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Abstract    
The paper deals with the mechanical vibrational motion of vibrissae during natural exploratory behaviour of mammals. The 

theoretical analysis is based on a mechanical model of a cylindrical beam with circular natural configuration under an applied 
periodic force at the tip, which corresponds to the surface roughness of an investigated object. The equation of motion of the 
beam is studied using the Euler-Bernoulli beam theory and asymptotic methods of mechanics. It is shown that from the me-
chanical point of view the phenomenon of parametric resonance of the vibrissa is possible. It means that the amplitude of forced 
vibrations of a vibrissa increases exponentially with time, if it is stimulated within a specific resonance frequency range, which 
depends on biomechanical parameters of the vibrissa. The most intense parametric resonance occurs, when the excitation fre-
quency is close to the doubled natural frequency of free vibrations. Thus, it may be used to distinguish and amplify specific 
periodic components of a complex roughness profile during texture discrimination. 
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1  Introduction 

Looking at biologically inspired robotics, it can be 
stated that the dominating research fields are “locomo-
tion” and “manipulation”. Series of interdisciplinary 
publications are devoted to locomotion principles, such 
as walking, swimming, crawling, etc.[1–5]. The remark-
able exception is biomimetic vibrissal sensing. 

In nature, vibrissae are thin long tactile hairs of 
mammals. They grow usually in groups in different 
locations on an animal’s body. Mystacial vibrissae, for 
example, are distributed over a whiskerpad on a snout 
(Fig. 1a). These whiskers are the most intensely inves-
tigated of all vibrissae. Rats, squirrels and other rodents 
use carpal vibrissae on their legs to get information 
about the area of putting down the feet (Fig. 1b). 

Since quite exactly one hundred years, starting with 
the famous paper of Vincent[8], who demonstrated the 
behavioural significance of vibrissae, live scientists and 
engineers would like to understand their functional 

principles. Today, one of the motivations for suchlike 
research on tactile hairs of mammals is that the tactile 
sensing following biological principles promises to be 
competitive with artificial vision. 

In both cases, whether mystacial or carpal vibrissae, 
the hairs are levers for transmitting forces and torques 
that arise at the moment of contact between the hair and 
an object, to a pressure-sensitive mechanoreceptor–the 
Follicle-Sinus Complex (FSC). This base of the vibrissa 
is five-six times larger than the follicle of a regular 
pelage hair[9]. The FSC consists of a hair follicle and is 
filled with blood bag called blood-sinus[10] (Fig. 2a). It 
comprises the follicle, thus ensuring the visco-elastic 
foundation of the vibrissa. The FSC is embedded in 
elastic connective tissue and is motile for some groups of 
vibrissae. This is reflected in anatomical reports that 
have identified a specialized musculature surrounding 
the FSC[11,12]. Due to extrinsic and intrinsic muscles, the 
vibrissae of an animal are repetitively and rapidly moved 
back and forth (Fig. 2b). 
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(b)(a)  
Fig. 1  (a) Mystacial vibrissae of a house cat[6]; (b) Triple of carpal 
vibrissae (arrows) at a forelimb of Rattus norvegicus[7]. 
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Fig. 2  (a) Structure of the vibrissal FSC anatomy from Refs. [6,10]; 
(b) Schematic drawing of neighbouring mystacial follicles, which 
can be moved by extrinsic and intrinsic muscles[11,12]. 

Mammals use their vibrissae as high-acuity tactile 
sensors for the exploration of the surrounding area, ob-
ject localization, and texture discrimination. Rats, for 
example, can differentiate using mystacial vibrissae 
rough and smooth surfaces with a groove depth of  
30 μm[13]. Since carpal vibrissae are located on the 
downside aspect of forelimbs, they are probably used as 
sensors for determining the animal’s speed and the du-
ration of stance phase[14]. The ability of mammals to 
make these fine distinctions prompts that the vibrissa 
system is made for transmitting high-frequency infor-
mation. As vibrissal hair has no receptors along its 
length[10], all the tactile signals at the tip of the vibrissa 
must be transmitted mechanically to sensory receptors 
inside the FSC. How vibrissae sense this information, 
and how it is encoded by the brain, are not known ex-
actly. It is still the focus of many scientific  
investigations[15]. 

In publications that describe vibrissa studies, dif-
ferent term sets can be found, for example, “resonance 
amplification of signals”[16], “vibrissa resonance en-
hances the sensitivity”[17] or “differential resonance 
theory”[18]. However, Neimark et al.[16] and Hartmann et 
al.[19] confirmed the potential role of vibrissa resonance 
based on optical measurements of fundamental reso-
nance frequencies of rat vibrissae. The experimental 
results were analyzed using a theoretical model of the 
vibrissa as a straight, conical elastic beam, free at the tip 
and fixed at the base. The same truncated model was 
taken by Yan et al.[20] to obtain numerically fundamental 
resonance frequencies of the beam under different 
combinations of boundary conditions (Fig. 3a). The 
model of the straight vibrissa as a series of discrete 
nodes contained torsional springs and dampers con-
nected by rigid links with point masses, is presented in 
Ref. [21]. From the mechanical engineering point of 
view, however, we lack a general dynamic model of a 
curved elastic vibrissa sweeping across a surface, which 
describes its vibrational behaviour during texture dis-
crimination. 

In general, resonance is caused by the possibility of 
a system to store and transfer energy between two or 
more different storage modes. In case of forced vibra-
tions, when the frequency of an external force is close to 
a natural frequency of the system, the amplitude of 
steady-state forced oscillations of the system can reach 
significant values. This phenomenon is called resonance, 
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and it is in the focus of the authors mentioned before. 
Another possibility to excite non-damping vibrations is 
to change periodically some system parameters to which 
the system motion is sensitive. A familiar example is a 
pendulum, whose support is vertically excited. Motion 
of such systems with one degree of freedom is generally 
described by an ordinary differential equation 

2
2

2

d ( ) 0,
d

x t x
t

-� �                           (1) 

where the function �(t) depends explicitly on time t, and 
x(0) � 0. When the amplitude of oscillations caused by 
the periodic modulation of some parameter increases 
steadily, the phenomenon of parametric resonance takes 
place. In contrast to the forced vibrations, parametric 
resonance may occur not only at discrete frequency 
values, but also in intervals of frequencies[22]. It can be 
used to process and amplify even small periodic signals 
in a physical system or pick out specific frequencies 
from a complex vibration containing many frequencies. 

The present paper deals with this type of resonance 
phenomenon. We propose a mechanical-mathematical 
explanation of the vibrissa resonance during texture 
discrimination. Using a simplified geometry of the 
curved elastic vibrissa, a model describing in-plane, 
small vibrations of the beam under a periodic force is 
developed. Asymptotic methods of mechanics will allow 
us to draw some analytical conclusions and describe 
qualitatively the investigated process. 

Although the current paper focuses on the vi-
brissa/beam resonance, strong parallels exist between 
vibrissa tactile amplification and known mechanisms in 
auditory encoding. Several resonance properties of the 
cochlea in the auditory system have a strong frequency 
selectivity and decompose an auditory signal over 
resonance frequencies[23,24]. 

2  Mechanical model of a vibrissa describing 
parametric resonance 

2.1  An overview of the vibrissa modelling  
For engineers, the first view on the biological vi-

brissa leads to the abstraction of a slender rod in a 
visco-elastic suspension. Therefore, it is no coincidence 
that former papers on the subject of the vibrissa model-
ling considered a rigid rod in a pin connection, the 
movement of which is influenced by springs  
and dampers[12,25–27]. Behn et al.[6,28]  improved rigid  rod  

 
Fig. 3  Continuum beam models of a straight vibrissa with various 
support conditions from (a) Ref. [20] and (b) Ref. [6]. 
 
models of vibrissa by the implementation of more com-
plex boundary conditions. They introduced spring and 
damping elements considering characteristics of the skin 
and the FSC. 

Continuum models of a vibrissa as an elastic de-
formable beam following Hooke’s law are closer to the 
biological paradigm, since they are able to take the in-
herent dynamical behaviour and the bending stiffness of 
the vibrissa into account[6,20,29,30] (Fig. 3b). Analytical 
investigations[31] show that it is possible to reconstruct a 
profile contour by one single quasi-static sweep of the 
straight elastic beam along the object through calculat-
ing the clamping forces and bending moment. In  
Ref. [32], the forces and bending moment at the vibrissa 
base during whisking are quantified, paying particular 
attention to the influence of intrinsic vibrissa curvature. 

Since the nineties of the last century, the application 
of tactile sensors following the functional principles of 
vibrissae has been in the focus of roboticists[33]. In 
Refs. [34,35], authors presented ideas and prototypes for 
artificial tactile hairs or active antennae. In 2005, 
BIOTACT project team built up biological inspired ar-
tificial tactile hairs in the form of glass-fibre rods[36].  
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A whisker array, where all whiskers move synchro-
nously in one dimension, was used in Ref. [37] for the 
development of the AMouse mobile robot. 
 
2.2  Assumptions of the model describing parametric 

resonance  
Interaction of a vibrissa with a surface during tex-

ture discrimination is a non-linear process. To model it, 
we need a set of abstractions that enable us to use ana-
lytical methods and to describe qualitatively the reso-
nance behaviour of a system. 

First assumption concerns the shape of the vibrissal 
hair. Previous studies show that most of the vibrissae are 
planar[38]. Therein, vibrissae shape is approximated by a 
parabola. The results of experimental measurements of 
the vibrissa diameter at different locations indicate that 
the diameter evolves linearly along the length of the 
vibrissa[16,39]. Throughout this paper, the vibrissa is 
modelled as an Euler-Bernoulli beam whose unde-
formed neutral axis is an arc of a circle with radius R0 
and central angle �/2�� (Fig. 4). The diameter of the 
beam circular cross-section is assumed to be constant 
along the axial direction. Herewith, the initial curvature 
of the beam is constant and equals �0 = �1/R0. 

As the vibrissa sweeps across an object, frictional 
interactions between the tip and a complex roughness 
profile generate oscillations of the vibrissa. The arising 
friction force, like any other function of time, can be 
decomposed into frequency components with the Fou-
rier transform spectrum. The first several harmonic 
terms of it may sufficiently reproduce this force function. 
Thus, in the present model, it is assumed that the 
roughness profile exerts a time-varying periodic (cosi-

nusoidal) force F(t) that is applied along the beam at the 
tip (Fig. 4). Its frequency coincides with one of the 
harmonic components. Results of the behavioural ex-
periments with rats discriminating regular grooved 
plates are presented in Ref. [40]. In addition, the sig-
nificance of longitudinal forces occurring during 
whisking is shown in Refs. [41,42]. 

The support conditions of the vibrissa inside the 
FSC are simplified assuming that the beam is pinned at 
the base. This prevents the deflection of the beam, but 
allows it to rotate due to the extrinsic and intrinsic 
muscles (Fig. 2b). The end of the beam is fixed at the 
right-hand support, which allows horizontal movement 
along the surface. 

It is obvious that the presented mechanical model 
does not exactly correspond to the describing non-linear 
process. However, we would like to emphasize that by 
considering the mentioned assumptions, it is possible to 
characterize the precurved shape of the biological vi-
brissa and to derive equations describing its vibrational 
motion under a periodic force. It would also enable to 
simplify the equations using analytical methods and to 
draw some qualitative conclusions. 
 
2.3  Geometry of the model  

The right-handed Cartesian coordinate system is 
placed such that the origin is in the middle of the base’s 
cross-section, and the axial line of the beam lies in the   
x-y plane, which is the principal plane of the beam at 
each point (Fig. 4). The circular axial line of the beam 
can be represented parametrically as x = R0(1�cos(s/R0)), 
and y = R0sin(s/R0), where s2[0, L] is the natural pa-
rameter and L = R0(�/2��) is the length of the beam. 
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Fig. 4  Assumptions in modelling the process of a vibrissa sweeping past a rough surface. 
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Consider the orthogonal basis vectors ei0, i = 1, 2, 3 

attached to the axial line of the beam in the static equi-
librium configuration, and the orthogonal basis ei, i = 1, 
2, 3 to the moving curvilinear axial line of the beam  
(Fig. 5a). Cartesian basis vectors ex, ey, ez are trans-
formed to the attached basis ei0, i = 1, 2, 3 by the fol-
lowing matrix: 

� #
� # � #
� # � #

30 30
0 0

30 30

cos sin 0
sin cos 0 ,

0 0 1
ij

s s
s s

� �
� �

� �
� �� � �� �
� �� �

L l     (2)                          

where �30(s) = �/2�s/R0 is the angle between the vectors 
e10 and ex taken positive. 

The periodic force F(t) applied directly toward the 
tip of the beam s = L can be expressed as  
F(t) = �F0cos(�t)e1, where F0 is the constant amplitude 
and � is the constant angular frequency. 

We suppose throughout that the vibrations of the 
beam caused by the force F(t) about its natural con-
figuration in the x-y plane are small. That means that the 
displacement vector u(s, t) and the angle �3(s, t) between 
vectors e1 and e10 are of the first order of smallest  
(Fig. 5a). It is also assumed that � is a small angle in 
order to show analytical methods in detail for the slightly 
simpler case. 

Cartesian basis vectors ex, ey, ez can be transformed 
to the attached basis ei, i = 1, 2, 3 as follows: 

� #
� #

� #
3

0
3

1 , 0
, where , 1 0 .

0 0 1
i ij jk k ij

s t
s t

�
�

� �
� �� � � �� �
� �� �

e l l e L l                               

(3) 

Here, the summation on repeating indexes j = 1, 2, 3 and 
k = x, y, z is meant. 

In the attached coordinate system ei, i = 1, 2, 3, the 
displacement vector u of the beam axis points has two 
time-dependent components: 

� # � #1 1 2 2, , .u s t u s t� �u e e             (4) 

Small deflection theory, together with the assump-
tion of an inextensible axial line, shows that the change 
in curvature �� = ���0 and the local transverse dis-
placement u2(s, t) are related through 

2
2 2
0 2 2 ,uu

s
6 6

�
	 � �

�
                        (5) 

where �0 = �1/R0. This means that the change in curva-
ture is of first-order smallness. 
 
2.4  Equation of motion 

Differential equation that represents the in-plane 
vibrational motion of a beam is derived from the con-
sideration of the variation of forces and moments across 
an element of the beam. Consider the free-body diagram 
of an element of the beam shown in Fig. 5b, where  
N = N(s, t)e1 is the normal axial force, Q = Q(s, t)e2  is 
the transverse shear force, and M = M(s, t)e3 is the 
bending moment. 

For the circular beam with constant initial curvature, 
the in-plane vibrational motion of the beam can be de-
scribed with a single partial differential equation of sixth 
order. With regard to the rotary inertia and in the absence 
of the force of viscous damping, the equation of motion 
in terms of u2(s, t) has the following form[43]: 

� #2 0,u �L                                (6)                    

where 
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� #

� #

2 4
2 2

2 2 2 2 2
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4 22
22 2
0 22 2 4 2

0
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22 2 2
02 6 4 2

0
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0 22 2 2

0

2
22
0 22

0

1 2

1 2

1 ,

1 , .

u uAu A
t s t

u uJ u
t s s

u u uE J
s s s

uN s t u
s s

uQ s t u
s s

��
6

� 6
6

6
6

6
6

6
6

� �
� �

� � �

$ %� ��
� � �& '� � �( )

$ %� � �
� � �& '� � �( )

$ %$ %��
� �& '& '& '� �( )( )

$ %$ %��
� �& '& '& '� �( )( )

L

 

Here, � is the mass density of the beam material,  
A = �d2/4 is the cross-sectional area, d is the diameter of 
the beam, J = �d4/64 is the moment of inertia of the 
cross-section, and E is Young’s modulus, which is as-
sumed to be constant along the beam. Although it was 
shown experimentally that Young’s modulus is larger 
near the vibrissa tip than that near the base[44]. 

The components of the normal force N = N(s, t)e1 
and the shear force Q = Q(s, t)e2  for the small angle � 
are 

� # � # � # � #� #
� # � # � # � #� #

0 0

0 0

, ( ) sin 1 cos ,

, ( ) cos 1 sin .

N s t F t s s

Q s t F t s s

6 : 6

6 : 6

� � �

� � �
   (7) 
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Fig. 5  (a) Deflection of the beam with circular natural configuration under the force acting on the tip of the beam; (b) Free-body diagram of 
a beam element of infinitesimal length ds with internal actions upon it. 
 

The bending moment M = M(s, t)e3 at any 
cross-section of the beam can be expressed in terms of 
displacement component u2(s, t) as 

� #
2

2 2
0 2 2, .uM s t E J E J u

s
6 6

$ %�
� 	 � �& '�( )

     (8) 

At the pinned left end of the beam s = 0, there 
cannot be any displacements or bending moment. At the 
right end of the beam the support allows small dis-
placement only in the horizontal direction. That means 
the y-coordinate of u is zero. Using Eqs. (3) and (4) and 
retaining linear terms, we get u2 = 0 at s = L. Since no 
external bending moment is applied at the right end of 
the beam, the bending moment at that location is zero. 
Consequently, we have the following boundary condi-
tions for the function u2(s, t) itself as well as for the 
second derivative of it: 

� # � #
� #

� #

� #
� #

2 2

2 2
2 2

2 2
0, ,

0, , 0,

, ,
0 .

t L t

u t u L t

u s t u s t
s s

� �

� �
� �

� �
             (9) 

3  Behaviour of the circular beam near the 
resonance 

3.1  Approximation of the equation of motion  
To solve Eq. (6), Galerkin’s method is used, that is a 

method for finding the approximate solution of a dif-
ferential equation[45]. This powerful method allows to 
reduce a partial differential equation to an ordinary one. 
The basic idea of the method of Galerkin is the following. 
It is required to determine the solution of the equation 
� #2 0u �L  which satisfies boundary conditions. We 

shall seek an approximate solution of the equation in the 
form: 

� # � # � #2
1

, ,
n

i i i
i

u s t c s f t�
�

�3�                 (10) 

where �i(s), i = 1, ..., n, is a certain system of chosen 
basis functions satisfying the boundary conditions, and 
ci are undetermined coefficients. Consider the functions 
�i(s) to be linearly independent. In order that � #2 ,u s t�  be 
the solution of the equation � #2 0u �L , it is necessary 
that � #2u�L is identically equal to zero. This requirement 
is equivalent to the condition of the orthogonality of 
� #2u�L  to all the functions of the system �i(s), i = 1, ..., n. 

Stating these conditions, the linear system of n equations 
for the determination of the coefficients ci follows 

� # � # � #
10

d 0, 1, , .
L n

i i i i
i

c s f t s s i n� �
�

$ %
� �& '

( )
3. �L   (11) 

Thus, substituting ci in the expression for � #2 ,u s t� , 
the required approximate solution can be obtained. 
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In this paper, it is assumed a one-term approxima-
tion by Galerkin’s Method of Eq. (6) in the form 
� # � # � #2 , sinu s t s L f t� �� , which satisfies the support 

boundary conditions of the beam Eq. (9). Substituting 
this expression for � #2 ,u s t� in Eq. (6), we obtain a sec-
ond-order ordinary differential equation for the function 
f(t). It can be written in the dimensionless form as 

� # � #� # � #1 cos 0,f f� 4 1 � �� � ���          (12) 

where the dimensionless variables are introduced as 
first-order approximation with respect to the small angle 
parameter :: 

2
0 0

2 4

512 182, 1 , ,
5 45 c

c

R Ft t
t E d

� 4 : 1$ %� � � � ;& '� �( )
      (13) 

where 

� # � #
� #

2 2
02 20

0 2 2
0

2 688 27
80 9 1 .

6 3 80 9c

R dRt R d
d E R d

:� $ %�
& '� � �
& '� �( )

 

(14)   

Hereinafter, the dot notation is used to represent a time 
derivative of a function. 

The parameters � and 1, as they are defined by  
Eq. (13), depend on biomechanical characteristics of the 
vibrissa and parameters of the periodic applied force 
caused by the surface roughness of an investigated ob-
ject. Consider that the amplitude F0 of the force to be 
small in comparison with the elastic forces of the beam 
element, and the value of the angle � is taken so that � 
can be treated as a small positive parameter. 

Eq. (12) is a type of general Eq. (1), which de-
scribes the parametric resonance phenomenon. It is 
known as the Mathieu equation. Periodic solutions of Eq. 
(12) correspond to specific values of the dimensionless 
parameters � and 1. Let us further determine the condi-
tions of the parametric resonance, that is, the ranges of 
the parameters � and 1, when the beam performs oscil-
lations whose amplitude progressively increases. 
 
3.2  The procedure of averaging and analytical in-

vestigations  
For the approximate analysis of non-linear oscil-

lating process described by Eq. (12), the method of av-
eraging is used, when the exact differential equation of 

the motion is replaced by its averaged version[46]. To use 
this method, it is needed first to reduce Eq. (12) to the 
standard form by a change of variables. If we put � = 0 in 
the Eq. (12), then it describes a simple harmonic vibra-
tion with dimensionless natural frequency equal to unity. 
The general solution is f(�) = acos(�+�), where constants 
a and �, respectively, represent the amplitude and phase, 
which are determined from the initial conditions. The 
solution to the perturbed equation (when � � 0) is sought 
in the same form, but now a and � are allowed to vary 
with�: 

� # � # � #� #cos .f a� � � � �� �                 (15) 

By following Ref. [46], an additional condition on 
the functions a(�) and �(�) is imposed: 

� # � # � #� #sin .f a� � � � �� � ��                 (16) 

Then it can be shown that the differential Eq. (12) 
of second order converts to the system of two equations 
of the first order for a(�) and �(�): 

� # � # � # � #

� # � # � #2

sin 2 cos ,
2
cos cos ,

a a4� � � 1 �

� � 4 � 1 �

� �

� �

�

�
                (17) 

where � = �+�(�). 
It is shown that the most intense parametric reso-

nance and, therefore, maximal energy transfer to the 
system occur, when the value of the frequency 1 is close 
to the doubled frequency of free vibrations of the 
beam[22]. Consequently, we can set 

2 .1 4� � 	                            (18) 

The system of Eqs. (17) can be written by intro-
ducing a new, slowly varying variable 	 (�) = 1� �2� as 
follows: 

� # � # � # � #� #
� # � # � #� #2

sin 2 cos 2 ,
2

2 cos cos 2 .

a a4� � � < � �

< � 4 4 � < � �

� � �

� 	 � �

�

�
     (19)                   

Note that these equations are still exact, no aver-
aging has been made yet. Further on, the assumption for 
the value of the parameter � is used: 0 < � << 1. 

The method of averaging assumes that if a(�) and 
	(�) are smooth functions of the time such that their 
derivatives are small terms of order �, then the values of 
these functions can be naturally seen as the superposi-
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tion of slowly varying part and small rapidly oscillating 
terms. Considering these terms cause only small oscil-
lations of real function about its mean part, they can be 
neglected in zero-order approximation. Thus, the 
right-hand part of the previous system of Eqs. (19) can 
be averaged on variable � over one period: 

� # � # � # � #� #

� # � # � #� #

2

0 0 0
0

2

0 0
0

1 d sin ,
2 4

1 d cos ,
2 2

a a a4� � � � < �
�

4< � < � � 4 < �
�

�

�

� �

� � 	 �

.

.

� �

� �
   (20)              

where a0 = a and 	0 = 	 are held fixed during the inte-
gration. 

The system of differential Eqs. (20) is non-linear. 
However, it may be simplified to a linear system with 
constant coefficients by defining new variables 
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Substituting 
(�) and 	(�) into Eq. (20) gives 
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The matrix corresponding to the system of constant 
coefficient linear differential Eqs. (22) has the following 
eigenvalues 

2
2 21 .

4 4
4� $ %� � 	& '
( )

                   (23) 

According to Lyapunov stability theory[47], the so-
lution of Eq. (22) is aperiodic and unstable, if there ex-
ists an eigenvalue � with positive real part. Thus, the 
resonance takes place within the interval 

1
2

	 9                                 (24) 

around the frequency dimensionless value � = 2.  
The range of parameters 

0 1 and 2
2
44 19 � 9�                     (25) 

 is called the region of the principal parametric reso-
nance. The width of this region is proportional to the 
parameter �. 

Parametric resonance may also take place at the 
frequency ranges close to the values of the form 2/n for 
any natural number n. However, the width of these 
resonance regions gets narrow proportionally to the 
value �n as n increases. That is why, in practice, the cases 
for n = 1, 2 and 3 (rarely) are usually observed. 

4  Simulation results and their interpretation 

It is shown theoretically that the principle para-
metric resonance of the beam occurs for infinite number 
of excitation frequency values �, see Eqs. (13)  
and (25): 

2 2 .
2 2ct
4 4

� 9 ; 9 �                     (26) 

The obtained result can be interpreted qualitatively 
in the context of biological vibrissa. It is known that 
geometry and material properties of vibrissal hairs vary 
from one or the other even at the same mammal indi-
vidual[39,44]. So each vibrissa can be described by the 
specific values of the parameters � and tc according to 
Eqs. (13) and (14). In our model, the frequency � and 
the amplitude F0 of the exciting force correspond to the 
surface structure of an investigated object (Fig. 4). That 
is why it can be concluded that each vibrissa has certain 
resonance properties and thereby it could amplify a 
specific frequency range caused by the roughness profile. 
Furthermore, as vibrissae vary systematically in length 
and thickness across the snout of a mammal[48], the vi-
brissae system may provide a map of frequency sensi-
tivity, allowing to distinguish a range of different tex-
tures during whisking behaviour of an animal. These 
theoretical findings confirm that vibrissa resonance 
could be used to perform fine texture discriminations as 
hypothesized in Refs. [16,17,19]. 

In order to obtain the numerical results, we assign 
some realistic values of the biomechanical parameters of 
vibrissae[6,33]. The prototypical vibrissa is generated by 
fitting an arc of a circle with radius R0 = 72 mm and 
central angle 69�, i.e. � = 21�. So, its length is  
L = 86.7 mm. The averaged diameter is taken as  
d = 0.12 mm. The elastic modulus and density of the 
vibrissa are assumed to be in the same range as that 
reported for rat whiskers: E = 3.34 GPa,  
� = 1.4 mg·mm�3[16,19,39,44]. The value of the amplitude of 
the friction force caused by surface roughness are taken 
as F0 = 10�5 N. 
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Thus, the prototypical vibrissa has the following 
value of the dimensionless parameter � calculated ac-
cording to Eq. (13): � = 0.1255 << 1. It could amplify a 
specific resonance frequency range 

22.33 Hz 23.78 Hz,v5 5                     (27) 

where v = �/(2�). 
Consider the periodic force acts at the tip of the 

prototypical vibrissa with a frequency v = 23.08 Hz, that 
is within the range (Eq. (27)). Then the corresponding 
value of the dimensionless parameter � = 0.014 lies in 
the region of the principal parametric resonance, see  
Eq. (24). From the considerations made above, it may be 
seen that the movement of the system in this case is 
defined approximately as 

� # � # � #� #0 cos ,f a� � � � �� �                     (28) 

where a0(�) is the averaged amplitude of oscillations. 
After obtaining the unstable solution of Eq. (22), a0(�) is 
defined as: 
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                    (29) 

Here, a0(�) is the initial perturbation. This means that in 
the parametric resonance the amplitude of oscillations 
grows exponentially to infinity. 

Fig. 6 shows plots of the averaged amplitude ratio 
a0(�)/a0(0) for different values of the parameters � and �, 
which correspond to the region of the principal para-
metric resonance. Whereas, the usual resonance takes 
place only for the driving frequency in forced oscilla-
tions, and the amplitude of the solution increases  
linearly. 

The exact solution f(t) of the Mathieu Eq. (12) for  
� = 0.1255 and � = 0.014 is presented in Fig. 7 in di-
mensional form. As it is seen in the plot, the averaged 
amplitude a0(t) obtained from the analytical considera-
tions and described by the Eq. (29) coincides with the 
amplitude of the exact oscillating solution. 

Thus, the parametric resonance can be defined as 
increasing oscillations of the system near its unstable 
equilibrium that arise because of the inevitable initial 
perturbations. It should be noticed that, when the initial 
values of f and f�  are exactly zero, they remain zero, 
unlike what happens in usual resonance, in which the 

solution increases proportionally with time even from 
initial values of zero. 

If the frequency value of the force is outside of the 
range (Eq. (27)) amplified by the prototypical vibrissa, 
then the amplitude of oscillations will remain limited in 
time. For example, a frequency value v = 24.35 Hz 
corresponds to a magnitude of � = 0.8938, which lies in 
the region of stability as � > 1/2. In this case, both ei-
genvalues corresponding to the system of Eqs. (22) are 
purely complex numbers, and the solution of it is de-
scribed by real periodic functions. Therefore, the av-
eraged dimensionless amplitude a0(�) of oscillations is 
given by the following formula: 
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 (30)                   

Fig. 8 shows the exact stable solution f(t) of the 
Mathieu Eq. (12) for � = 0.1255 and � = 0.8938 in di-
mensional form. This graph resembles the diagram of 
beat frequency in acoustics. 

In the region of the principal parametric resonance 
(Eq. (25)), the eigenvalues corresponding to the linear 
system (Eq. (22)) are real and of opposite sign. That 
means the critical point of Eq. (22) is a saddle and tra-
jectories approach asymptotically the eigenvector as-
sociated with the positive eigenvalue. The phase portrait 
in the variables a(t) and 	(t), which are obtained from 
the exact and averaged systems (Eqs. (19) and (20)), is 
shown in Fig. 9a. The equidistant points with respect to 
time are marked with circles. This graph has a hori-
zontal asymptote, since the function 	(t) tends to a limit 
	inf as t approaches infinity. For � = 0.014 the value of 
	inf is 

2
inf

3 1 1 12arctan 1.5987.
2 2 4

<
$ %$ %�

� � � � 	 >& '& '& '& '	 ( )( )
 (31) 

On the other hand, for the stable case the eigenvalues 
corresponding to the system (Eqs. (22)) are imaginary 
numbers. Therefore, its critical point is a center and the 
trajectories of the solution will be ellipses centered at the 
origin with clockwise motion in the 
-	 plane. A phase 
portrait in the variables a(t) and 	(t) for  
� = 0.1255 and � = 0.8938 is presented in Fig. 9b.          
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Fig. 6  Amplitude ratio a0(�)/a0(0) as a function of the time � obtained by the method of averaging for different values of the parameters �  
and �, which correspond to the region of the principal parametric resonance: (a) � = 0.1;  (b) � = 0.25;  (c) � = 0.4. Solid line – � = 0.05, 
dashed line – � = 0.1, dotted line – � = 0.2. 
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Fig. 7  Solid line corresponds to exact dimensional solution f(t) of 
the Mathieu Eq. (12) for � = 0.1255 and � = 0.014 in the case of the 
principle parametric resonance, initial conditions f(0) = 0.0008 m,  
� # 0f t ��  m·s�1; dashed line corresponds to averaged amplitude a0(t) 

of the solution described by Eq.(29), a0(0) = 0.0008 m. 
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Fig. 8  Solid line corresponds to exact dimensional solution f(t) of 
the Mathieu Eq. (12) for � = 0.1255 and � = 0.8938, which corre-
spond to the region of stability, initial conditions f(0) = 0.0008 m,  
� # 0f t ��  m·s�1; dashed line corresponds to averaged amplitude a0(t) 

of the solution described by Eq. (30), a0(0) = 0.0008  m. 
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Fig. 9  Phase portrait in the variables a(t) and 	(t) for � = 0.1255:  (a) 
� = 0.014; (b) � = 0.8938. Black line corresponds to the solution of 
the exact system (Eq. (19)); grey line corresponds to averaged 
solution of the system (Eq. (20)); circular equidistant mark-
er-points with respect to time on intervals 0 � t � 1.4  s (a) and  
0 � t � 2 s (b); initial conditions a(0) = 0.0008 m, 	(0) = 0. 

5  Conclusion 

In this paper, a mechanical model of a cylindrical 
beam with circular natural configuration is developed to 
study the vibrational motion of mammals’ vibrissae 
during whisking behaviour. The in-plane small oscilla-
tions of the beam under a periodic force at the tip, which 
corresponds to the surface roughness of an investigated 
object, are modelled using the Euler-Bernoulli beam 
theory. The approximation of the equation of motion of 
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the beam is obtained by means of asymptotic methods of 
mechanics. It is shown theoretically that at specific 
ranges of the excitation frequency the phenomenon of 
parametric resonance takes place. It means that the am-
plitude of forced vibrations of the beam increases ex-
ponentially with time, if it is stimulated within a reso-
nance frequency range. The most intense parametric 
resonance occurs, when the excitation frequency is close 
to the doubled natural frequency of free vibrations of the 
beam. The theoretical findings are interpreted qualita-
tively in the context of biological vibrissa. Since vi-
brissal hairs are characterized by different values of the 
biomechanical parameters, each vibrissa has a certain 
range of the parametric resonance. Thereby, it could 
distinguish and amplify specific periodic components of 
a complex roughness profile. This may be particularly 
important for the detection of objects and texture dis-
crimination during natural exploratory behaviour of 
mammals. In future work, the model could be improved 
by considering the tapered shape of the beam, as well as 
its variable intrinsic curvature that would require nu-
merical methods to solve. 
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