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ABSTRACT

F eCoCrNiAI high en t ro py a lloy coa t ings we re pr ep ar ed by su pe rsonic air- plasma s pra ying. The coa t ­
ings we re pos t-treated by vac uum heat t rea t m ent at 600 and 900 'c , and laser re -melting wi th 300 W ,

resp ect ively , to st ud y the in fluence of diffe re nt t reat m ent s on t he st r uct ure and propert ies of the coa t ­

ings. The phase consti t ution , microstr uc t ure and rnic ro ha rdncss o f t he co atings aft e r treatm en ts were

investig ated using X- ray diffraction, sc an ning electron mi croscopy and energy dispersive spectrome­

t ry. Resu lts showed t hat t he as -s pra yed coat ings consist ed of purc me ta l and F e-Cr. The A INi 3 ph as e

was obta ined afte r t he vac uum hea t t reat m ent process . A body -cen t er ed cubic st ru cture wit h less
AINi3 cou ld be found in t he coa t ing afte r t he laser re-melt ing proces s. The avera ge ha rdn ess va lue s of

t he as -s pra yed coa t ing and the coa t ings wit h two diffe re nt t em perat ure va cuum heat t reat m ent s and
wi t h laser re -melting were 177 , 22 7, 266 and 682 BV, respectively. T his suggests t hat t he vac uum

heat t reat m ent promote d t he allo ying process of t he coa tings, and con t rib uted t o t he en hancement of
t he coat ing wear res is tan ce. The laser re- m elt ed coa t ing showed t he bes t wear res is tan ce.

1. Introduction

Y eh[l,2] firs t proposed the co nc ep t of h igh en t ropy

a lloys ( H EAs) in 1995. T ypically, HEA s co nsis t o f
five or m ore, but les s t han 13, prin cipal el em en ts.
T he co mponen t of each elemen t sho uld be between
5 % and 35 %, a nd the character of II E A s is deter­
mined b y the combi ned fea t u res of m ul tipl e ele ­
ments[3,1]. F or d is ti nguishing I-lEA s and traditiona l

a lloys , t h e number of principal ele m ents was de­
fined as m ore than five. In a si mi la r fas hion, a lloys
w ith one pri ncip al e le ment a re considered as low en­
tro py a lloys. Mi dd le en t ro py a lloys are betw een
these t w o kinds of a lloys and co mmonly have tw o to
fou r principal elements l' ",

The structure of HEAs is unique and no co m plex
in termetalli c compound exists with in it due to the

high en tropy in the alloy syste m. T hus, si m ple solid
so lutions , like body- cen tered cu bic (BCC), face­
centered cu b ic (FCC) and even hexagonal close-packed
( HCP) structures, as proved recently, tend to form [6].

T he h igh so lid so lubi li ty or si ngle phase co n tri b u tes
to the pot ential characters of HEA s[7-9], incl udi ng
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high s trengt h and hardness , good wear , heat [lO] and

corrosion resistance, good m agnet ism performance
and even b ulk m e talli c g lass propert ies' U".

HEAs ha ve w ide applicat io n prospects as a result
of their outstanding p roper ti es ' Vl , T h ey a re even
co nsidered as po ten tial nuclea r m ater ial s [l3]. T h ere­

fore , t h e uti lization of IIEA s in t he preparation of
coatings is a vit al ori en tation fo r t heir devel opment.

The current most common m ethod fo r preparing
HEA coat ings is us ing laser cladding , w h ich has
many advantages. F o r instance , the coat in gs afte r

la ser cladding have unifo rm microstruct ures and a
strong co m bi nation wi t h the substrate[ll. l6]. H o w ev­

er, la ser cladding p ro vides a low er effic iency due to
the small spot s ize and s low scanning speed. Fur­
thermore, the thermal injecti on of la ser cladding is

so h igh that it usually pro d uc es def o rmat ions, grain
g rowt h a nd phase changes to the workpiec e after
several cladd ings , w h ich can ha ve a detrimental
effect on the qualities o f the workpieces, In addi­

t ion, physical vapor deposit ion ( PVD) , lik e m agne­
tron sp u t t eri ng a nd electro n- bea m eva pora t io n depo ­
si t ion, is also us ed to prepare HEA coatings , si nce
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the coating th ickness can be we ll cont ro lle d. H ow­
eve r , there are so m e drawback s for PVD. The long
pro duc tion cy cle t ime and expe ns ive price hav e re­
s t r icted its de velop ment. T h us , find in g a new t ech ­
nol ogy for the prep aration of HEA coa ti ngs is a vit al
researc h in teres t.

N owad ays , plasma s praying is one of the m ost
co m monly used technol ogies fo r prepari ng coa t ­
ings[17. 18J. It is a kind of thermal spray technol ogy

that uses h igh t emperatu re pl asma as it s heat so urce
and is m ainl y used to spray powder. T yp icall y , hea t
treatment or re-mel ting is re qu ired to ac hieve a high
qu ali ty coat ing after the pl asma spray process. F ur­
thermore , the efficie nc y of pl asma spray deposit ion
is much higher than ot he r m ethod s and ever y co rner
of the workpiece can be reach ed .

Thus, in this s t udy , a pl asma spra y m ethod
com bine d with vacuum hea t treatment and laser re­
m el ting was used to p repare FeCo CrNiA I[19J HEA
coatings.

2. Experimental Procedure

A 30 4 stain less s teel was used in thi s experi men t ,
and Fe , Co , Cr , Ni and Al powders of aro und 48 p.m
w ith m ore than 99 % p uri ty w ere m ixed together a t
the sa m e m ol ar ratio. A pla ne ta ry ball m ill was used
to m ix the po w ders for 8 h. The ball m aterial ratio
( mass ratio) was 10 : 1 and t he r evolut ion rat e was
200 r/min. A s upersonic at mosphe ric pl asma spra­
ying system ( 3710 Praxair , USA ) was used to spray
the m ixed powder at 500 A and 40 V. Part of the as ­
sprayed samples we re hea ted in a high te m perature
vacuum tube (CVD, H efei , China ) for 10 hat 100 Pa.

The o ther sa mples were re -melted using a se m ico n­
duct or laser (FL-Dlight-1 500, Xi' an, C hi na ) w ith a
300 W po we r , 3 mm X l mm spot size and 3 mrn Zs
scan ni ng speed. The w ear resi stance of the coatings
w as tested usin g a universal w ear t ester ( MMW -1 )
w ith a di sk m ad e of Cr12 MoV as the co un terpar t
w ith a 100 N load and a 100 r / mi n revolut ion rate
fo r 15 m in a t room temperature. The s t r uc t ure and
elemen ta l distribution of the coati ngs were obs erve d
w ith a scan ni ng electron mi cr oscop e (Hitachi­
S3400 , J ap an) . The phase co m posit ion was ana lyzed
wit h an X- ray diffractometer ( Shim ad zu 7000 , ] a­
pan) , wit h a scanning speed of 8 C)/s and scan
ra nge of 20 ° - 90°. T he m icr ohardness of the coa t ­
ings was t ested us ing a V ick ers hardness tester
(DHV-1 000) w ith a 1. 96 N load and dwell t ime of
10 s.

3. Results and Discussion

F ig. 1 ( a) sho ws the X-ray diffraction pattern of
the as -spraye d coati ng. It can be se en that the as ­
sprayed coa ti ng m ainly consis ts of pure m et al s , ex­
cept for small qu antit ies of Fe-Cr and FeO . T he coat ­
ing cannot be deemed a HEA coa t ing , s inc e no h igh
en t ropy phase w as obtaine d. A fter 600 and 900 °C
heat treatment , and laser re-melt in g, as sho w n in
F ig. 1( b ), the co mposi t ion in the coat ings changed.
A fte r the 600°C heat treatment, a BCC s t r uct ure
existed in the coating. Cr-O, AI N i3 and p ure m et­
als , like Al and N i , could also be de tected. After
the 900 °C hea t treat ment, the content of C r-O in­
creased and the content of p ure m etal decreased. A f­
ter laser re -melting, BCC and A IN i3 phases could be
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Fig. 1. X- ray diffraction patterns.

detect ed , si mi la r to the co ncl usion of Chen et a l. [zoJ .
According to the Gi bbs fr ee ene rgy formula[ZIJ ,

I::::.G mix = I::::.H mix - T I::::.S mi x ( 1)
w here , I::::.H mi x represents the m ix ing en t ha lpy of the
a lloy syst em ; T represents the thermod ynamic tem­
pe ra t ure; I::::.S m ix re presents the m ixing ent ro py of the
a lloy system ; and I::::.G mi x re presents the Gi bbs free
ene rgy . According to the Bol tzm ann entropy h ypo th­
es is, the mi xing enthalpy of an a lloy system can be

represented as:
I::::.S mix = - R [ Cl lnC, + Cz lnC z+ ... + C" InC " ]

(2 )
where, R represents the gas constan t ; and C l , C z '"

C" r ep resents the m ol e fr action of each elemen t. The
diffusion phenomen on p rod uced b y hea t treatment
enhanced the system entropy accordi ng to Eq. ( 2) . I t
is known that the mi xing ent ro py of an alloy wi ll in­
crease wit h increasing t reat ment te m perat ure. The
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metallurgical process ex isted in the process of laser
re -mel ti ng. T h us, the sys te m en t ropy of the coat ­
ings af ter laser re-melt in g reach ed its highest poi n t.

The inc rease in system en t ropy can reduc e the free
ene rgy of an alloy sys tem , m aking it d iff icult to
for m an in term etall ic co mpound, thereby for mi ng
rel at ivel y stab le si mple so lid so lu tions[22J. The ele­

m ental diffusio n is not sufficien t after hea t treat ­
m ent at 600 and 900 DC ; t h us , t he sys tem ent ro py is
low . For the sa m ple after laser re -mel ti ng, the re­
melt ing process full y mixed the elements, wh ich
significantly enhanced the entropy of the alloy sys­
tem. T h us, the free energy of the system marked ly
decreased, meaning that the form a tion of in term e­
ta ll ic compounds is restricted to a great extent an d
now te nds towards form ing simple so lid so lutions.
However, A INi 3 was detected in the X- ray diffrac­
t ion pa t terns, since the free ene rgy of the sys tem is
codet ermi ned by tlH mi x and tlS m ix . As can be seen in
Table 1[23J , the m ix ing en t halpy of Ni and A l is - 22

k] / m ol, w hic h is the lowest amo ng all kind s of combi­
nations in the coating. T hus , A INi 3 can sti ll form
while other inte rme ta llic compounds cannot exist wi th
low free energy. H owever, its form ation has a lre ady

Table 1
Mixing enth a lpy between each clement ( kllmol)

Ele ment Fe Co Cr i\Ji Al

Fe 0

Co - 1 0

G -1 - 1 0

i\Ji - 2 0 - 7 0

Al - 11 - 19 - 10 - 22 0

been restricted to a la rge extent, since the content of
A INi 3 was decrease d. The solid solubility of atomic Al
gradually increased, since the content of A IN i3 de­
creased , w hic h caused greater la t t ice dis to r tion.
Thi s resu lt is simi la r to the conclusion of Wi dom[24J.
The a to m ic rad ius of Al is la rg e r than t he avera g e
atomic radius in the so lid so lut ion system , which
lead s to a larger in ter planar crys ta l spacing. Accord­
ing to Bragg 's law [25J , the diff ract ion pea k shifts to
a smaller angle , as shown in Fig. 1 (c) .

T he oxide disappea red because the process of laser
re-melti ng ca n make it fl oa t up to the molten pool
su rface and fall f rom the coating[26J.

Fig. 2 shows the micros t r uct ure of the as -sprayed

( a) As-sprayed coat ing , (b) Local enlargement of as-s prayed coa t ing in ( a);
( e) Coat ing afte r 600 'c vaeuum heat t reat ment ; ( d) Coating afte r 900 'c vaeuum heat t reatment.

F ig. 2 . Cross section of as -sprayed coating an d coating after d ifferent temperature hea t treatments .

and vacuum hea t- t rea ted coat ings. Some sp lat parti­
cles can be observed in Fig. 2 (a) . It presents the typica l
cha racteris tic of a t hermal sprayed coati ng[27J. Par ti ­
cles that have not co m pletely been m elted are found

in Fig. 2 ( b) .
Based on the exper iments of M unitz et al. [28J , a

10 h vacu um heat treatment was do ne to F eCoCr­
NiAI coa ti ngs. It can be obviously obs erved in F ig. 1
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Table 3
Energy s pe ct r um ana lys is of different regions of coatings

afte r 600 °C heat treatment

Table 4
Energy s pe ct r um ana lys is of different regions of coatings

afte r 900 °C heat treatment

Zone Fe/ at. % Co/at. % Cr/ at. % Ni/at. % AI/ at. %

A 65.09 0 17. 61 0 17. 29

B 11. 06 15. 33 13. 58 0 0

C 11.75 0 0 85. 25 0

to the surface, and the pore wa s fill ed by molten
m etal. The molt en poo l reached th e substrate, which
can achiev e m etallurgical bonding instead of m e­
chanica l bonding. This result is similar to the con­
clusion of Yue et al. [ 29J .

The phas e structure of the re-melted coatings con ­
sists of a Bee structure and A lNi3 , according to the
X-ray diff raction results. However, no Al Ni3 was ob-

3.69

8. 08

18. 10

19. 25

AI/ at.%

36.29

38. 60

22. 89

30. 01

Ni/at. %

11. 12

3. 37

10. 18

28. 70

Cr/ at. %

27. 90

26.27

21. 13

23. 65

Co/at. %

21. 00

23.68

21. 70

28. 10

Fe/ at. %

A

B

C

D

Zone

Table 2

Ener g y s pec trum analysis of diff e rent regions of as-spra yed

coa ti ng

Zone Fe/at. % Co/at. % Cr/ at. % Ni/at. % AI/at. %

A 100 0 0 0 0

B 0 0 0 0 100

C 0 0 98. 03 0 1. 97

D 0.98 0 2. 71 96.28 0

E 20.81 31. 17 16. 7 16. 6 11. 69

(c) that the boundary line is not cle ar and the micro­
structure becomes more uniform after heat treat ­
m ent. The particles of coatings integrated with each
other and the gap was fill ed.

Fig. 2 (d) shows the microstructure of the coatings
after 900 DC heat treatment. The structure is denser
and has a more obvious mutual diffusion, es pe cia ll y
at the boundary between the substrate and the coat­
ing. No un melted particles w ere found in this figure.

Table 2 shows the results of the ene rg y spectrum
of different regions in Fig.2(b). I t is obvious that
the granular and la th- shaped particles consist of pure
metal. The coa ting ca nnot be de emed a I-IEA coa t ing
in zones A-D . Thus, it is hard to gain better wear or
corrosion resistance in the as-sprayed coatings.
However, at the bottom of the coating (Fig. 2 (b» ,
fiv e ele ment s from the powders can be det ected in
region E. One exp lana t ion for th is phenomenon is
the heat preservation effect by the later deposit ed
coatings. The heat pres ervation effe ct s lowed down
the cooling rate of the first-formed coating, which
can be considered as a short-lived heat treatment.
This shor t-live d heat treatment acc elerated the el e­
m ent diffusion and preliminary form ed a high en t ro­
py stat e in the coatings. Thus, the heat treatment
should be us ed to gain a high en t ropy in the coating
after the spraying process.

In Table 3 , it can be seen that the ele men t s in
each particle have diffused after the vac uum hea t
trea tment. The elemen ts of coating afte r 900 DC were
more homogeneous, ac cording to T ab le 4.

Fig. 3 shows the m ap scanning resul ts of the coa t ­
ing aft er he at t reat m ent a t 900 DC. N o HEA struc­
ture appeared after vacuum he at trea tment.

Fig. 4 shows the coating morphology aft er laser
re-melting. A molten pool was form ed, which offers
an opportunity for impurities (like oxides) to float up

Fig. 3. Map scanning results of coating after 900 °C he at treatment.
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Fig. 4. F ull view ( a ) an d en la rged ( b) st r uctures of re-mel ted ar eas of coating after laser re-mel ti ng.

served by scanning el ec t ro n m icro copy. According to
the ana lysis of the energy spectrum for the re-mel ted
coating in T able 5, phases A and B we re the sa me.

Table 5
Ene rgy spectrum ana lys is of di fferen t regions of coat ings
after re- melti ng

Zone Fe/at. % Co/at. % Cr/at. % Ni/at. % Al/at. %

A 31. 62 16. 25 14. 85 20. 58 16. 70

B 30.5 1 15. 99 15. 03 22. 82 15.65

As shown in F ig. 5 , the el em enta l distribution
was hom og eneous afte r the re-melt ing p rocedure an d
no segregation ex ists. Acco rding to Eq. ( 2), the en­
trop y reach es the highest poi n t w hen the el em en t is
uniformly distributed . T hus, the laser re-melt ing pro ­
cedure significa ntly enhanced the entro py.

F ig. 6 shows the hardness curve of coati ngs alo ng
the thickness direct ion. T he av erage hardness of the
as -s prayed coa t ings and coati ngs af ter vacuum heat
t reatment and laser re-mel ti ng w ere 177 , 227 , 266
and 682 I-IV, resp ectivel y. The vacuum heat treatment

Fig. 5. Map sca nning res ults of coat ing after laser re- melting.

and laser re-mel t in g proc ess hav e a si gni fica n t im ­
pact on the hardness of the coatings. T he hardness
can be enhanced b y increasing the hea t treatment
te m peratu re .

Du ring the hea t treatment p rocedure , hi gher te m ­
peratures will en hance the extent of element diffu­
sion. The ele ment diffu sion was uneven. T hus ,
some parts of the coatings p resen t in term etalli c
compoun ds, wh ich can en hance the hardness[30].
Other parts of the coat ing ex hi b ited the high entro-

py, w hic h decreased the fr ee energy of coa ti ngs and
rest ra ine d the form ation of intermetallic compo un ds.
As a res ul t , so lid so lut ions formed in these par ts ,
which en ha nced the hard ness of the coat ings b y in­
cre asing the extent of la t ti ce di s tor ti on an d inhibi­
t ing di sl oca t ion m otions.

T he laser re-melt ing p roced ure has a m ore si gni fi­
cant impact on the ha rdness of coatings. T he homo­
ge neous distrib ut ion of elements m aximized the en­
tropy, w hic h increased the effect of h igh entropy to
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the extent of maximum va lue in theory. As a resu lt
of this , on ly a single so lid so lution and A lNi3 exist
in the coati ng, w hic h is better for inc reasing the
hardness.

H ardness curves of coatings treated wi th diff er ent

Fig. 7 shows the differen t surface m or phologi es of
coati ngs after wear. The as -spra ye d coa ti ngs show
the worst w ea r r esistance becau se of the low hard­
ness a nd th e n on-e x ist ence o f th e w ea r r esi s t ance
phaseD!J. T he w orn m ech anism w as adhesive wear
for the as -sprayed coati ngs. Durin g the co urse of
fr ict ion, the surface m etal of coa ti ngs was exposed,
si nce the oxida tion fi lm was r ubbed away. The m ol e­
cule between the t wo fr ic tio n faces was bonded by
in termolec ular fo rces. W ith the fric tion p ro cess , the
component of coat ings flake from the surface, since
the shear force at the frict ion face outweig h the s up­
port fo rce of the coatings[32J. Thus, many pits ex ist

a t the s urface of coati ngs af ter wear, as shown in
Fig.7 (a ) .

Fig. 7 (b ) shows t he surface s t r uct ure af ter wea r
of coati ngs after 600 DC vacuum heat t reatment. The
wear resistance is bett e r than that of the as -sprayed
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( a) As-spray ed coa t ings ; (b) Co at ing s afte r 600 'c heat t reat m ent ;
(c) Coatings aft er 900 °c heat t rea t m ent; (d) Laser re -melted coa ti ngs.

Fig. 7. Surfaces of coatings after wear.

coatings. It m ixed adhesive wear and abrasive wear
beca use both pits and grooves can be observed. The
ad hesive wear was reli eved , since the hardness was
in creased b y the vacu um hea t treatment. The abra­
sive wear exists because of the form a tion of hard
phases, like intermetallic compounds ' P'', W ith in­
creasing wear t ime, the m et al binding phase was
grad ua lly reduced, w hic h m ad e the hard phases ex­
posed. T he hard phases fa ll off fro m the surface of
the coati ngs and formed a new so urc e of abrasive wear.

T he wear res istance o f coati ngs in c r ea sed after
900 DC vacuum heat treatment , as shown in F ig . 7
( c). I t a lso co nsists of both adhesive wear and abra­
sive wear. However , the we ar degree is slighter than
600 DC , since the hardness has been improved.

After laser re -melting, the wea r resistance is the
best a mong all of t he sa mples, w hich was si mi la r
w ith the results of Liu et a l. [34J. The fo r mation of

in term etall ic co mpo unds was res t ric te d by the effec t
of h igh en tropy , w hich decr eased the possibi li ty of
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4. Conclusions

Original flOO heat !lOO'C heat Laser
trea tme nt trea tment re-melting

Fig. 8 . M ass loss after treatment with diff e ren t processes

and temperatures.
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abrasive wear.
The mass loss af ter wear is shown in Fig. 8. T he wear

resist an ce of the as-spray ed coating is the worst. With
increasing heat treatment t emperatu re , the coatings
sho w better w ea r r esistance. T he coati ngs wi t h laser
re -mel ti ng show the best property of wear resis t ­
anc e , in acco rda nc e wi t h the previous result.

(1 ) The as-spray ed coating mainly consists of pure
metals . T he vacuum hear t reatment accelerated the
a lloying exte nt of the coati ngs and the BCC phase
was formed.

(2 ) T he alloying extent of coatings reaches its
m a xim um value after lase r re -melting. T he in terme­
ta ll ic co m po und cannot be found due to the effect of
high entropy except for A lNi3 , w hic h has the lowes t
enthalpy of mixing. T he metal atoms that cannot
form an in term etall ic compound and te nd to form a
s upe rsaturated so lid so lut io n. This enhanced the
coating hardness and wea r res istance.

(3) The m ass loss of the as -sprayed coat ings is
the largest afte r the w ea r test . The wea r properti es
of coa ti ngs increased wi t h inc reasing heat treatment
tempera ture. The coati ngs a fte r laser re-melt ing
show the bes t wear resistance.
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