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T he micros t r uc t u ral ev o luti o ns of 5 M n s t eel d uri ng var io us h ea t t r eatm ent s ha ve been in vesti ga­

ted by in-sit u t ra nsm ission electron m icros copy ( TEM) . T he specimen of 5Mn steel was pre­
pared using foc used ion beam ( FIB) mi lling, which allowed t he sel ect ion of specific mo rp hology
of in teres t pri o r to t he in-sit u observ a ti o n. T he com ple t e a us t cn iza ti on at 800 °C w as ve rifi ed at

t he at om ic sca le by m inim izing t herma l ex pa ns ion and sample dr ift in a heatin g ho lder based on
m ic ro - elec t ro -mecha nic al-sys tcms. During an nealing at 650°C , t he fo rmat io n of r evert ed a usten ­

it e was dyna mica lly obs er ved , while t he morphologies of aust enit e lath s of 5Mn stee l aft er in-sit u
heat in g we re q uit e s imila r to t hat aft er ex-sit u in t crcri ti cal a nnea ling. Durin g a n nealing a t 500 °C .

t he m orphological evolut ion of cem ent ite and associat ed Mn diffus ion were investigated. It was
demons t rat ed t hat a combinat ion of F IB samp ling and high tem perat ure in-s it u TEM ena bles us
to probe t he morp holog ical evolu tion and elem ental diffusion of specific areas of in tere st in ste el
at high spa t ial res olution.

1. Introduction

Recently, the 0. 2 m ass % C- 5 m ass % Mn s teel s
( 5Mn steel) hav e drawn a lot of a t t en ti ons due to
their ex t rao rd inary m echanical properties and po ten­
t ia l a pplications in a ut om obile indus try'v ' ". In order
to understand the structure-property rel ationship of
5M n s teel s, t he mi crostruct ural evolu ti on an d el e­
mental d iffusion unde r d iffe rent he at t re atment p ro ­
ced ures hav e been carried out [3-l3J. M oor et al. [3J an d

L ee et al. [4J reported that Mn pa r t iti oni ng w as a key

fac tor in s ta bi lizing a hi gh volum e fr ac tion of re­
t aine d a ustenite in s uc h s teels a t room tempera t ure
(RT), whi ch im proved the m ech ani cal propert ies of
5M n s teels. Mn diffusion be tween a us tenite an d fer­
rit e during intercritical ann ea lin g'{" : , as w ell as the

precipitation an d coarsening behavi ors of cem en t ­
it e[9-l2J, has also been investigat ed. Nonethel ess, in

mos t of the previous s tudies, ex-sit u m e thods were
app lied to exam ine the m icros tructural evolut ion of
5M n steels. Ex-sit u expe rimen t s cann ot dyn ami call y
track the phase transformation and el em en ta l diffu­
sion in the 5M n steel during heat treatments. It is
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not po ssible to ch oose an a rea of in teres t cont ammg
spe cific microstructural features like grain boundaries,
packet interfaces, lath interfac es, prec ipitates and see
how a s pe cific m icrostructure evo lves a t el ev ated
temperature.

In-situ heat ing experime nts in a transmission electro n
mi croscope (TEM) allow re al- time observa tions of
heat treatments of st eels, including gra in grow th[l4J ,
re crystallization[l5J, d islocat ion propagation i' f and

elem ental diffusion[l7J. Instead of performing he a t

treat m ent s outside the mi croscope and the n observ­
ing the samples post-mortem, in-s itu mi croscopy a l­
lows dir ect observations of the dynamic behavi or of
s teel s under a va rie ty of an nealing conditi on s. In t ra ­
di tional in-si tu h eating TEM expe riments , the spa­
ti al resolution w as dramatically s uppres sed due to
the sam pl e drift ind uce d by thermal expan sion when
an en t ire 3 mm-diamet er TEM sp ecim en w as h eat ­
ed. R ecently, the state-of- t he -art in- situ TEM has
b een developed to s t udy the m icrostructures a t t he
a to m ic sca le by using micro-el ectro-mechanical sys­
tems (MEMS )-bas ed heating s tages[18-20J , which

gen era ll y r equires specim en prep ared by focused ion
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be am (FIB) milling[21-23]. However, the tradit iona l

lif t-out lamell a prep ared by FIB cannot prec isely
choose the a rea of interest, since the lamell a was
buried in the bulk m at erial s before liftin g out.

In this pap er, FIB w as us ed to cut out the s pecific
a rea of interest from a regular 3 mm-diameter TEM
sample of 5M n steel afte r observing its microstruc­
ture in a TEM. Various in -situ observations w ere
carried out on 5M n steel during different heat treat ­
m ent procedures in or de r to understand the phase
transformation of 5M n s tee l a t different tempera­
t ures. Benefi ting from an adva nc ed MEMS-based
heating sys tem , the microstructural ev olu tion in
5M n s te el ca n be observed a t the at om ic scal e with
minimum sample drif t , while in-situ elem en ta l dif­
fusion can a lso be de tected. In the exa m ple of 5M n
s tee l , it was demonstra ted tha t the in-situ hea ting
TEM expe r im en ts are increasingly able to provide
fundamental information for understanding the mi ­
cros tructural evolu tion at the a tom ic scale and the
elem en ta l diffusion during the phase transformation.

2. Experimental Procedure

The steel with a chemical composition of o. 2 m ass % C­
5 m ass % Mn was investiga ted. The sample was fir st
prepared unde r vacu um using an induction furnace,
then homogeni zed a t 1250 °c for 2 h before forged
into rods with diamet er of 16 mm. Next, aft er aus­
tenization at 1200 °c for 30 min, the forged rods
w ere water qu enched to form complet e martensite
microstructure.

In order to prepare the in-situ TEM specimen with
the specific area of interest, a conv entional TEM speci­
m en with 3 mm in diameter was first prepared. The
sample was m echanically g ro und to 50 p.m in thick­
nes s, then the sam ple foil s w ere twin-j et polished in

a solu tion of 7 vol. % perch loric acid and 93 vol. %
alcohol at - 20 °C. After loc ating the area of interest
in a TEM, the in-situ TEM specimen using Zeis s
Auriga FIB w as prepared. For exam ple , Fi g. 1 (a)
show s the microstructure and the sel ected area el ec ­
tron diffraction (SAED) patterns of the a re a of in ­
terest in an as -quenched sample, including martens­
it e laths and packet interfac es without any cementite
and retained aus teni te . As shown in the low-magni­
fication TEM imag e in Fig. 1 (b), the area of inter­
est was m arked b y the whi te circle . In order to po si ­
tion the a rea of interest, the holes formed during
t win jet thinning and the edge morphology of the
TEM specimen were se lec te d as the m arkers and in­
dicated by the white arrow s. A s is shown in the
scanning elect ron mi croscope (SEM) im age of the
cor responding sa m ple in F ig . 1 ( c), the area of in te r­
es t was a lso m arked by the w hit e circle and posi­
tioned by the corresponding m arkers as indicated by
the white a r rows. H ere the rela ti vel y thick a rea was
sel ect ed for in-si tu experiments, si nce the mi cro­
st ruct u ra l evolu tion in the b ulk m aterials du ring
hea t trea tments takes pl ace in the rel ati vely large
volum e. Using FIB milling, the lamell a wi th the
size of 25 p.m X 10 p.m including the a rea of interest
was lift ed ou t and tran sf er red on to the chips of
DENS sol utions in-situ he a ting holder. The MEMS­
bas ed holder provided an elev a ted temperat ure en vi­
ronment without reducing the r eso lution of a TEM.
During in-situ heating TEM expe r imen ts , the mi ­
crostructural evolut ions and elemental m apping of
5M n s teel w ere carried out in FEI cubed Titan 80 ­
300 with an image corrector , FEI Titan G 280-2 00
Chem iST E M equipped with a probe corrector and
the SuperX ene rgy dispersive spect romet ry (EDS)
sys te m with the four Bruker Silicon Drift Detectors,

( a) Bright-f ield t ra nsmiss ion electron m icro scop e images and a selec ted area electron diffrac t ion pat tern fro m an area of
in te rests includin g pac ke t interfaces and lath in terf aces ; ( b) Lo w-m agn ifi cat ion T E M imag es of t he inte res te d area s;

( c) Scanning electron microscopy images of correspond ing int eres ted area cut by focused ion beam m illing.

Fig. I. Locat ing int er ested areas of as-quenched 5Mn s teel using T EM and FIB mi lling.

and FEI CZ20.

3. Results and Discussion

In order to better understand phase transforma­
t ion of 5M n s teel a t different te m pe rat ures and de­
term ine the typica l te m pera t ure fo r various hea t

treatments, the phase diagram of 5M n s teel w as cal ­
cula ted using Thermo-Calc so ftware , as show n in
Fi g. 2. Based on the calculated phase diagram, in-si­
tu heat treatments a t three an nea ling temperatures
were carried out as m arked by th ree s tars in Fig. 2.
F irstly, when the an nea lin g temperature w as se t to
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Fig. 2. Ph ase diag ram of 5M n stee l calculated by Thermo-
Calc soft wa re .

800 DC w ell above A 3 temperature, the complet e aus ­
tenization process was observed at the atomic scale.
Secondly, when the annea ling temperature was set
to 650 DC between A 1 and A 3 temperatures, the nu ­
cleation and growth of austenite at matrix la t h
boundaries were studied. Thirdly, when the annea ­
ling temperature was set to 500 DC well below A l
temperature, the formation and coarsening of ce­
m entite w ere focused on. All the annealing time at
different t emperatures was set to 40 min.

3. 1 . Com plet e austen izat ion at 800 DC

The as -quenched s pe cimen was h eated to 800 DC
above the critical temperature A 3 of 72 3 DC. A ll the
martensite phases in as -quenched 5Mn steel w ere
transformed to austenite phase. Fig. 3 (a) shows the
high resolution transmission el ectron microscopy
(HRTEM) image of martensite phase at the atomic
scale at RT before heating. Fig. 3 ( b ) shows the HR­
TEM image of austenite phase at the atomic sca le at
800 DC after com ple te aus ten iza t ion . The correspond­
ing fast Fourier transformation (FFT) patterns
shown in the insets of Fig. 3 clearly demonstra te the
phase transition from m artensite to aus ten ite during
in-situ HRTEM experiments fo llowing the Kurdju­
mov-Sachs (K-S) orientation rel ationship with

[ 11 1 Jail [ 011 L and (110) all (111) y.
The in-situ observation of com plet e aus ten iza t ion

of 5M n steel has been ac h ieved a t the a tom ic scale,
benefiting from the minimized thermal expansion
and specimen drift due to the high stability of the
MEMS-based heating system. The temperature en vi­
ronment of the chip was locally controll ed via a four-

( a) Specimen at room t em perat ur e befo re beati ng ; ( b ) Specimen at 800 0(; a fter com plet e aus tc niza t ion.
T he cor respon ding fast Fo urier transfo rmatio n patt erns sh ow that the ph ase trans for matio n follows Kurdjurnov-S achs o rientatio n

relat ions h ip w it h [ 111 i , II [ 0 11Jy and (110) 0II(11l)y.
Fig. 3. In-situ observation of complete austenization in 5Mn steel at 800 °C using high resolution transmission electron microscopy.

point-probe, which guaranteed the stability and ac ­
curacy (0.00 1 DC at any el evated temperature) dur­
ing the course of heating in the expe r imen t. Further­
more, the MEMS chip scaled down the heater to the
micromet er siz e and had a very low thermal expan ­
sion coefficient, so sa m ple drift wa s m erely o. 5 nm
per minute. The advantage of the MEMS-based heating
syst em enables us to observe the in-situ expe r imen t
of complete austenization at the atomic lev el.

3.2 . Nucleat ion and growth of austenite at 650 DC

The as -quenched sp ecimen was heated to 650 DC
between the critical temperature A 1 of 64 3 DC and
the critical t emperature A 3 of 72 3 DC. During the in ­
tercritical annealing, the in-situ nucl eation and growth
of rev erted austenite has been observed. Fig. 4
shows the microstructural evolut ion at 7, 257, 548 ,
960, 1557, and 2 356 s during the annealing procedure.
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The solid arrows pointed out the nucleation and
growth of the austenite located at matrix lath
boundaries. The corresponding SAED pattern shown
in the inset in Fig. 4 (f) was indexed as austenite
phase oriented along [ 11 2 ] zone axis. Based on the

experimental observation, it was verified that the
nucleation and growth of austenite particles pre­
ferred to take place at matrix lath boundaries, which
was in agreement with the authors' previous studies
of 5M n steel after ex-sit u intercritical annea lingf.

( a) Specim en annea led for 7 s ; (b) Sp ecimen annealed for 257 s ; (c) Specimen annealed for 518 s ;

( d) Sp ecim en an nealed for 960 s ; ( e ) Sp ecim en annealed for 1 557 s ; (f) Specime n annea led fo r 2 356 s.
T he selected ar ea elec t ron diffrac tion patterns sho w aust enit e ph ase along [ 112 ] zone axis indica te d by t he white arrow.

Fig. 4. In-situ obser vation of austenite nucleation and growth in 5M n steel during annealing at 650 "C.

After the in-si tu heating experiments, the mor­
phology and diffraction patterns of reverted aus ten­
ite were investigated. Fig. 5( a) shows the about 60 nm
wide austenite with twin structure. The correspond­
ing SAED patterns of twin structure are show n in
the inset of Fig. 5 (a). The similar austenite with
twin structure was also observed in 5M n steel after
ex-sit u intercritical annealing, which might enhance
m echanic properties during plastic deformation. The
bright field and dark field TEM images, as shown in

F igs. 5 (b) and 5 ( c), respectively, reveal the aus ten­
ite laths a t m atrix lath boundaries. The aus ten ite in
Fig. 5 ( b ) followed the K-S orientation rel ationship
with [ 11 1 t il [ all L and (ITo) o II (IIl) y, which
was clearly shown by SAED patterns in the inset of
Fig. 5 (b). The morphology of austenite was quite
similar to the one observed in the 5M n steel after ex­
situ intercritical annealing in the previous work[8J ,
indicating that evolut ion of austenite morphology
during in-situ expe r imen ts was comparable with that

( a) A us te nite laths wit h twin st ru ct ure and co rrespond ing selected area elect ron d iffra ct ion patt erns t aken from t he area wit h in black circ lc ,
(b) A ustenite laths at ma trix la th bou ndari es and the correspo nd ing sele cted area electron diffra ct ion pa t t erns show ing Ku rdju rnov-S ach s

orientation rel a tion ship; ( c) Corresponding dark fiel d image of aust enit e laths by selecting (2 00) diffraction spot of aust enit e . ma rke d by
t he white circle in t he inset of (b) .

Fig. 5. F ine s tr uct u res of reverted au s tenite after in-s it u annealing at 650 "C.

during ex-sit u expe r imen t s.

3.3. Coarsen ing of cem enti te preci p itates at 500°C

The as-quenched specimen was heated to 500 "C

w ell below the critical temperature A 1 of 643 °C. The
rate of heating from RT to 500 °c wa s 10 DC/m in .
The microstructure and Mn distribution around
martensite lath interfaces in as -quenched 5M n steel
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are clearly shown in Figs. 6(a) and 6( b ) , respectively.
T here w as no significan t segregation of Mn at lath
in terfaces as indicate d by the dotted arrows. The Mn
distribution of the as -quenched sam ple w as relativel y
uniform. Fi gs. 6 ( c ) , 6 ( e ) and 6 ( g) s ho w the m icr o­
s t r uct ura l evolut ion a t 0 , 12 and 40 m in durin g the
an nea ling proced ure, respect ively, while the co rre­
sponding Mn m app in gs are shown in Figs. 6( d ) , 6 ( f)

and 6 ( h ) , res pect ively. The ele mental m apping was
ac qui red a t RT by qu en ch in g the sp ecim en r ight af ­
ter cer tain an nea ling t ime , si nc e the EDS detect ors
do not work pro perl y at high temperature because of
signal sa t urat io n induc ed by thermal rad iat ion. The
Mn distribution ac quired a t RT is sti ll repres en ta ti ve
of the Mn distribution a t el eva ted temperature sin ce
Mn ato ms diffuse very s lo w ly at RT.

STE M HAADF images !\In mappings STEM HAADF images Mn mappings

( a). ( b ) As -q uenched s pecimen ; ( c). ( d ) Sp ecim en annealed for 0 m in ; (e ) . (f) Specimen annea led for 12 m in ;
( g ). ( h ) Spec imen annealed for 10 m in.

Fig. 6. In- si tu obs er vation of m icrostruct ura l evolut ion and co rr esponding Mn dist ribu tion in 5Mn st eel during annealing at 500 °C ,
with heating ra te of 10 °C/ m in.

The cem en ti te formed and coarsened durin g heat
treatment, sinc e the or igi nal m icr ostructure of as ­
qu en ch ed sam ple was full m artens it e lath without
an y cem en ti te. A t the ea rl y s tage of the an nea ling
procedu re , m ost o f ce men ti te precipi tates for m ed a t
lath boundaries, while so m e needle-shape cem en ti te
prec ip it at es formed insi de the laths. By co m paring
M n m ap pin g w ith the cem ent ite m or phol ogy in scan ­
nin g transmission elec tron m icroscopy high-angl e
an n ula r dark field ( STEM HAADF) images , the re
w as Mn enrich men t in both in t ragra n ula r and in t erg­
ranular cem en ti te pa r ti cl es , indica ti ng that the
gro w th of cem en ti te was co n t ro lled by Mn diffus ion.
Co mpared w it h in tragra n ula r cem ent ite precipitates ,
the in tergra n ula r cem en ti t e pr ec ipi ta tes had a larger
size and grew preferent ia lly alo ng the lath bounda­
r ies. It was concl uded that the diffusion rat e of M n
a to ms alo ng lath boundar ies was much hi gher than
that with in the la ths. A t the la te r stage of the annea­
ling procedure , small cement ite particl es dissol ved
into large ones due to O stwald r ipenin g. It is note­
w orthy that the disl ocations play ed an im po r ta n t
rol e in Mn diffusio n. As shown in F ig. 6 ( e, g), the
la rge in tergran ul a r cem en t ite parti cle and one sm all
in tragran ul a r cement ite pa r ticl e a re m arked by "1 "
and "2 " , res pect ively, an d connected b y severa l dis-

locat ions . The small cem en ti te par ti cle " 2" dissol ved
in to the large pa r ti cle " 1" throu gh di sl ocations dur­
ing in-sit u annea ling. The corresponding Mn m ap­
ping as shown in F ig. 6 ( h) verified the sign ifica n t
Mn en r ich m en t a t the dis locations bet w een t wo ce­
m ent it e pa r ti cles, which was m arked by the dotted
circl es in F ig. 6 ( g, h). T he disl ocat ion pipe m echa­
ni sm of Mn diffus ion can thus be confi r m ed durin g
the growt h of cem en ti t e.

4. Conclusion

Speci m en of 5M n steel was prepared by FIB m ill ­
ing and load ed on an advanced MEMS-based hea t in g
syst em , which a llo w ed various in-si t u TEM obser­
vat ions durin g heat treatment s a t different tempera­
tures . The co mplet e aus teniza tion of speci m en was
obs erved a t the a to m ic scale a t 800 °C. When an ­
neal ed a t 650 "C , the n ucleat ion and g ro w th of aus­
te n it e were m os t likel y to ta ke pl ace a t matrix la th
bo und ari es, whi le the m orphol ogy of rever te d aus­
ten it e laths af ter in -situ heating w as qui t e si mi la r to
the typical m orphol ogy of 5M n st eel after ex-sit u in ­
tercritica l an nea ling. When annea led a t 500 °C, the
coa r sening of cem en t ite was con t roll ed by M n diffu­
sion. The M n diffusi on a t la th boundaries was fas ter
than that w it h in the m atrix , res ulting in the growth
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of intergranu lar cement ite fas ter than intragranular
cemen ti te. T he dislocat ions also served as an approach
of Mn diffus ion during the growt h of cementi t e. The
capabili ty to obs erv e the micro struct ur al evolut ion of
s teel in real t im e at high spatia l resolut ion pr ovides
insigh t in to material tran sf ormat ion processes and
mechan ism s of comp licated pha se transit ion in s teels.
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