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Abstract    
Gabor filters are generally regarded as the most bionic filters corresponding to the visual perception of human. Their fil-

tered coefficients thus are widely utilized to represent the texture information of irises. However, these wavelet-based iris 
representations are inevitably being misaligned in iris matching stage. In this paper, we try to improve the characteristics of 
bionic Gabor representations of each iris via combining the local Gabor features and the key-point descriptors of Scale Invariant 
Feature Transformation (SIFT), which respectively simulate the process of visual object class recognition in frequency and 
spatial domains. A localized approach of Gabor features is used to avoid the blocking effect in the process of image division, 
meanwhile a SIFT key point selection strategy is provided to remove the noises and probable misaligned key points. For the 
combination of these iris features, we propose a support vector regression based fusion rule, which may fuse their matching 
scores to a scalar score to make classification decision. The experiments on three public and self-developed iris datasets validate 
the discriminative ability of our multiple bionic iris features, and also demonstrate that the fusion system outperforms some 
state-of-the-art methods. 
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1  Introduction 

Iris recognition is one of the most stable and reli-
able technology among biometric technologies. The 
desirable properties of irises such as uniqueness, stability, 
and noninvasiveness make iris recognition particularly 
suitable for human identification. The first iris recogni-
tion system was proposed by Daugman in 1993 and is 
still the state of the art technique used today[1]. Subse-
quently, a large number of algorithms have been pre-
sented to develop new iris practical systems with less 
control[2–5]. However, the commercial iris recognition 
system still has several problems, such as intra-class 
variations (e.g., iris texture affected by ageing), in-
ter-class similarities (leads to false acceptance), and 
noise in data (e.g., illumination effect to iris image pix-
els)[6]. 

In our previous work[7], we tried to consolidate the 
robustness of iris Gabor features in iris matching step, 
and build a hyper sausage-like manifold for simulating 
the topological connectivity and continuity among all 
samples from a same pattern class in high dimensional 
Gabor feature space. This method requires adequate iris 
samples from a pattern class to fit an optimal fitting 
manifold, and therefore, it is much more favorable for 
video-based iris recognition. However, when the en-
rolled irises are deficient, the bionic Gabor features are 
still vulnerable and need to be improved. Therefore, 
differing from our previous works, we focus on the 
feature extraction stage in this paper rather than the iris 
matching step. This is because more distinctive charac-
teristics may help distinguish an object from others in 
our visual system, while the discriminative information 
will be introduced to iris recognition system only in the 
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feature extraction step. Feature extraction methods can 
be divided into two major categories roughly: transform 
based approaches and geometric approaches[8]. The 
transform based approaches need to project the nor-
malized iris images, where the ring-shaped (polar coor-
dinates) irises have been converted to Cartesian coor-
dinates, to a certain transform domain for observing their 
texture frequency distributions. Several representative 
works in this category include Gabor approaches[1], 
wavelet transform analysis based approaches[3] and in-
tensity variation analysis based approaches[4]. Most of 
above-mentioned methods may observe invisible char-
acteristics in transform domain, and exclude most noises 
from the assigned feature space. Among these transform 
ways, Gabor features are the most popular iris repre-
sentations in existed iris recognition system. The reason 
is that Gabor filters fit the 2D spatial response profile of 
each simple cell in the least-squared error sense and 
provide a useful and reasonably accurate description of 
most spatial aspects of visual receptive fields[9]. With 
excellent direction and scale sensitivity, they thus are 
generally regarded as the most bionic filters corre-
sponding to the visual perception of human[8]. However, 
they have two drawbacks: the iris texture informative 
loss due to the misalignment in polar transformation and 
hard to achieve true rotation invariance[10]. While an-
other form of iris features, the geometric approaches, 
may represent irises using distinctive geometric proper-
ties and address the problem of iris misalignment and 
rotation. These methods will define some geometric 
descriptors to detect meaningful geometric key points or 
structures in the iris images without normalization. 
Several representative works to this category include 
key point detection[8] and Scale Invariant Feature 
Transformation (SIFT) based description[10]. But it is not 
so reliable to directly cope with the iris images involving 
the noises and the intensity of illumination in spatial 
domain. Thereby, these geometric features in spatial 
domain require effective feature selection before iris 
matching stage. 

The foregoing introductions suggest that seldom 
iris feature extraction is flawless, and can fully address 
the existed key problems in iris recognition, such as 
illumination variations, environmental conditions, and 
device variations. A promising option is to combine 
multiple bionic features to compensate for the weakness 
of Gabor representations in particular situations. Raja 

Sekar et al. presented a fusion method of statistical and 
co-occurrence features extracted from the curvelet and 
ridgelet transformed images[11]. Manhattan distance and 
multiclass classifier with logistic function were used to 
generate their final classification results[12]. Tan et al. 
took ordinal measures, color analysis, texture represen-
tation and semantic information as iris features, and 
utilized weighted sum rule to generate the fused score 
for classification[13]. Gong et al. selected three wave-
lengths-bands to represent an iris, and then integrated 
them using the agglomerative clustering based on 
two-dimensional principal component analysis[14]. 
The fusion of multiple features is regarded as a positive 
step towards the development of extremely ambitious 
types of iris recognition[15]. However, the primary issue 
in the fusion of multiple features is to deal with the het-
erogeneous manifestations among various features. 

In this paper, four novelties are provided to handle 
the above mentioned challenges in the characteristics of 
iris bionic representations. First, we formulate two dif-
ferent types of Gabor features to simultaneously de-
scribe the iris texture information from the energy 
spectrum and frequency domain, which are also adopted 
in our previous works[7]. The Gabor response magnitude 
is the model of orientation for the selective neuron in the 
primary visual cortex[16], while the Gabor phase can 
capture the information from the zero-crossing of wave-
let[17]. An advantage of our multiple feature extraction is 
lower computational complexity because both features 
can be calculated by only one set of Gabor filters. Sec-
ond, a new localized way for extracting local Gabor 
energy and phase features is proposed. Local features 
can offer a closer analysis of the uniqueness of the iris 
texture. But they are generally included in several ir-
regular distributions in the iris image blocks such as 
crypts, freckles, coronas, stripes, furrows, etc.[18]. 
Therefore, we divided the Gabor response magnitude 
and phase to generate local feature vectors, where iris 
texture can be further preserved. Compared with the 
traditional localized mode of iris image division, our 
localized method occurs after convolution and avoids 
the blocking effect in the process of image division. 
Third, we also use SIFT key points as the geometric 
characteristics of iris images to simulate the process of 
visual object cognition in spatial domain. But we present 
a new feature selection strategy to discard the redundant 
SIFT keypoints. We evaluate the SIFT keypoint candi-
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dates by their neighborhood magnitudes, and remove the 
probable misaligned keypoints. The last originality of 
this paper is the combination of multiple Gabor features 
and SIFT keypoints for iris classification. In the fusion, 
we prefer a more flexible score level fusion as opposed 
to a feature level fusion, which can hardly address the 
heterogeneity among various features, and a decision 
level fusion, which involves less information[19]. A ro-
bust and effective score fusion method based on Support 
Vector Regression (SVR) is presented in this paper. This 
method may fuse the matching scores from multiple 
local Gabor features and SIFT keypoints alignment us-
ing a non-linear, high-dimensional regression function, 
which will better fit the non-correlations among the 
matching scores from multiple bionic features. To our 
best knowledge, this is the first paper to discuss the 
fusion of multiple bionic iris features from both fre-
quency and spatial domain. 

The architecture of the proposed iris recognition 
system is shown in Fig. 1. As the standard procedures of 
iris recognition system, our system also includes iris 
image preprocessing, feature extraction and matching 
steps. Firstly, all iris images are preprocessed into a 
Region Of Interest (ROI) image before Gabor feature 
extraction to provide more precise iris templates[20]. 
Meanwhile, unlike our previous works, the segmented 
iris images are passed to SIFT keypoint extraction with-
out normalization, according to its basic principle. 
During the feature extraction stage, as the core content 
of this paper, the local Gabor energy and phase repre-
sentations are still produced by the same Gabor filters. 
At the same time, the innovative SIFT keypoints are 

detected and selected by their neighboring magnitudes. 
Next, all matching scores from two kinds of local Gabor 
features and SIFT keypoint alignment are sent into a 
trained SVR model, and are mapped to a single scalar 
score to make the final decision. 

The remainder of this paper is organized as follows: 
Section 2 introduces the generation process of two types 
of local Gabor features and their matching scores. Sec-
tion 3 illustrates our proposed discriminative SIFT 
keypoint extraction and selection. Section 4 describes 
the SVR based fusion scheme for multiple bionic iris 
features. The experimental results are discussed in Sec-
tion 5. Section 6 summaries this paper. 

2  The iris local Gabor features 

2.1  Gabor function 
In the spatial domain, a general function of the 

two-dimensional Gabor kernel is defined as[21] 
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From Eq. (1), we can see that the Gabor function is 
a product of a Gaussian envelope and a complex plane 
wave, where 
 and v determine the objective orientation 
and scale. The center of the receptive field is z = (x, y)

),( yxz �

. 

@ denotes the norm operator. The standard derivation 

of the Gaussian envelope is �, which determines the ratio 
of the Gaussian width to the wavelength. We adopt the 
DC-free Gabor kernel here that offers an invariance 
property to the ambient illumination change in the iris 
image acquisition[22]. The wave vector is defined as:
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Fig. 1  The overview of the proposed iris recognition system. 
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where kv and (
 are the frequency and orientation of the 
targeted texture. 
 
2.2  Multi-channel Gabor filters 

A set of multi-channel Gabor filters should be used 
to provide the basis for distinguishing irises[23]. Due to 
the non-uniform frequency distribution of the iris texture 
and to obtain isotropy in the orientations, we choose 
transfer functions that have size variations and lattice 
discretization[24]. The selection of frequency kv in Eq. (3) 
can be computed as 

max / , 0,1, , 1,vk K f v M? � � ��            (4) 

where Kmax is the maximum frequency that defines the 
covered frequency band, M is the number of all extracted 
scales and f is the frequency scaling factor. An important 
wavelet property that provides the orthogonal basis to 
Gabor functions is inherited by following 
Eq. (4)[23]. The standard derivation � can be achieved by 

max 2(2 1)MK� � � . The selection of targeted orienta-

tion (
 is calculated as 

� , 1,2, , ,N N	/ 	 	� � �                  (5) 

where N is the number of targeted orientations in Gabor 
transformation. 
 
2.3  Two types of localized Gabor features and their 

matching scores 
In this paper, we extract two different types of local 

Gabor features based on the Gabor filtered responses 
and their division. Using Gabor filtered response divi-
sion for generating local Gabor features instead of image 
division can eliminate the blocking effect in the process 
of convolution. The blocking effect of image division 
will lead some staircase noises into Gabor transforma-
tion[25]. Even though several iris characteristics exist in a 
localized block, they will be degraded such that the 
block boundary looks like the edge. Further, the accu-
racy and reliability of Gabor features will be badly hurt. 
Therefore, we generate local Gabor features by dividing 
each Gabor response magnitude into r×c size blocks. 
The statistical means of all blocks constitute a local 

energy Gabor feature because the Gabor response mag-
nitude is related to the local energy spectrum. Their 
matching score may be calculated using the Euclidean 
Distance (ED). To eliminate the effects of dimension, 
the L2 norm of each iris feature may be designated in the 
ED computation. 

The second type of localized Gabor features called 
the local Gabor phase features is generated by dividing 
each Gabor response phase into r×c size blocks. Next, 
each block is encoded in accordance with signum op-
erator[1]. Hamming Distance (HD) is used to compute 
across a population of unrelated phase codes bit-by-bit.  

3  SIFT keypoint extraction 

3.1  SIFT keypoint descriptor 
SIFT method is capable of extracting and matching 

points which are stable and characteristic between two 
irises. It uses both image intensity and gradient infor-
mation to characterize the neighborhood property of a 
given landmark. The first step is to construct a Gaussian 
scale space L(x, y, �). Thus the input image I(x, y) is 
successively smoothed with a Gaussian function  
G(x, y, �) via Eq. (6). 

( , , ) ( , , ) ( , ),L x y G x y I x y� �� :            (6) 
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and * is the convolution operation. 
Next the Difference-of-Gaussian (DOG) images 

D(x, y, �) can be computed from the two nearby scales 
by a constant multiplicative factor k via Eq. (7). 

( , , ) ( , , ) ( , , ).D x y L x y k L x y� � �� �             (7) 

In order to detect the local minima and maxima of 
DOG images D(x, y, �), each pixel is compared to its 
eight neighbors in the current image and nine neighbors 
in the scale above and below, only the point which has 
the largest or smallest value among all of these 
neighbors will be selected[26] as keypoints. After deter-
mined the keypoints candidates, a main orientation is 
assigned to each keypoint based on local image gradi-
ents. For each image sample L(x, y), the gradient mag-
nitude m (x, y) and orientation � (x, y) are computed by 
Eq. (8) and Eq. (9), respectively. 
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Therefore, the keypoint descriptor can be charac-
terized by the gradient magnitude and orientation around 
the keypoint location. Fig. 2 shows the process of key-
point descriptor formed. 

As shown in Fig. 2a, the corresponding gradient 
magnitude and orientation of the pixels around 
Key-points are computed firstly. Then these pixels are 
accumulated into the orientation histograms summariz-
ing the contents over 4�4 sub-regions. Each of them is 
represented by the length of each arrow corresponding to 
the sum of the gradient magnitudes, as shown in Fig. 2b. 

Lowe pointed out the 4�4 array of histograms with 
8 orientation bins for each keypoint may achieve the best 
results[26]. Hence, in our work we adopt 4×4×8=128 
element feature vectors to represent a keypoint. 
 
3.2  Discriminative feature selection and matching 

From the above discussions, the SIFT key-points 
may contain redundant features. We present the way of 
Neighborhood Element Probability Distribution Func-
tion (NEPDF) to actualize the selection of keypoints. 

Considering M SIFT key-points in an iris image, a 
matrix S with M rows and 128 columns can be formed 
for representing this iris. Let S�,� denote the element in 
the �th row and the �th in the matrix S. A vector 
� can 
be obtained from the �th of S as Eq. (10). 
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Further the sum of neighborhood sub-region vj can 
be computed via Eq. (11) 

,
1
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M
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i
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Therefore, the NEPDF P(vj) can be calculated 
through Eq. (12). 

8

,,
1 8 ( 1)1

16 128

, ,
1 1 1 1

( ) , 1, ,16.

jMM

i mi j
i m ji

j M M

i j i k
i j i k

S
P v j

S

A

A

�

� � � ��

� � � �

� � �
$ $$

$$ $$
�    (12) 

The NEPDF P(vj) is denoted as a vector V, and 
V=[v1, v2, …, v16]. The elements Vs with minor value 
will be finitely deleted in our system.  

Two images I1 and I2 are aligned by comparing 
each keypoint based on their associated descriptors[27]. 
For any point p11 from image I1, let its two closest 
neighbor key-points in image I2 denote p21 and p22. We 
calculate the Euclidean distances d1 and d2, which re-
spectively measure between p11 and p21 and between p11 
and p22, to determine the key-points p11 and p21 as 
matching pairs by the ratio d1/d2. If it is smaller than a 
predefined threshold value 0.85, the two points p11 and 
 

 

 
(a) Image gradients                                                                               (b) Keypoint descriptor 

Fig. 2  The process of keypoint detection. 
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p21 is be considered as a matching pair. The matching 
score between two images based on the proportion of the 
matched keypoints. 

4  The fusion scheme based on SVR 

In our system, after two types of local Gabor fea-
tures and SIFT keypoints extraction, the combination of 
their discriminative ability should be considered. The 
matching score is a real value measuring the similarity 
between the input and template biometric feature vectors. 
In score level fusion, all real value scores from multiple 
bionic features will be combined into a real value to 
arrive at a final recognition decision. In its implementa-
tion, the linear weighted strategy was frequently used in 
some literatures[28]. However, in our work, due to the 
uncorrelated matching scores among Gabor and SIFT 
features, a non-linear fusion rule based on Support 
Vector Regression (SVR) is adopted. The idea of SVR is 
based on the computation of a regression function in a 
high-dimensional feature space where the input data are 
mapped via a nonlinear function[29]. The regression 
function f(x) in SVR can be denoted as 

1
( ) ( ) ( , ) , 1,2, , ,

k

i i i
i

f x K x x b i k) ):

�

� � � �$ �      (13) 

where k is the number of training data. The Lagrangian 

multipliers i): , �i are found by solving a quadratic 
programming problem[30], and b is the bias. A kernel 
function K(u, v) performs the non-linear mapping. Any 
symmetric function that satisfies Mercer’s condition can 
be chosen as K(u, v). The usual kernels include dot, 
polynomial, Radial Basis Function (RBF) and neuron 
kernels[31]. 

We take advantage of the SVR to fit a function f(x), 
which may map multiple matching scores to a fused 
score to make the final decision of arbitrary one-to-one 
identity. The ED and HD of the local Gabor energy and 
phase features, together with the matching score of se-
lected SIFT keypoints in a comparison are formed as an 
input vector. Because the matching scores have been 
normalized to [0, 1] real-value range, and this intrinsic 
characteristic just might naturally avoid the question of 
heterogeneous input of fusion. All input data with labels 
from arbitrary one-to-one comparisons of enrolled irises 
are used to train a SVR model. The authentic compari-
sons is labeled 0 as the observed value, while the im-

poster comparisons is labeled 1. In the forecast mode of 
trained SVR, an input score vector may be mapped to a 
real value as its fused score. This value can be consid-
ered to integrate Gabor and SIFT features to measure the 
similarity between two irises. A lower value (close to the 
authentic label) obtained by the output of SVR demon-
strates that the test iris and the involved enrolled iris are 
in the same pattern class. In light of this principle, only a 
reasonable threshold should be chosen to complete the 
classification decision. 

5  Experimental results 

5.1  Datasets 
For the purpose of sufficiently investigating iris 

recognition performance under changing illuminations, 
acquisition deflection, ageing and other circumstances, 
we established a large-scale JLUBR-IRIS dataset using 
our self-developed online iris image capture system[32]. 
The images in the JLUBR-IRIS dataset were gathered 
under various illumination levels from indoors. A class 
of samples from different acquisition times and different 
illumination levels is shown in Fig. 3. 

In this paper, three datasets, including the 
JLUBR-IRIS, CASIA-I and CASIA-V4-Interval data-
sets, are used to examine the effectiveness of the pro-
posed algorithm. Due to the weaker contrast of texture in 
the Asian iris as opposed to the European iris, all ex-
perimental subjects from the three chosen datasets are 
Chinese people to control comparability[33,34]. Table 1 
shows the experimental settings for the three datasets. 

Every iris image in Table 2 is manually selected 
from accurate iris region segmentation by the Canny 
operator and the Hough transformation to prevent in-
terference caused by iris misalignment[35]. To evaluate 
the performance of our proposed local Gabor features  
 

 

Fig. 3  Several iris images from a class in the JLUBR-IRIS data-
set. 
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Table 1  The employed dataset descriptions 

No Dataset Device Resolution (pixels × pixels) Attributions User Images Gallery Probe

1 CASIA-I close-up camera 320 × 280 Graduate students 108 7 4 3 

2 CASIA-V4-Interval OKI IRISPASS-h 640 × 480 Graduate students 249 7–10 5 2–5 

3 JLUBR-IRIS OV7620 640 × 320 Graduate students and staffs 273 15 10 5 

 
Table 2  The performance of proposed single bionic iris features and their fusion on three datasets 

Gabor energy features Gabor phase features Selected SIFT keypoints Fusion 
Dataset 

DI CRR/% EER/% DI CRR/% EER/% DI CRR/% EER/% DI CRR/% EER/%

CASIA-I 3.59 97.83 2.85 3.82 98.98 1.87 3.63 98.10 3.01 4.54 99.98 0.19 

CASIA-V4-Interval 3.37 95.16 3.93 3.86 98.78 1.04 3.50 96.62 3.61 4.38 99.51 0.54 

JLUBR-IRIS 3.15 93.01 4.67 3.34 97.03 3.16 3.25 95.88 4.59 4.06 98.30 1.65 

 
and fusion scheme, indicators Discriminative Index (DI), 
False Accept Rate (FAR), False Reject Rate (FRR) and 
Equal Error Rate (EER) are used. They can observe in 
graphing by DDH and Receiver Operating Characteristic 
(ROC) curves, which are plotting the FAR versus FRR 
with different values of matching threshold. These 
comparative indicators as the academic stan-
dard benchmark for iris recognition are applied to con-
trol the comparability of the experimental results. 
 
5.2  Experimental results 

In this section, we report the comparison between 
the different localized feature extraction methods for the 
three adopted iris datasets first. We use the empirical 
Gabor filters (Kmax = 64, f = 2, M = 6, N = 4) introduced 
in Ref. [36] to extract the Gabor features. In this test, we 
divided ROI images to generate features that represent 
the existing localized method[37]. Various grid 
search-based block sizes are used to analyze two local-
ized ways. Fig. 4 to Fig. 9 shows the relationships be-
tween DIs and block sizes in two localized means. 

It can be concluded from Fig. 4 to Fig. 9 that the 
smallest block size is not the most suitable one for lo-
calized features. If the block size is focused excessively 
on the minute texture, the local features can not enhance 
the iris texture information but include redundant noises. 
Therefore, the block size of localization has to be ad-
justed for different batch samples. Furthermore, for the 
Gabor energy and phase features, our proposed localized 
way can obtain more powerful local features and con-
serve more texture in the process of image division and 
convolution. In all of the following experiments, the 
localized block size that obtains the best discriminative 

ability is adopted. 
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Fig. 4  The relationship between the DIs of the Gabor energy 
features and the block sizes in different localized ways on the 
CASIA-I dataset. 
 

 
Fig. 5  The relationship between the DIs of the Gabor phase 
features and the block sizes in different localized ways on the 
CASIA-I dataset. 
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Fig. 6  The relationship between the DIs of the Gabor energy 
features and the block sizes in different localized ways on the 
CASIA-V4-Interval dataset. 
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Fig. 7  The relationship between the DIs of the Gabor phase 
features and the block sizes in different localized ways on the 
CASIA-V4-Interval dataset. 
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Fig. 8  The relationship between the DIs of the Gabor energy 
features and the block sizes in different localized ways on the 
JLUBR-IRIS dataset. 
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Fig. 9  The relationship between the DIs of the Gabor phase 
features and the block sizes in different localized ways on the 
JLUBR-IRIS dataset. 
 

The second set of experiments is to select the opti-
mal SIFT keypoints based on magnitude. We conduct the 
SIFT keypoint selection on three datasets, and count up 
the deleted candidate keypoints. The diagrams of per-
centage of deleted keypoints are shown in Fig. 10. As this 
figure shown, the average percentages of deleted key-
points are 2.43%, 2.89%, and 5.68% on the CASIA-I, 
CASIA-V4-Interval and JLUBR-IRIS datasets, respec-
tively. They demonstrate that more noises and redundant 
interference exist in the JLUBR-IRIS dataset than the 
CASIA-I and CASIA-V4-Interval datasets. 

In order to validate the selected SIFT keypoints, we 
implement the iris recognition using the gallery and 
probe sets on three datasets. The comparative ROC 
curves of SIFT keypoints and selected SIFT keypoints 
are shown in Fig. 11. From the ROC curves, the dis-
criminative ability of the selected SIFT keypoints shows 
greater performance than traditional SIFT keypoints. 
This explains the fact that our SIFT keypoints selection 
may remove the meaningless and ambiguous keypoints 
from traditional SIFT, and consolidate the extracted 
geometric features. Put the ROC curves all together and 
the greatest improvement of performance among three 
datasets can be found on the JLUBR-IRIS dataset. That 
is because of more conditions and noises involved in its 
acquisition, which leads to embed unuseful but sensitive 
geometric properties in traditional SIFT keypoint detec-
tion. It is also the reason why the highest average per-
centage of deleted keypoints in our keypoint selection 
emerged in the JLUBR-IRIS dataset. 

Subsequently, we try to combine the multiple local  
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Fig. 10  The percentage of deleted keypoints on the (a) CASIA-I 
(b) CASIA-V4-Interval, and (c) JLUBR-IRIS datasets. 

 
Gabor features and optimal SIFT keypoints for further 
improvement. The two local Gabor features and the 
SIFT keypoints after magnitude selection strategy are 
extracted to represent arbitrary iris sample for simulating 
the process of visual object class recognition in both 
frequency and spatial domains. Then our fusion scheme 
is launched to activate the integrated discriminative 
ability of multiple bionic iris features. Due to our fusion 
strategy, the matching scores of multiple bionic iris 
features from arbitrary one-to-one identity on the gallery 
set are combined for SVR modeling. These matching 
scores with their corresponding authentic or imposter 
labels are also sent to train the SVR model. In our fusion 

experiments, the commonly used RBF kernels are tried 
to train the best performed SVR model. After the SVR 
modeling, the probe sets of all users are provided to 
validate our proposed fusion scheme. In our experiments, 
the regression mode of LibSVM[38] is applied, where we 
can establish the four common kernels and check a grid 
of *

i) , �i parameters by the simple tool LibSVM pro-
vided. The RBF kernel reflected the non-linear correla-
tion among multiple bionic iris features is employed 
here. The DDHs of fused scores based on the corre-
sponding trained SVR model on three datasets are 
shown in Fig. 12. From the figures, the fused values 
from the authentic/imposter comparisons are much 
closer to the authentic label (0)/imposter label (1). 
Therefore, we can select a reasonable threshold to make 
the final decision. 

We list the performance of above described each 
modal iris features and their fusion for comparisons in 
Table 2. We can read that the best performance is 
achieved by the fused scores. The predominant iris 
recognition performance, in terms of DI, CRR and EER, 
come from the fusion experiments on three datasets, 
which exhibits that our proposed SVR fusion strategy 
may bring the distinctive ability of all the bionic iris 
features into full play. In addition, the greatest im-
provement our fusion algorithm made among three 
datasets is generated on the JLUBR-IRIS dataset. This is 
due to its larger scale samples in gallery set and more 
training data involving in SVR modeling stage, which 
may achieve better distinctive regression function. 

We also draw the comparative ROC curves of our 
proposed Gabor and SIFT bionic features and their fu-
sion on three datasets as Fig. 13. In there, our fusion 
approaches obtain the lowest ROC curves and are supe-
rior to those of any Gabor and SIFT iris feature on three 
datasets. From above experiments, besides achieving 
improved local Gabor features and selected SIFT key-
point descriptors, our proposed system may combine 
their distinctive ability for performing more robust and 
reliable iris recognition. 

In order to further exhibit the efficiency of our 
proposed approaches, we carry out the comparisons of 
our proposed method with some state-of-the-art methods 
in terms of CRR and EER on the CASIA-V4-Interval 
dataset. The comparative CRR and EER are listed in 
Table 3, which further demonstrate encouraging  
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Fig. 11  The comparative ROC curves of SIFT keypoints and selected keypoints on the (a) CASIA-I, (b) CASIA-V4-Interval and (c) 
JLUBR-IRIS datasets. 
 

Table 2  The performance of proposed single bionic iris features and their fusion on three datasets 

Gabor energy features Gabor phase features Selected SIFT keypoints Fusion 
Dataset 

DI CRR/% EER/% DI CRR/% EER/% DI CRR/% EER/% DI CRR/% EER/%

CASIA-I 3.59 97.83 2.85 3.82 98.98 1.87 3.63 98.10 3.01 4.54 99.98 0.19 

CASIA-V4-Interval 3.37 95.16 3.93 3.86 98.78 1.04 3.50 96.62 3.61 4.38 99.51 0.54 

JLUBR-IRIS 3.15 93.01 4.67 3.34 97.03 3.16 3.25 95.88 4.59 4.06 98.30 1.65 
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Fig. 12  The DDH of the fused scores on (a) CASIA-I, (b) CASIA-V4-Interval and (c) JLUBR-IRIS. 
 
performance of our proposed methods. In order to 
achieve unbiased comparative results, the results directly 
come from several published works. From this table, it is 
observed that CCR 99.51% with EER 0.54% of our sys-
tem reveals a top-class performance with respect to the 
CASIA-V4-interval dataset. It demonstrates that our 
system obtain higher discriminative ability than other 
approaches reported in Table 3. Daugman’s system[1] and 

Ma’s system[4] only employed one certain form of Gabor 
features to represent iris texture, while Ma’s system[39] 
and Roy’s system[40] just utilized the geometric detector 
to search iris geometric properties as iris features. 
However, they cannot yet compare with our combined 
bionic Gabor representations. We also list the CCR and 
EER from our published literature[7] achieved by the 
same CASIA-V4-Interval dataset and the same 
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Fig. 13  The comparative ROC curves of fused scores and our proposed single bionic iris features on the (a) CASIA-I, (b) 
CASIA-V4-Interval and (c) JLUBR-IRIS datasets. 
 
experimental protocols. Because of the limitation to the 
available training samples on the CASIA-V4-Interval 
dataset, the outperformance of our previous works is yet 
to come under the circumstances. Our proposed im-

proved bionic representations, however, may still show 
their superiority, which benefits from the descriptions of 
iris texture corresponding to multiple views and their 
combination strategy. 
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Table 3  The comparative CRRs and EERs of our system and 
some state-of-the-art on the CASIA-V4-interval dataset 

Method CCR (%) EER (%) 

Daugman[1] 95.19* 1.80* 

Ma et al.[4] 94.90* 2.62* 

Ma et al.[39] 95.54* 2.07* 

Roy et al.[40] 97.21* 0.71* 

Liu et al.[7] 97.11^ 1.03^ 

Proposed 99.51 0.54 

 

6  Conclusion 

In this paper, we improve the characteristics of 
bionic Gabor representations by combining with SIFT 
keypoints for iris recognition. Firstly, we select local 
Gabor energy and phase features, where we investigate a 
grid searching to find the suitable local block size for the 
corresponding Gabor responses magnitude and phase, to 
adequately represent iris texture information. Then we 
describe the process of SIFT keypoint descriptors and 
their feature selection strategies. Finally, a SVR-based 
fusion scheme is designed to project the matching scores 
of these multiple bionic iris features to a single scalar 
score for final decision. Three public and self-developed 
accessible datasets including the CASIA-I, CASIA-V4- 
Interval and JLUBBR-IRIS datasets are used in a serial 
of experiments. From the experiments, it can be ob-
served that our improved localized block way may 
conserve more texture in the process of image division 
and convolution. Furthermore, our proposed discrimi-
native keypoint selection strategies are able to discard 
the redundant keypoints and reduce the dimension of 
corresponding keypoints descriptor representation. The 
discriminative ability of the two local Gabor features 
and optimal SIFT keypoints exhibit great improvement, 
moreover, the multiple bionic feature fusion based on a 
trained SVR model is able to further achieve encourag-
ing performance compared with the systems using single 
modal iris features. 
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