 
direction. 

The other fitness measure is to guarantee the 
smoothness of the walking pattern. It is postulated that a 
walking pattern with only small amplitudes of body 
shaking can reflect to some extent the stability of the 
walking. This fitness measure is: 

� �atti pitch pitch_limit roll roll_limit1 / ,fitness � � � �� � � �   (8) 

where, �pitch and �roll are the attitude inclinations in sag-
ittal plane (x-direction) and coronal plane (y-direction), 
respectively. Small excursions in the sagittal and coronal 
planes (set as �pitch_limit, �roll_limit), respectively, may ac-
tually improve the stability of the upright walking pat-
tern, so only angular deviations in excess of those 
amounts result in a detrimental effect on fitness values. 

(3) NSGA-based foot trajectory generation 
NSGA-II[37] is applied in the third stage to realize 

the gait pattern evolution. Genomes are coded as array of 

oscillator model parameters (Tr_foot, Ta_foot, s0_foot, �_foot, 
wfe_foot) and the mapping parameters (X0, Z0, Ax, Az). In 
this stage, the distance fitness is also applied. The pa-
rameter evolution process is treated as a minimization 
problem and thus the reciprocal of the fitnessdis is used. 
The second fitness measure guarantees the walking sta-
bility. During stable walking, it is required that the ZMP 
should keep inside in the boundary of the supporting 
region of the feet (or foot). The larger the stable index Ds 
(as shown in Eq. (6)) is, the higher the stability is. Ds is 
chosen as the third fitness measure as: 

ZMP 1 / ,sfitness D�                        (9) 

During evolution, two boundary constraints are 
added to ensure the generation of stable oscillation sig-
nals of the oscillatory network, as:[30] 

fe

fe r a

1
,

1 /
w

w T T
) . � *

,/ � -
                     (10) 

Finally, by entraining several paths of sensory 
feedback, adaptive walking patterns can be designed and 
realized. The feedback coefficients are obtained through 
simulations and experiments. During the exploration of 
the feedback coefficients, other parameters, including 
the model parameters and mapping parameters, are un-
changed. 

3  Simulations and experiments 

3.1 Experiment platform 
NAO is used as the hardware platform (Fig. 4). This 

robot is equipped with a variety of sensors including a 
3-axis accelerometer and a 2-axis gyroscope. This work 
only considers the 10 DoFs on two legs (2 in the hip, 2 in 
the ankle and 1 at the knee); the position control signals 
of the HipYawPitch DoFs are set as fixed values. 

In this work, the adaptive characteristics of the 
 

(a) (b)

 
Fig. 4  Humanoid robot platform. (a) The NAO robot; (b) the 
ODE-based simulation environment. 
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workspace trajectories will be mapped to the joint space 
using the motion engine. The desired joint positions for 
the joints PD servos are obtained through inverse 
kinematics and are used to control the actuators[30]. The 
parameters evolution process is carried out under a 
physical simulation environment (Webots), as shown in 
Fig. 4b, and then dubbed to the real robot. The evolved 
parameters are realized on the simulated NAO robot. In 
this work, the servos control the joints to track the ref-
erence signals using built-in PD-type servo mechanism. 

 
3.2  Walking pattern evolution 

(1) CoM trajectory generator 
The simulation is carried out using the ODE-based 

simulator with GA evolution. Two objective functions 
fitnessdis and fitnessatti are combined to evolve the CoM 
trajectory 

1 dis 2 atti ,fitness fitness fitness� ��  �           (11) 

where �1 > 0, �2 > 0 (�1 + �2 = 1) are weighting coef-
ficients and can be adjusted according to request. The 
parameters of GA are set as: the population size: 50, the 
maximum generation: 60, the selection ratio: 0.5, the 
crossover ratio: 0.6 and the mutation ratio: 0.3. 

At the start of the evolution, NAO only can walk a 
short distance and the fitness is low. After about 18 
generations (Fig. 5), the robot can realize stable straight 
walking. Table 1 shows the parameters of the CoM tra-
jectory generator. These parameters are set as constants 
in the following simulations, independent of the walking 
terrains. 

(2) Foot trajectory generator 
Deb’s NSGA-II[36] is used to evolve the best pa-

rameters of the control system to realize flat terrain 
walking. Binary tournament selection, intermediate 
crossover and the Gaussian mutation methods are used 
in this study. 

Often, the advised value of the crossover probabil-
ity is relatively large (0.25 to 0.9) to ensure a good 
crossover rate. Crossover probability close to the upper 
limit will greatly increase the randomness of evolution-
ary algorithms due to their high possibilities of destruc-
ting the individuals with good genes. However, when the 
crossover probability is close to the lower limit, most 
individuals will be retained for the next generation, and 
as consequences, the diversity of the population and the 
convergence rate of the algorithm will be accordingly  
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Fig. 5  The fitness changes in the process of evolution of the best 
individual. 

 
Table 1  Parameters values of the CoM generator 

Parameters Values 
Tr_CoM, Ta_CoM 

s0_CoM, �_CoM 

�fe_CoM, Kf 

Kx, offx 

Ky, offy 

Kz, offz
 

0.1045, 0.345 

0.611, 1.332 

1.488, 0.06 

0.009, 0.06 

0.11, 0.0 

0.012, 0.22 

 

fit
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ss
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Fig. 6  Pareto front of generation 50. 

 
Table 2  Values of the parameters 

Parameters Values 
Tr_foot, Ta_ foot 

s0_ foot, �_ foot 

�fe_ foot 

Ax, X0 

Az, Z0
 

0.117, 0.352 

0.576, 3.773 

2.135 

7.664, 4.023 

1.902, �0.001 

 
decreased. Therefore, 0.75 is chosen for the interpola-
tion crossover in the experiments. Mutation allows the 
random variation of individuals in the search space. The 
mutation probability also has an advised range (0.01 to 
0.5). The larger the mutation probability is, the more 
stochastic the evolutionary algorithms are. A random 
search is expected if the mutation probability is ex-
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tremely overlarge. On the other hand, with insufficient 
mutation, the variations of the individuals will be re-
strained to a very limited space, and fitter individuals 
will hence get less likely to be explored, leading to lower 
optimization efficiency. In the experiments, the mutation 
probability is set as 0.1.The generation size is set as 50 
and the population size is selected as 50 individuals.  

After about 35 generations, the robot can realize a 
stable straight walking pattern. The evolution results of 
the 50th generation are shown in Fig. 6, the tradeoff 
relationship between the two objectives is evident. One  
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Fig. 7  The generated CoM trajectories. (a) CoMx trajectory; (b) 
CoMy trajectory; (c) CoMz trajectory; (d) CoM trajectory in x-y 
plane. 

of the best solutions (marked in Fig. 6) is picked on the 
Pareto front, and Table 2 shows the parameters. These 
parameters of the neural oscillators are set as constants 
in the following experiments, independent of terrain. 

The biped flat terrain walking experiment is con-
ducted about 40 seconds, and parts of the experiment 
results are shown from Fig. 7 to Fig. 9. In Fig. 7a, the red 
trajectory is the generated reference CoMx, the blue 
trajectory is the real CoMx during NAO robot walking, 
which is calculated by the kinematics model based on 
the position measurement using the internal joint posi-
tion sensor. The black trajectory pSupFootx represents 
the position of the supporting foot in x-direction. The 
execution time of NAO is 20 ms frame. Figs.7 b and 7c 
are the generated CoMy and CoMz trajectories, inde-
pendently. As Fig. 7 shows, there have certain phase 
differences between the reference and real CoM trajec-
tories, which may be due to the control delay and the 
joint position sensor transmission delay. 

Fig. 8 shows the generated foot trajectory. The 
ZMP (Fig. 9a) and body attitude information (Fig. 9b) 
are used to show the walking performance. As Fig. 9a 
shows, the foot boundary is about 0.04 m larger than the  
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Fig. 8  The generated foot trajectory. 
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Fig. 9  ZMP distribution and the body attitude angles during the 
flat terrain walking. (a) ZMP distribution; (b) body attitude angles. 
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foot position, so the ZMP trajectories are within the 
upper and lower boundaries of foot trajectories. 

 
3.3  Walking on inclined terrains 

This study considers several terrain models, in-
cluding up and down regular inclined planes, inclined 
planes with changing slope angles, terrain surfaces with 
distributed unknown bumps (for example, small height 
variations of a few centimeters or slope changes of a few 
degrees, ascending or descending stairs). 

 
3.3.1  Regular slope-terrain adaptive walking 

Inclined planes are typically encountered in human 
environments. The experimental environment is de-
signed as three-staged terrains, including a flat surface, 
uphill and downhill segments (slopes up to 15�). The 
transitions between the terrain segments can be consid-
ered to be perturbations. Without the prior knowledge of 
the walking terrain, in order to realize the adaptive walk, 
the body-attitude-based reflex method is used in this 
work. The body attitude � can be estimated by using the 
gyroscope and accelerometer of the NAO robot. The 
designed calculation method is shown in Fig. 10, where 
�acc is the body attitude calculated by the accelerometer, 
and �gyro is the body attitude calculated by the gyroscope. 
A Low pass Filter (LF) and a High pass Filter (HF) are 
used to get the dynamic and static characteristics of �acc 
and �gyro . 

(1) Feedback via CoM trajectory generator. The 
attitude information feedback to the neural oscillator 
corresponding to the CoMx trajectory is expressed as: 

_feed 1 pitch ,x xCoM CoM K �� �            (12) 

where K1 is gain. The purpose of the feedback loop is to 
adjust the CoMx along the slope surface to prevent 
slippage on up slope surface walking and overturning 
during down slope walking.  

(2) Feedback via foot trajectory generator. The at-
titude information is coupled to the neural oscillators of 
the foot trajectory generator is expressed as: 

& 'e,f
2 Pitch ,ifeed K �� �                       (13) 

where K2 is the gain. The purpose of the feedback design 
is to adjust the amplitude of the oscillatory outputs. Thus, 
gait patterns with adaptive step length and step height 
can be generated. 

The slope-adaptive walking experiment was con-
ducted about 70 seconds. Some of the results are shown 
in Figs. 11 and 12. Fig. 11a shows that the �pitch can 
represent the changes of body attitude on different 
walking terrains. Fig. 11b shows that entraining with the 
perceived �pitch, the position of the CoMx can be adjusted 
online, and that the swing foot trajectory with adaptive 
step length and step height can be realized. When 
walking up the slope, the position of the CoMx moves 
forward along the slope. In contrast, the CoMx is moved 
backward during down slope walking. Meanwhile, as 
shown in Fig. 11c, the adaptive foot trajectories during  
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�gyro
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Fig. 10  Calculation of the body attitude angle. 
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Fig. 11  The online generated CoM trajectory and foot trajectory. 
(a) The body attitude; (b) the generated CoMx; (c) the generated 
swing foot trajectory in sagittal plane. 
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Fig. 12  Simulation of NAO walking on sloped terrain. (a) The 
distribution of ZMP; (b) screenshots of a successful walking 
pattern on sloped terrain (uphill 15�, downhill 10�). 

 

 
Fig. 13  The simulated changing slope-terrain. 

 
sloped terrain walking can be generated online. The 
walking step length and step height can be adjusted 
according to the walking terrain. 

While walking on sloped terrain both up and down, 
NAO can maintain stable and shows only a bit stagger-
ing during the transitions. As Fig. 12a shows, the ZMP 
remains within the foot support area of the robot except 
during the switching phase of the supporting leg, which 
reflects that stable walking performance can be achieved. 
Fig. 12b shows the snapshots of the adaptive walking 
simulation.  

The simulation experimental results indicate that 
the control system is successful with a stable walk in the 
transition from a horizontal plane onto an inclined ter-
rain. 

 
3.3.2  Changing slope-terrain adaptive walking 

In the second set of simulation experiments, the 
NAO robot walks in an inclined environment with var-
ied slope angles as shown in Fig. 13.  
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Fig. 14  Simulation of NAO walking on terrain with increasing 
slopes. (a) The body attitude in pitch and roll planes; (b) the 
screenshots of successful walking on terrain with increasing 
slopes. 

 
Two feedback paths are used, as introduced in the 

experimental setup described above, to automatically 
modulate the generated trajectories online. Fig. 14a 
shows the body attitude changes and the snapshots of the 
walking are shown in Fig. 14b. 

 
3.3.3  Stair-terrain adaptive walking 

To further verify the superiority of the presented 
control strategy, experiments of adaptive biped walking 
were carried out on more irregular terrains. The walking 
terrain was set up with bumps of 0.8 cm in height and 
stairs of 2.0 cm in height. The ZMP feedback and body 
attitude feedback paths were combined to realize the 
generation of the adaptive CoM trajectories and swing 
foot trajectories.   

(1) Feedback via CoM trajectory generator. The 
feedback information is coupled to the neural oscillators, 
corresponding to CoMx and CoMz are expressed as: 

_ feed 3 pitch ,x xCoM CoM K �� �                  (14) 

_ feed 4 s ,z zCoM CoM K D� �                    (15) 

where  K3  and  K4 are  feedback  gain  coefficients.  The  
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Fig. 15  Simulation results1: the generated CoM trajectory and 
foot trajectory. (a) The generated CoMx trajectory; (b) the gener-
ated CoMz trajectory; (c) the generated foot trajectory. 

purpose is to use the feedback information to adjust the 
CoMx along the sloped terrain and adjust the height of 
the CoMz to prevent of slippage and overturning during 
the sloped terrain walking.  

(2) Feedback via foot trajectory generator. The 
feedback information is coupled to the oscillator net-
work, and is expressed as: 

& 'e,f
5 s ,ifeed K D� 0                     (16) 

where K5 is the gain coefficient. This purpose is to use 
the stability information to adjust the amplitude of the 
output signals. Thus, the gait pattern with adaptive step 
length and height can be generated. 

Figs. 15 and 16 show some of the results. When the 
acceleration sensor and gyro sensor detect the inclina-
tion in the pitch plane, the CoM in the x-direction is 
adjusted online as shown in Fig. 15a. When the FSR 
sensors detect the ZMP outside the stable range, the 
CoM in the z-direction (Fig. 15b) and the gait patterns 
(Fig. 15c) are adjusted in real time to realize adaptive 
walking. 

Fig. 16a shows the distribution of the ZMP during 
walking on irregular terrain. The ZMP almost keeps 
within the support area of foot except near the walking 
terrain transition points. Some of the snapshots of the 
experimental simulation are shown in Fig. 16b. 
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Fig. 16  Simulation results 2: walking on stair-terrain. (a) The distribution of ZMP during irregular terrain walking; (b) snapshots of the 
simulation experiment.          
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t = 3 s t = 6 s t = 10 s

t = 13 s t = 20 s t = 24 s

t = 28 s t = 33 s t = 35 s  
Fig. 17  Real NAO robot biped sloped terrain adaptive walking 
experiment. 
 
3.4  Inclined terrain adaptive walking experiment 

The simulated typical walking terrain adaptive 
walking verified the feasibility of the presented control 
strategy. Based on the Webots simulation results, the 
program was dubbed to the real NAO to test its walking 
performance. In this work, since ODE cannot provide 
precise dynamical modelling and the friction force dif-
ferences between the simulation and real walking ter-
rains, the gains of the feedback loops need to be modu-
lated by trial and error within a very small range.  

One experiment was set up to test the robot per-
formance without prior knowledge of the terrains. The 
experiment allowed the robot to walk over three stages 
of an inclined terrain (inclined surfaces with about 6� 
slopes) and the connected stage was a flat terrain. The 
walking surface was an elastic deformable platform, and 
the friction coefficient between the feet and the walking 
surface was not large enough to avoid slippage. Every 
step of NAO on the platform could cause the walking 
surface to deform and slippage could occur. During the 
inclined terrain walking, the body-attitude-based feed-
back paths were used to adjust the generated CoM and 
foot trajectories automatically. Parts of experiment 
snapshots are shown in Fig. 17. By entraining the feed-
back information, the basic walking pattern evolved by 
the EA was adjusted automatically, so the robot adapted 
to the terrain conditions autonomously. 

The differences between Webots simulations and 
experiments are due to the measurement noise, offset, 
and robot model uncertainties, including joint compli-

ance and the slip between the feet of NAO and the 
walking surface. NAO robot only showed a bit of stag-
gering during the terrain transitions. The experiments 
show that the generated trajectories are applicable and 
workable. 

4  Conclusion 

This work uses the dynamic properties of neural 
oscillators to develop an online trajectory generation 
method. In this work, by using two set of neural oscil-
lators, adjustable workspace trajectories can be gener-
ated online. The proposed control strategy allows a bi-
ped robot to overcome the limitations of the conven-
tional biped walking control methods. In this method, 
the neural oscillators are allocated in the workspace 
space to generate trajectories, so the robot can simplify 
the design of connection weights and feedback pathways. 
Moreover, by entraining two or more feedback loops to 
prevent slippage and overturning, it can negotiate 
steeper slopes than the conventional control method. 
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