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Abstract    
Previous studies on chordwise flexibility of flexible wings generally relied on simplified two-dimensional (2D) models. In 

the present study, we constructed a simplified three-dimensional (3D) model and identified the role of the chordwise flexibility 
in full flapping motion. This paper includes two parts, the first part discusses the aerodynamic effects of the chordwise flexibility 
in a typical hovering-flight case; the second part introduces a parametric study of four key parameters. The primary findings are 
as follows. Flexibility generally degrades the lift performance of the flexible wings. However, in two special cases, i.e. when 
stroke amplitude is low or pitch rotation is delayed, the flexible wings outperform their rigid counterparts in lift generation. 
Moreover, flexibility reduces the power consumption of the flexible wings. A wing with small flexibility generally achieves a 
marginally higher flapping efficiency than its rigid counterpart. Furthermore, reducing stroke amplitude can effectively improve 
the lift performance of the very flexible wings. Aerodynamic performances of the flexible wings are not as sensitive as the rigid 
wing to phase difference and mid-stroke angle of attack. The effects of Re are the same for the flexible and rigid wings. 

Keywords: flapping wing, chordwise flexibility, aerodynamic performances, parametric study 
Copyright © 2015, Jilin University. Published by Elsevier Limited and Science Press. All rights reserved. 
doi: 10.1016/S1672-6529(14)60134-7 

 

1  Introduction 

The flapping flight of insects provides natural 
candidates for the development of biomimetic Micro Air 
Vehicles (MAVs). In recent years, many experimental 
and computational works have been done on flapping 
insect wings, and a sound understanding of the unsteady 
flight mechanisms has been achieved[1–7]. Previous 
studies generally rely on idealized rigid wing models, 
however, insect wings are intricate flexible structures 
that experience observational passive deformations 
during flight[8,9], which are more obvious around the 
stroke reversal[10]. The structural deformation during 
flapping may significantly change the flow behavior 
around the wing surface and consequently have an im-
portant effect on the aerodynamic performance of wings. 
What remains unknown is whether such structural de-
formation provides aerodynamic advantage or not, 
which should be specified to improve the design of 
MAVs. 

Despite the diversity of species, insect wings are 
highly complex structures, consisting of venations sup-

porting thin membranes without internal muscles that 
can actively change wing shape[11,12]. Therefore, the 
deformation during wing flapping mainly depends on 
the inertial, elastic and aerodynamic forces. The 3D 
Fluid-Structure Interaction (FSI) of flexible wing flight 
poses difficulty for numerical study, accurate and valid 
numerical computation methods for modeling such 
system are still scarce[13,14]. Combes and Daniel[15] re-
ported that the inertial force due to acceleration of flap-
ping wings and elastic force generated in wing deform-
ing are obviously larger than the estimated aerodynamic 
forces, which suggests the possibility of decoupling the 
FSI problem and conducting numerical study with ex-
isting quantitative data on time-varying chordwise and 
spanwise twist of the realistic insect wings. Using the 
realistic deformation data measured by Walker et al.[10], 
Du and Sun[16] conducted a numerical study on the ef-
fects of wing deformation on aerodynamic forces of 
hoverflies. They found that, owing to the very high angle 
of attack (about 50�), the effects of wing deformation on 
aerodynamic forces were marginal. Zhao et al.[17] ex-
perimentally studied the effects of wing deformation, 
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employing a mechanical wing model consisting of rigid 
leading edge and a flexibility-alterable plastic plate. 
They proposed that flexible wings could generate forces 
slightly higher than the rigid model wing. Tanaka et al.[18] 
created an at-scale flexible polymer wing with tubular 
veins and corrugation profiles to mimick a hoverfly 
wing. Their results showed that, for the same flapping 
motions, a rigid wing can generate larger lift. However, 
the effects of wing flexibility on drag and efficiency 
were not investigated in their report. 

Considering the structural complexity of insect 
wings, many numerical studies constructed simplified 
wing models for the coupled fluid-structure simulation. 
A simplified model is very meaningful for circumvent-
ing the difficulty of full elasticity aerodynamics, at the 
same time preserving the essential characteristics of the 
practical structure. The wing flexibility mainly consists 
of the spanwise twist and the chordwise chamber de-
formation[8–10]. Combes and Daniel[15] pointed out that 
the spanwise flexural stiffness of most insects was 1–2 
orders of magnitude larger than chordwise flexible 
stiffness. Therefore, many investigations have been 
focused on studying the chordwise flexibility. Through a 
2D two-component wing structure connected by a tor-
sion spring modeling chordwise bending stiffness, El-
dredge et al.[19] investigated the effect of chordwise wing 
flexibility for a wide variety of spring stiffnesses and 
kinematic parameters. They suggested that rigid wings 
consistently required more power consumption and a 
mildly flexible wing had consistently good performance 
over a wide range of phase differences between rotation 
and translation. Using a similar two-link model as de-
scribed above (though covered by a set of aerodynamic 
surfaces for smoothness), Vanilla et al.[20] performed a 
2D numerical simulation which focused on identifying 
the effects of torsion stiffness and Reynolds number. 
They characterized the wing flexibility by the ratio of 
stroke frequency to natural structural frequency and 
indicated that there existed a best performance which 
was achieved at a driven frequency 1/3 of the natural 
frequency. Yin and Luo[21] utilized a 2D elastic plate to 
model a chordwise flexible wing and studied the aero-
dynamic effect of wing inertia. They observed that the 
fluid force had aerodynamic advantages over the inertia 
force in dominating wing flexibility. Notice that the 
above studies[19–21] were all about 2D problems which 
lack some key features of a real 3D flapping wing, such 

as tip effects, strong vortex dissipation and span-
wise-flow enhancement to the stability of Leading-Edge 
Vortex (LEV). 

In this paper, we extended the 2D problem to a 3D 
case by utilizing a 3D two-component model to repre-
sent a chordwise flexible wing section. The leading 
portion of the wing is driven with prescribed flapping 
kinematics, whilst the aft portion responds passively to 
aerodynamic, elastic and inertial forces. Thus, the com-
plex structural problem is simplified to a rigid-body 
dynamic problem with only one unknown parameter, i.e., 
the deflection angle (�) defined in section 2.2. We de-
rived the 3D structural dynamic equations and solved 
them together with the Navier-Stokes (N-S) equations by 
using a weakly coupled FSI scheme. The aim of this 
research is to investigate how the chordwise flexibility 
affects the aerodynamic performance of a flapping wing 
in 3D cases. Firstly, a typical case was considered in 
which typical values of wing kinematic parameters were 
used, and the effects the chordwise flexibility on lift and 
power consumption of flexible wings were analyzed in 
detail. Secondly, a parametric study was conducted to 
investigate the influences of three key kinematic pa-
rameters and Reynolds number (Re) on aerodynamic 
performances, which helped answer the question about 
whether or not the previous results of parametric study 
for rigid wings still apply to flexible wings. It should be 
kept in mind that the two-component model in present 
study is just a kind of simple and feasible configuration 
for the insect-sized MAVs, which may have some dif-
ferences from the deformations of true insect wings in 
nature. 

2  Materials and methods 

2.1  Stroke kinematics  
For simplicity, the wing used in present study is a 

rectangular flat plate of 3% thickness of the chord length 
of the wing (c) with round leading and trailing edges. 
The aspect ratio, i.e. the ratio of the wing length (R) to 
the chord length of the wing, is 3. The radius of the 
second moment of wing area, r2, is 0.56R; the mean 
flapping velocity at span location r2 is used as reference 
velocity U, see below for the definition of U. The stroke 
kinematics are the same as those used previously in Sun 
and Tang[22] that originated from the experiments of 
Dickinson et al.[2]. The flapping motion of the wing 
consists of two parts: the translation or azimuthal rota-
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tion around Z-axis, and the flip rotation or rotation 
around y<-axis (see Fig. 1a). Let ( denote the azimuthal 
angle and (�  the rotational velocity, which takes a con-
stant value ( 0(� ) except at the start or near the end of a 
stroke. The time variation of (�  (see Fig. 1b) during a 
stroke reversal is given by 

0 cos[�( ) / ],t t t( ( � � � �� �� � � 1 1� �  ,t t t� � � �6 6 � 1      
                  (1) 

where the non-dimensional form / ,c U( (� �� �  
0 0 / ,c U( (� �� � /tU c� � . The non-dimensional time du-

ration of deceleration and acceleration around Z-axis is 
��t and the non-dimensional time when deceleration 
starts is �t. The reference velocity is U, defined as U = 
2�nr2, where � and n are the stroke amplitude and 
frequency of the wing, respectively. Thus, the period of 
wingbeat cycle, �c (=U/cn), is related to � by � = 
2�r2/c. In this time interval of ��t , (�  changes from 0(� �  
to 0(� �  (around the next stroke reversal, (�  should 
change from 0(� �  to 0(� � , so the sign of the right-hand 
side of Eq. (1) should be reversed). 

The angle of attack of the wing (,) is also assumed 
constant (,m, the mid-stroke angle of attack) except at 
the start or near the end of a stroke. During stroke re-
versal, , changes with time and the angular velocity ,�  
(see Fig. 1b) is given by 

00.5 {1 cos[2�( ) / ]},r r, , � � �� �� � � 1� �   
,r r r� � � �6 6 � 1                                       (2) 

where the non-dimensional form / ,c U, ,� �� � 0, ��  is a 
constant. The time duration of wing rotation around 
y<-axis is r�1  and the time when flip rotation starts is r� . 
In the time interval of ��r, the wing rotates from m, ,�  
to , = 180��,m (around the next stroke reversal, the 
wing should rotate from , = 180��,m  to m, ,� , and 
the sign of the right-hand side of Eq. (2) should be re-
versed). When r�  is chosen such that the wing already 
flips over the vertical position by the end of a stroke, it is 
called advanced rotation mode; when r� is chosen such 
that the wing flips just in vertical position by the end of a 
stroke, it is called symmetrical rotation mode; when r�  
is chosen such that the wing has not reach the vertical 
position by the end of a stroke, it is called delayed rota-
tion mode. For better understanding, phase difference (�) 
is introduced, which indicates the phase lead of rotation 
relative to  translation at the  instant of  stroke  reversal. 

� > 0�, � = 0� and � < 0� respectively correspond to the 
advanced, symmetrical and delayed rotation modes. 

In the flapping motion described above, �, � and 
�m are the three key kinematic parameters that need to be 
specified. The Reynolds number (Re), which appears in 
the non-dimensional N-S equations, is defined as Re = 
cU/� (where � is the kinematic viscosity of the air). 

 
2.2  Wing dynamic equations and numerical algo-

rithms  
The 3D model used in this study is depicted in Fig. 

2. The leading and aft portions of the wing are connected 
by a hinge with linear torsion spring. The kinematics of 
the leading (driven) portion is prescribed and the aft 
(passive) portion responds passively. The hinge is lo-
cated at a distance 0.5c from the leading edge of the 
wing and the chordwise flexibility is modeled by the 
spring stiffness K of the hinge (no damping coefficient is 
considered in this study). The angular deflection of the 
aft portion is measured by � (Fig. 2), which together with 
azimuthal angle ( and attack angle �, is used to  
determine the position of the two-component wing. The 

 

· �·

 
Fig. 1 (a) Sketches of the reference frames and wing motion. 
OXYZ is an inertial frame, the wing rotates about Z-axis and the 
azimuthal angle is denoted by (, the XY plane is the stroke plane. 
o<x<y<z< is a frame fixed on the wing, with the x<-axis along the 
wing chord line and the y<-axis located at one quarter of chord 
from leading edge along the wing span, acting like pitching axis in 
propeller, that is, the wing also rotates about y<-axis and geomet-
rical angle of attack of the wing is denoted by �, i.e. the angle 
between the chord line and stroke plane; R, wing length. (b) 
Non-dimensional angular velocity of pitching rotation , �� and 
azimuthal rotation (��  in a typical case. 
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Fig. 2  Model system consisting of two rigid plate sections con-
nected by a hinge with torsion spring. 
 
corresponding angular velocity vectors are �� , �(  and 
�,  (Fig. 2). The total mass of the leading portion is de-

noted by m1 and the corresponding mass element is de-
fined as �m1. The vector from medial axis of the leading 
portion to the hinge axis is L1, and the vector from point 
O, origin of the inertial frame OXYZ, to the element mass 
�m1 includes two components: l1 and s1 (Fig. 2). The 
total mass m2, mass element �m2 and distance vectors L2, 
l2 and s2 of the aft portion are defined in a similar way as 
described above. 

The dynamic equation for the deflection angle � of 
the aft portion can be derived with Lagrange’s equation 

                         d ( ) ,
d

L L Q
t �� �

% %
� �

% %
                      (3) 

where L=T�V (kinetic energy � potential energy) is the 
Lagrange function and Q� is the generalized force. 

Firstly, we give the kinetic energy of the system                                              

1 2 1 2

1 2

2 2
1 2

2 2

1 1( ) ( ) ,
2 2m m m m

L R L R

T T T m m� �� �� � � �++ ++v v      (4) 
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d d ,
2
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L R
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2

2

d d ,
2

m l sm
L R

� �
1m�v and 

2m�v  

are the corresponding velocity vectors and have the form 

1m�v 1 1 1( ) ,� � � � �s l l� �( ,                         (5) 

        
2 2 1 2 1 2 2( ) ( ) .m� � � � � � � � � �v s l l l l l� ��( , �        (6) 

The potential energy of the system is given by 

21 ,
2

V K��                                 (7) 

The generalized force is given by 

          fluid, fluid,[ ] / / ,Q W T T� �� � �� �� �� ��� � �         (8) 

where W stands for the virtual work and Tfluid,� denotes 

the moment about the hinge axis exerted by the fluid on 
the aft portion of the wing, which is obtained from nu-
merical calculation. 

Substituting Eqs. (4) – (8) into Eq. (3), we obtain 

2 2
2 2 2 2 2 1 2

2
2 1 2 2 2

2 2
2 2

2
2 1 2 fluid,

4 4( cos )
3 3

1sin sin( )
2

2 sin(2 2 )
3

cos sin( ) .

m L K m L m L L

m L L m L R

m L

m L L T �

� � � ,

�, , � (

, � (

, , � (

� � � �

� � �

� �
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�� ��

���

�

�

      (9) 

Taking the chord length c, density of fluid 4f and 
wingbeat frequency n as the reference length, mass and 
time, respectively, we nondimensionalize Eq. (9) and 
have 

* *2 * * *2 * * *
2 2 2 2 2 1 2

* * * 2 * * *
2 1 2 2 2

* *2 2
2 2

* * * 2 *
2 1 2 fluid,

4 4( cos )
3 3

1sin sin( )
2

2 sin(2 2 )
3

cos sin( ) ,

m L K m L m L L

m L L m L R

m L

m L L T �

� � � ,

�, , � (

, � (

, , � (

� � � �

� � �

� �

� � �

�� ��

���

�

�

  (10) 

where (�)* indicates the non-dimensional variables. In 
this paper, *

2 0.96,m �  * *
1 2 0.25L L� � and * 3R �  are 

held constant. The non-dimensional spring stiffness, 
K*=K/(4fn2c5), is varied between the values 5, 25 and 
100, corresponding to flexible wings with large, medium 
and small flexibilities, respectively. An equivalent rigid 
wing is also considered for comparison. Eq. (10) is then 
integrated in time using a second-order predic-
tor-corrector algorithm. 

 
2.3 Flow equations and evaluation of the aerody-

namic forces and mechanical power 
The flow equations, numerical method and bound-

ary conditions used in this paper were the same as those 
used by Sun et al. in previous studies[6,22,23]. The com-
putational grid had dimensions 66×73×70 in the normal 
direction, around the wing section and in the spanwise 
direction, respectively. The normal grid spacing at the 
wall was 0.002c (c is the chord length of wing). The 
outer boundary was set at 20 chord lengths from the 
wing and in the spanwise direction, the boundary was set 
seven chord lengths from wing root and wing tip. The 
non-dimensional time step was 0.02. The mesh size and 
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the time step were chosen according to the results of the 
grid-independent test and time accuracy test, which were 
not shown here for brevity. Portions of a wing grid with 
30� chordwise deformation are shown in Fig. 3. Based 
on our results of the flow structures, such as vortex 
identified by Q-criterion, we found that the flow be-
comes nearly periodic after the first two cycles, since 
only very small difference could be discriminated in the 
following several cycles. Additionally, the variation of 
the deflection angle or the force history also shows pe-
riodicity after the first two cycles, which is consistent 
with the above vortex evolution. 

After the N-S equations are numerically solved, the 
fluid velocity components and pressure at discretized 
grid points for each time step are available. The aero-
dynamic forces (lift, L; drag, D) and torques acting on 
the wing are calculated from the pressure and the viscous 
stress on the wing surface. The inertial torques due to the 
acceleration of the wing-mass are calculated analytically. 
The total mechanical power, P, is the combination of the 
power required to overcome the aerodynamic and iner-
tial torques. The force and power coefficients (denoted 
as CL, CD and Cp) are defined as follows: CL = L/0.54U2S 
CD = D/0.54U2S  and CP = P/0.54U3S, where � is the 
fluid density, S the wing area, U the mean flapping ve-
locity and c is the chord length. The wingbeat-cycle 
means of CL, CP and CL/CP are donated as ,LC  

PC and /L PC C   (regarded as the flapping efficiency), 
respectively. The formulae of the aerodynamic and in-
ertial torques and the mechanical power were deduced in 
detail in Sun and Tang[22]. 

3  Results and discussion 

3.1  A typical case 
In the typical case, typical values of wing kinematic 

parameters were used (Re = 200, � = 150�, � = 0� and 
�m=35�). Three flexible wings with various 
non-dimensional torsion stiffnesses were considered (K* 
= 5, 25 and 100). The larger the value of K*, the smaller 
the chordwise flexibility is. Further, their aerodynamic 
performances were compared with an equivalent rigid 
wing. 

The computed mean lift ( LC ), mean power ( PC ) 
and mean lift per unit power ( /L PC C ), averaged over 
one wingbeat cycle, are given in Table 1. From Table 1, 
compared with the flexible wings, the rigid wing gener-
ates the largest LC , but at the same time requires the 

maximum PC  to enable its flapping motion. In addition, 
the LC  and PC  of flexible wings decrease as flexibility 
increases, implying that the flexibility might have a 
negative effect on generating lift but a positive effect on 
reducing power consumption. The variation of /L PC C  
arouses our high attention that the wing with small 
flexibility (K* = 100) achieves the highest efficiency 
(4.1% larger than that of the rigid wing). A possible 
explanation for this is that, in small flexibility cases, the 
positive effect of less power consumption outperforms 
the negative effect of lower lift generation. Higher effi-
ciency leads to longer endurance for MAVs, which 
makes more sense in the case of the bottleneck our bat-
tery technology encounters today. How the lift per-
formance of flexible wings is deteriorated and power 
consumption is reduced will be discussed below. 

We first examine the time histories of CL and CD of 
the large flexible wing (K* = 5) and the rigid wing (Figs. 
4a and 4b), together with that of � of the K* = 5 wing (Fig. 
4c). As seen in Fig. 4a, the large chordwise deformation 
markedly reduces CL as well as CD of the K* = 5 wing 
during the whole wingbeat cycle. Furthermore, the 
non-dimensional lift distributions along the wing length 

 

 
Fig. 3  Portions of a wing grid with 30� chordwise deformation. (a) 
In the wing planform plane; (b) in the cross-sectional plane. 

 
Table 1  Computed mean lift, power and lift per unit power in the 
typical case (a number in the parenthesis represents the difference 
of mean lift or mean power or mean lift per unit power between 
each flexible wing and the rigid wing) 

K* LC  PC  /L PC C  
+� 1.40 2.20 0.636 
100 1.33(�6.6%) 2.01(�8.6%) 0.662(4.1%) 
25 1.01(�27.9%) 1.64(�25.5%) 0.616(�3.1%) 
5 0.79(�43.6%) 1.40(�36.4%) 0.564(�11.3%)
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Fig. 4  Time courses of lift coefficient (a) and drag coefficient (b) 
for the large flexible wing and the rigid wing in one cycle; time 
course of deflection angle (c) for the large flexible wing in one 
cycle. Re = 200, � = 150�, � = 0� and �m = 35�. 
 
are shown in Fig. 5, which illustrates the spanwise lift 
distributions of the wing with K* = 5 and the rigid wing 
at three instances during the downstroke. Fig. 5 shows 
that the influence of chordwise deflection on lift distri-
bution of the wing with K* = 5 varies uniformly along 
the span, possibly due to the uniform application of the 
chordwise hinge. As CL is closely related to growth rate 
of circulation of the LEV, it is reasonable to propose that 
the LEV strength of the wing with K* = 5 also decreases 
uniformly down the span. 

To investigate this further, the change in flow 
structures was assessed. Fig. 6 illustrates the spanwise 
vorticity at early downstroke (� = 0.13�c) for the wing 
with K* = 5 and the rigid wing. As seen in Fig. 6, the 
LEV structure of wing with K* = 5 is smaller than that of 
the rigid wing, which is consistent with the lift coeffi-
cient difference shown in Fig. 4a. Moreover, at this point, 
the Trailing-Edge Vortex (TEV) of the rigid wing has 
already been shed from the wing, whilst the TEV of the 
wing with K* = 5 has not been formed yet. The signifi-
cant difference in TEV structures between the two wings 
can  also  be  seen  in  Fig. 7,  which  illustrates  the  3D  
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Fig. 5  Non-dimensional lift distribution along wing length at 
early downstroke (a), mid-downstroke (b) and late downstroke (c) 
for the large flexible wing and the rigid wing. 

 

 
 Fig. 6  Spanwise vorticity contours at early downstroke (� = 
0.13�c) at r2 span for the large flexible wing (a) and the rigid wing 
(b). The solid line is a single contour of the Q criterion used in Fig. 
7. 

 
change in vortex structures at three instances during 
early downstroke. For the rigid wing (right column in 
Fig. 7), in early downstroke, pitch rotation, together with 
translational acceleration, creates a vortex ring com-
prising a LEV, tip vortex (TV) and TEV. As the wing’s 
motion continues, the TEV is shed from the wing while 
the LEV is still attached to the upper surface of wing, 
resulting in a large time rate of change of fluid impulse 
which is responsible for the generation of large aero-
dynamic forces[24]. For the wing with K* = 5 (left column 
in Fig. 7), in early downstroke, the leading portion of the 
wing pitches down and accelerates forward, but the aft 
portion  is  negatively  cambered,  under  the  combined  
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Fig. 7  Iso-Q (Q = 5) surface plots of flow structures during the 
early downstroke (� = 0.09�c –0.16�c) for wing with K* = 5 (left) 
and wing with K* = +� (right). Pictures are taken normal to the 
stroke plane of the wing. Vortex structures are shaded by spanwise 
vorticity to indicate direction: green is negative and blue is posi-
tive. 
 

�

c
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a

 
Fig. 8  The effects of stroke amplitude on mean lift coefficient (a), 
mean power coefficient (b) and mean lift per unit power (c) for 
wings with various spring stiffnesses. �, K*=+�; �, K*=100; �,  
K*=25; �,  K*=5. Re=200, �=0� and �m = 35�. 

action of elastic, inertial and aerodynamic torques. The 
large negative camber of the wing greatly suppresses the 
formation of TEV and thereby reduces the strength of 
LEV. Hence, during the subsequent flapping motion of 
the wing, smaller time rate of change of fluid impulse is 
experienced by the wing and therefore smaller lift is 
obtained. Furthermore, owing to the negative camber, 
flexible wings present smaller windward areas to the 
flow and experience smaller aerodynamic drags (Fig. 
4b). Smaller drag results in less power consumption for 
the flexible wings. 
 
3.2  The effects of stroke amplitude, phase difference, 

mid-stroke angle of attack and Re 
Several previous studies[19–21] have discussed the 

effects of Re, wing inertia, stroke amplitude, phase dif-
ference, etc. on the aerodynamic performance of flexible 
wings in 2D cases, but their results are certainly inade-
quate as surrogates for 3D flapping wings. In this section, 
we conduct a parametric study on the effects of stroke 
amplitude (�), phase difference (�), mid-stroke angle of 
attack (,m) and Reynolds number (Re) (when analyzing 
the effects of a certain parameter, the other three pa-
rameters are kept the same as in the typical case). Results 
are reported for the three flexible wings with various 
non-dimensional spring stiffnesses and compared with 
the equivalent rigid wing. Based on the previous ob-
servational data and numerical studies of insects[1,2,6,25], 
� considered in this paper ranges from 60� to 150�, � 
from �45� to 45�, ,m from 25� to 60� and Re from 50 to 
2000. Performance is evaluated by comparing the mean 
lift ( LC ), power requirement ( PC ) and lift per unit 
power ( /L PC C ). 
 
3.2.1  The effects of stroke amplitude 

The variation trends of LC , PC  and /L PC C  of the 
four wings with � are shown in Fig. 8. The lift of the 
rigid and stiffest flexible wings keeps nearly constant 
value, while the lift of the two most flexible wings drops 
with increasing � (Fig. 8a). These results are similar to 
the analysis of Eldredge et al.[19]. Moreover, the lift 
performances of the K* = 5 wing and the K* = 25 wing 
are markedly improved in small � cases (Fig. 8a). It is 
noteworthy that, in the case of � = 60�, chordwise 
flexibility seems to bring benefits for the K* = 5 wing to 
generate a LC  8% larger than that of the rigid wing. 
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Notice that the dimensionless period of wingbeat cycle 
�c is related to � by �c = 2�r2/c and the dimensionless 
flip duration 0.36r c� �1 �  is fixed in this study. Thus, 

r�1  is proportional to � and the dimensionless angular 
velocity of pitch rotation ,��  increases as � decreases 
(Fig. 9a). In the � = 60� case, at the beginning of a 
stroke, the rotational velocity of the leading portion 
precedes the deflecting velocity of the aft portion, re-
sulting in a positive camber for the K* = 5 wing (Fig. 9b 
and Fig. 10). The detrimental effect of negative camber 
disappears and a better lift performance is achieved by 
the K* = 5 wing in early downstroke and upstroke (Fig. 
9c). 
 
3.2.2  The effects of phase difference 

Fig. 11 illustrates the variation trends of LC , PC  
and /L PC C  of the four wings with �. The 2D study of 
Eldredge et al.[19] suggested that there was a rapid fall in 
the lift of the rigid wing as � was increased. However, 
our results show that the lift of the rigid wing increases 
rapidly with � (Fig. 11a). The 2D result does not persist 
in full flapping. An explanation for the variation of lift of 
the rigid wing with respect to phase difference was given 
by previous studies[2,6] and will not be repeated here. For 
the flexible wings, the effects of varying � on LC  and 

PC  are not as obvious as for the rigid wing (Figs. 11a 
and 11b). It is interesting to note that, in the case of � = 
�45�, the K* = 100 wing generates a LC  with 41% larger 
than that of the rigid wing. This phenomenon is high-
lighted and is further studied as shown below. In the � = 
�45� case, the rotation of the wing is greatly delayed 
with respect to stroke reversal, i.e., the majority of the 
rotation is done in the beginning of the next stroke (Fig. 
12a). Large chordwise deformation is experienced by the 
K* = 100 wing during this period (Fig. 12b), resulting in 
significant lift enhancement compared with the rigid 
wing (Fig. 12c). This behavior can be better understood 
by comparing the sectional vorticity contour plots and 
vortex structures between the two wings. Fig. 13 illus-
trates the change in vortex structures and their corre-
sponding spanwise vorticities at r2 span at three instants 
during early downstroke for the K* = 100 wing (left) and 
the rigid wing (right). At � = 0.09�c, the rigid wing flips 
just in the vertical position and a strong LEV is formed at 
the leading edge of the wing. As it continues to rotate, 
due to the rapid pitching-down rotation and the fast 

translational acceleration, the LEV is shed and a new 
LEV is under development. Thus, small or even negative 
lift is generated for the rigid wing during this period. The 
K* = 100 wing, however, experiences large deformation 
during the rapid rotation and acceleration at the start of 
stroke (� reaches the maximum value 56.2� at � = 0.07�c). 
The elastic potential energy stored by the hinge spring 
drives the aft portion to rotate clockwise and develop a 
strong TEV near the trailing edge (left column in  
Fig. 13).  Moreover,  the  clockwise  rotation  of  the  aft  
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Fig. 9  Time courses of non-dimensional angular velocity of 
pitching rotation , ��  (a) and deflection angle � (b) in one cycle for 
the large flexible wing in � = 60� and � = 150� cases. Time 
courses of lift coefficient for the large flexible wing and the rigid 
wing in one cycle in the � = 60� case (c). Re = 200, � = 0� and  
�m = 35�. 
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Fig. 10  Spanwise vorticity contours at early downstroke (� = 
0.13�c) at r2 span in the � = 60� case for the large flexible wing (a) 
and the rigid wing (b). The solid line is a single contour of the Q 
criterion (Q = 5). 
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Fig. 11  The effects of phase difference on mean lift coefficient (a), 
mean power coefficient (b) and mean lift per unit power (c) for 
wings with various spring stiffnesses. �, K*=+�; �, K*=100; �, 
K*=25; �, K*=5. Re=200, �=150� and �m = 35�.   
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Fig. 12 Time courses of non-dimensional angular velocity of 
pitching rotation , ��  and azimuthal rotation (�� (a), deflection 
angle � (b) and lift coefficient (c) in one cycle for the wing with 
small chordwise flexibility and the rigid wing in � = �45� case. Re 
= 200, � = 150� and �m = 35�. 
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Fig. 13  Iso-Q (Q = 5) surface plots of flow structures and their 
corresponding spanwise vorticities at r2 span during the early 
downstroke (� = 0.09�c � 0.16�c) for K*=100 wing (left) and 
K*=+� wing (right). Pictures of vortex structures are taken from a 
stationary view. Vortex structures are shaded by spanwise vortic-
ity to indicate direction: green is negative and blue is positive. The 
solid line in spanwise vorticity contours is a single contour of the 
Q criterion (Q = 5). 
 
portion creates a downward suction which stabilizes the 
LEV. The attached LEV, together with the strong TEV, 
generates a large time rate of change of fluid impulse 
and hence large lift. 
 
3.2.3  The effects of mid-stroke angle of attack 

The effects of ,m on LC , PC  and /L PC C  for the 
four wings are displayed in Fig. 14. It is common 
knowledge for rigid wings that, the lift and power con-
sumption will both increase as the ,m increases within 
certain limits. However, for the flexible wings, the de-
flection of the aft portion becomes larger with the in-
crease of ,m and larger deformation leads to worse lift 
performance and less power consumption (Figs. 14a and 
14b). As seen in Fig. 14c, almost all wings achieve the 
highest efficiency at a moderate ,m, which indicates that, 
although increasing ,m is an optional choice for 
lift-enhancement, there is a penalty of more power 
consumption. 
 
3.2.4  The effects of Re number 

As seen in Fig. 15, the variation trends of LC , PC  
and /L PC C  with Re are the same for the three flexible 
wings and the rigid wing, which implies that the previ-
ous explanations[26] for the effects of Re in rigid wing 
cases  can  also  apply  to  the flexible wings considered 
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Fig. 14  The effects of mid-stroke angle of attack on mean lift 
coefficient (a), mean power coefficient (b) and mean lift per unit 
power (c) for wings with various spring stiffnesses. �, K* = +�; �, 
K* = 100; �, K* = 25; �, K*= 5. Re = 200, � = 150� and � = 0�. 

 
in this paper. Our results agree with the analysis of 
Vanella et al.[20], in which the variations of aerodynamic 
quantities with respect to flexibility show similar char-
acteristics for all Re considered. Owing to the low Re 
and therefore high viscous diffusion, the LEV in Re = 50 
case is highly weak and diffused compared with that in 
higher Re cases, resulting in small LC  and large PC  
(Figs. 15a and 15b). 

4  Conclusion 

In this paper, we focus on the 3D effect of the 
chordwise flexibility. Firstly, a typical case is considered. 
The results demonstrate that the negative camber due to 
deflection has a negative effect in generating lift but a 
positive effect in reducing power consumption. More-
over, the wing with small chordwise flexibility achieves 
a higher efficiency than the rigid wing. We suggest that 
there  exists  an optimal  K* that  can achieve the highest  
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Fig. 15  The effects of Reynolds number on mean lift coefficient 
(a), mean power coefficient (b) and mean lift per unit power (c) 
for wings with various spring stiffnesses. �, K*=+�; �, K*=100; �, 
K*=25; �, K* = 5. �=150�, � = 0� and �m = 35�. 

 
flapping efficiency. However, it is noteworthy that the 
optimal K* varies with different cases. Secondly, a pa-
rametric study is conducted. The results are as follows. 
Significant difference is observed between the flexible 
wings and their rigid counterparts in the effects of  
stroke amplitude, phase difference and mid-stroke  
angle of attack. Reducing stroke amplitude can improve 
the lift performance of the flexible wings while  
changing phase difference and mid-stroke angle of  
attack are not efficient methods to change force behav-
iors for flexible wings. Furthermore, the effects of Re are 
the same for the flexible wings and their rigid counter-
parts. 

In the present study, the chordwise flexibility is 
varied by only changing the torsion stiffness of the hinge. 
More work is still needed to quantify the dependence of 
chordwise flexibility on wing structure properties (e.g. 
natural structural frequency, wing-fluid density ratio). 
This issue will be explored in future work. 
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