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Abstract . Blast {urnace (BF) ironmaking process has complex and nonlincar dynamic characteristics. The molten iron
temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and
large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling
mcthod was proposcd [or molten iron quality (MIQ) bascd on principal component analysis (PCA) and dynamic ge-
nctic ncural network. The modcling method used the practical data processed by PCA dimension reduction as inputs
of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu-
ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili-
ty of nctworks and solved the strong [luctuation and resistance problem in a nonlincar dynamic systcm. Morcover, a
ncew hybrid training method was presented where adaptive genctic algorithms (AGA) and ANN were integrated
which could improve network convergence speed and avoid network into local minima. The proposed method made it
easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor-
mation for realizing closc-loop control for MIQ. Industrial experiments were made through the proposed model based
on data collected {rom a practical stcel company. The accuracy could meet the requirements of actual operation.
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Steel is one of the most important industrial
raw materials in social development, and blast fur-
nace (BF) ironmaking is the primary unit of the
whole steel manufacture process. At present, the
molten iron quality (MIQ) determines the level of
the products and also reflects the energy consump-
tion state of the blast furnace to some extent!™.
Thus, it is essential to accurately learn the parame-
ters of hot metal quality so as to realize optimal con-
trol and energy saving of blast furnace. However,
the technological parameters that can reflect the
MIQ such as temperature of hot metal, contents of
Si, P and S, etc. are difficult to be directly detected
online using conventional instruments, and the off-

line analysis process seriously lags behind, which
greatly influence and limit the needs of real-time and
optimal control in ironmaking process.

Recently, many predictive models for MIQ have
been developed to optimize the BF operation and
control, including mathematical models for silicon
content prediction based on theoretical analysis of
BF thermal condition, like Wu'®' and EC'*! structure
designed in France and Benelux respectively. Moreo-
ver, numerous artificial intelligence models based on
expert-like learning method have also been pro-
posed™®. However, these MIQ predictive models
are only some idealized descriptions for only one pa-

rameter fluctuation among many change factors,
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such as the molten iron temperature (MIT), or Si

L1z - BF ironmaking process is a

content prediction
complicated dynamic system with many influential
factors, so the target prediction of one component is
far from enough in practice.

In artificial intelligence field, artificial neural
network (ANN) as an emerging discipline developed
in 1980s is an intelligent tool, which simulates the
human nervous system to do perception, analysis
and problem solving. Currently, there are a lot of
research reports on MIQ prediction or estimation
models with ANN technique, such as Refs. [13-17].
However, these existing MIQ neural network pre-
dictive models are just some static models, and can
only predict for one particular parameter %!,

Focusing on this practical challenge, a data-
driven nonlinear multivariate modeling method was
proposed for MIQ in blast furnace smelting process
based on dynamic genetic neural network and princi-
pal component analysis (PCA) in this study. Firstly,
by analyzing the practical process mechanism and in-
stalled instrument status, several key process varia-
bles or state variables that are directly related to the
MIQ (namely MIT, Si content, P content and S
content) were determined. Then, the most impor-
tant variables from state variables were determined
as the secondary variables (inputs) for multivariate
prediction modeling using the PCA. After that,
based on the actual industrial data, a data-based
nonlinear multivariate dynamic intelligent model was
established for MIT prediction by combining adap-
tive genetic algorithm (AGA) with ANN., Finally,
industrial experiments were made with the proposed
predictive model. The results demonstrate that the
proposed multivariate AGA-ANN dynamic model
for MIQ in BF smelting process can simultaneously
make a better prediction for MIT, Si content, P
content and S content, according to the change of
process parameters.

1 Process Description

The BF ironmaking is a complex nonlinear dy-
namic process, and the BF body is the most compli-
cated metallurgical reaction vessel with the largest
volume and highest energy consumption. The whole
BF smelting process is conducted in a closed vertical
furnace. Many physical and chemical reactions be-
tween furnace charges and gas are intertwined and
mixed in the countercurrent movement of the smel-
ting process. Because the closed nature of BF and re-

action status cannot be observed by operators directly,

strict environments for direct measurement make
the operation of ironmaking still depend on indirect
measurement by virtue of instruments. Hence, mol-
ten iron quality indices are required to indirectly re-
flect the inside situation of furnace and ensure safe
operation of the BF. Being able to make accurate es-
timation of MIQ makes it easier for operators to dis-
cover problems and adjusts operation magnitude ear-
lier so as to reduce pollutant emissions and achieve
the optimal control to improve the operational per-
formance of this complex process.

MIQ is one of the most important production
indexes in the BF ironmaking process. It deter-
mines the subsequent steel products quality and en-
ergy consumption of the whole melting process. In
practical production situation, molten iron temper-
ature (physical heat) , silicon mass fraction in mol-
ten iron (w,s;,» chemical heat), sulfur mass frac-
tion (wrg1) and phosphorus mass fraction (wppy)
have been chosen to measure the quality of molten
iron comprehensively, Many factors affect the MIQ
in the whole BF melting process, including not on-
ly intrinsic properties of both iron ore and fuel, but
also the process operating parameters. And the op-
erating parameters can also be divided into two
parts: the operating parameters in loading and
charging part, and the parameters in bosh and
hearth position. Due to the existing long lag time
(always 5—6 h) from the fresh ore into the load-
ing and charging part to the hearth of the BF, the
operation parameters in loading and charging part
can be ignored in the procedure of modeling and
control for MIQ,

boundary conditions. Therefore, the secondary var-

and just acted as adjustable

iables for MIQ predictive modeling must be appro-
and the

dominant variables of the model are the quality pa-

priately selected from these variables,

rameters needed to be online estimated such as the
molten iron temperature, Si content, P content
and S content,

2 Data-driven Nonlinear Multivariate Dynam-
ic Modeling for MIQ in BF

Considering the nonlinear dynamic characteris-
tics like the large time delay, time-varying, and
multi-phase and multi-field coupling in complex BF
ironmaking process, a multivariate nonlinear model-
ing method is proposed based on PCA and dynamic
AGA-ANN method, as shown in Fig. 1. Firstly, a
dynamic feedback link is introduced on the basis of

traditional neural network, which stores the previous
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Fig. 1 Structure of hybrid intelligent dynamic modeling

input variables and output variables data with the
current input variables together as the current inputs
of dynamic neural network, enabling the network to
have historical data storage and processing capabili-
ties and improving the adaptability of dynamic BF
system. In addition, AGA and ANN are combined
for neural network training, which can improve net-
work convergence speed and avoid network into local
minima. Too high dimension of input variables may in-
crease computational complexity of predictive model and
further affect the prediction efficiency and accuracy;
therefore, the data-driven PCA has been used for di-
mension reduction of the model input variables in off-
line mode. This factor analysis based dimension reduc-
tion method does not require any transcendental
knowledge, and has low computation complexity.
Since the previous models are some idealized de-
scriptions for the fluctuation of only one parameter,
the target prediction of one component cannot give a
comprehensive reflection of blast furnace and offer
sufficient guidance for operators. Under this circum-
stance, a multivariate parameters model is estab-
lished, which can not only offer more comprehen-
sive information for operators but also enhance the
prediction accuracy of the model with the help of in-
troduced feedback structure. The inside correlation
of model is enhanced and corresponding accuracy is
improved when more variables are led as the inputs
of the new model when the model is expanded for

multivariate prediction.

2.1 PCA-based dimension reduction and secondary
variable selection

PCA is one of the widely used multivariate sta-
tistical techniques which consider all the noisy and
highly correlated measurements in a process, but
project the information down to low dimensional
subspaces where all the relevant information about the

0] - Ag for principle compo-

process are concerned-
nent,

u, =Xv;, (1
where, u; is the ith score vector; X,xm, =LZ1s T2
e+, z,, ] is the n samples’ measured data array on m
variables; and v; is the characteristic unit vector of
covariance matrix X" X. The variance of XTX is eigen-
value A;, and satisfies Var(z;,)=2A;, A, =---222,, =0.

PCA is a procedure used to explain the variance
in a single data matrix X. The principal component
decomposition of X can be represented as follows:

X=UV"=Suy] +E (2)
where, U is the score vector; V is the loading vec-
tor; u,v; is the ith principal component; and E is a
matrix of residuals.

A rank n matrix X can be decomposed as the
sum of one principal component with n rank., How-
ever, if correlations and noise exist in the data, then
a few principal components are usually sufficient to
describe the major variances in the data. The remai-
ning principal components usually describe the vari-
ances of noise and by discarding them, noise filte-
ring effects are achieved. The variance contribution
and the total variance of principal component can
then be represented as follows:

m

e :Ak/_Z:lAj €D
iz
k k
Cy, =i§1]i=i§/1i/j§/1j (4)
where, 7, is the kth principal component variance
contribution; C, is the total variance of the first &
terms; and £ is the number of remaining principal
component, And if the noise has been filtered, the
measurement data can be mean centered and repre-
sented as:

k
X=U,Vi=2uv’ (5
i=1

where, U, 1s the score vector of the first 2 terms;
and V, is the loading vector of the first £ terms.
The number of principal component kept is de-
termined by the total variance, which often varies from
85% to 90%. In this way, dimension of the data space
could be shrunk without losing any useful message.
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2.2 Multivariate prediction modeling for MIQ using
dynamic AGA-ANN
2.2.1

In this study, three-layer dynamic error back prop-

Network structure

agation neural network architecture is used to achieve
the following nonlinear dynamic mapping:
Y)=wun{UG@) o UGt —k), Y1),
Y(t—Fko)t (6)
where, x={U), -, U(t—k),Y(&—1),,Y(t—
ko) } ER? is the input vector of dynamic neural net-
work; U(t)="[u,(¢),-
ondary variables simplified by PCA at time #; U(t —
kD) =[u, (t — k), u,(t—Fk;)] is the values of
secondary variables at previous time ¢t —k; {Y(z)=
[y (2), e
neural network at time t; Y(t — ko) =Ly, (t —ky),

su, ()] is the values of sec-

»y. ()] is the output values of dynamic

seoyy,. {t—Fky) ] is the values of Y at previous time ¢ —
ky. Here, m=4, and y,, ys» y3, y. are the pri-
mary variables that need to be predicted and deno-
ted, namely ws s wp;s w;s and MIT, respective-
ly. In addition, the values of 2y and ko (k1,k0 € Z7)
are selected according to dynamic characteristics of
specific process.

The output of j th hidden layer nodes in the pro-
posed dynamic neural network is:

d
zj:F(ij,-x,-ﬁijo) (7)
i1

where, F is the activation function of hidden layer
nodes, which usually uses the popular sigmoid func-
tion F(a)=1/(1+exp(—a)), a €R; wj is the
weight connecting the jth hidden node and the ith
input nodes; wj, is the bias of the jth hidden node;
and d is the number of hidden layer nodes.

The output of network according to x of kth
node in output layer is:

Vi (I):Ewkaj' +a)ko:
il
1

n
z W pj

il

- +wpo (8)
1+ exp{ *I_;wﬁxi —wjo )
where, w,; is the weight connecting the £th output
node and the j th hidden nodes, and w,, is the bias of
the kth output node.
2.2.2
works based on adaptive genetic algorithm
Traditional BP neural network has the disad-
vantage of slow convergence speed and will easily

Hybrid training method for neural nei-

get into local dinky value. As known, genetic algo-
rithm (GA) is a global optimization algorithm, and
is a good candidate for dealing with the above prob-
lem. Therefore, a hybrid algorithm which combines
AGA with ANN is used to improve the network

convergence speed and avoid network into local
minima.
(1) Coding scheme
To ensure the accuracy of network learning and
avoid weight step change, real-coded genetic algo-
rithm is adopted here. Sigmoid function is used as a
transfer function of hidden layer. In the process of
coding, all the weight and bias of neural network are
served as gene on chromosome, and every gene con-
stitutes the chromosome vector V= [wv,, L, v, s
where v;, i=1,++,L is the ith gene.
(2) Fitness function
Following error square measure is used to do
the fitness evaluation:
B P
P A

where, 7 is the fitness function; P is the number of

€

training samples; p is the current study sample; ¥,
is the ideal output of node %2; and y, is the actual
output of node k. It is noted that the batch process-
ing method is used to train the sample here.

(3) Crossover operation

Crossover operation is a method used to choose
the parent chromosomes engaging in crisscross-in-
heritance according to a given crossover probability.
Here, the following arithmetic crossover algorithm
is used to ensure that the resulting offspring lies be-
tween the two parent chromosomes:

‘/\71 =aV,+(1—a)V,

A (10)

V,=aV,+({1—a)V,
where, V|, V; are two chromosome vectors; ‘Afl ,

A
V, are the corresponding new chromosome vectors

by arithmetic crossover; and « is a random number
in[0,1].
(4) Mutation operation
Adaptive mutation operator is developed to ad-
just the search area adaptively, and this algorithm
can obtain better global searching capability and

convergence performance:

1——L-yx

0 =0+ B — v, X (1 r ) (11)
or
0 =0, + Brrn— v X (17T ) 12)

where, the range value of the gene in the mutation
site v; 15 [ Bi mm »Bimix ) » and Yimax 18 the maximum ad-
aptation degree of the problem. It has to be noticed
that since 7., is always difficult to be determined,
the maximum adaptation degree in the present group

can be used to substitute 9,... And r is a random
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number in (0, 1), AE[2, 5].

In AGA-ANN hybrid algorithm, the AGA is
used to do the global optimal search for the thresh-
old, weight values of BP algorithm and location in a
satisfying search space under certain condition in the
solution space. Then, the weight value and thresh-
old calculated by the AGA can be used as the corre-
sponding initial weight and bias of BP algorithm.
Thus, the global optimal solution converges quickly
in the located small space and can be searched easily
by the BP algorithm which has excellent local search
ability. The specific process is as follows:

Step 1 Determine the parameters of AGA and
BP algorithm,
Step 2 Randomly generate n groups of initial

weight values and threshold, and use real-coded
mechanism to code the weights and bias in order to
construct chromosomes one after another.

Step 3

mine the fitness function value of each correspond-

Calculate the error function and deter-

ing chromosomes. The greater error is, the smaller
fitness value will be.

Step 4 Choose the individual with the biggest
fitness function value and inherit its identities to
next generation (preservation of optimal individuals).

Step 5
and mutation to deal with the current generation of

Use genetic operators like crossover

groups and produce the next generation groups.
Step 6 Repeat Step 2 to Step 4 to make the

Py o= =

distribution of weight values and bias evolve contin-

uously until the 7... is less than the target error.
Step 7

somes produced by GA algorithm to train the net

Use the weight values and chromo-

until reach the target error square. And repeat Step
2 to Step 6, if the error did not meet the target
within a prescribed number of training.

3  Acquisition of Basic Database for Model
Training and Model Testing

Industrial experiments with the proposed meth-
od have been made at BF No. 2 in Liuzhou Iron and
Steel Company. This BF went into operation in Sep-
tember, 2012, and its volume is 2600 m®, Since the
raw material in the ironmaking process is closely re-
lated to Si, P and S contents, the relevant parame-
ters are seriously considered in the selection process.
Based on the process mechanism and existed instru-
ment status, the process parameters influencing the
MIQ are determined including blast temperature,
blast pressure, oxygen enrichment percentage, flow
rate of oxygen enrichment, gas permeability, gas
volume of bosh, bosh gas index, blast kinetic energy,
blast humidity, cold air flow, feed blast ratio, re-
sistance coefficient, volume of coal injection, theo-
retical burning temperature, actual wind speed and
furnace top pressure. Fig. 2 shows the schematic dia-
gram of the blast furnace smelting system.

F z P; | Model === Gas permeability
E A -fr-—

i

Coal
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volume |
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Fig. 2 Schematic diagram of blast furnace ironmaking system

Direct detecting variables in Fig. 2 are explained

as follows.
(1) Two flowmeter FTs are located on the pipe-
line of cold air and oxygen to measure the flow of cold

air q. and flow of oxygen enrichment ¢, online,

(2) Two DPharp EJA pressure transmitter
PTs are mounted on the inlet air pipe of hot air and
the top of blast furnace separately to measure the
hot air pressure p, and the pressure of the top blast

furnace p;, respectively.
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(3) A temperature transmitter TT is mounted
on the pipeline of hot air to detect the temperature
of hot air t,.

(4) An air humidity sensor HT is located on
the entrance of blower to regulate the humidity of

blowing air A..

The rest of used preliminary input variables in
Fig. 2 are given in Table 1. All of them are calculat-
ed by the above directly detected variables, and their
relationships can also be seen clearly from Fig. 2.
The name of these indirect variables and their calcu-
lation formulas are demonstrated in Table 1.

Table 1 A list of preliminary input variables

Variable name Unit Calculation formula
8 . c c ¢ o 0. 29
Oxygen enrichment percentage mass % {[O 0163q,+ HO,21+O 82090h ] XZ*OH/[Z—O+:—O] — [O, 21+ 200 J} X100
(Gas permeability m® e min ! ¢« kPa ! 100q./(pn—0p1)
. ¢ o .8h.q. . 8hq, CAAVX A
Gas volume of bosh (A}) m? » min~! 1219 +i+/14 $hege | 41 8heg 22. 1A XAy
60 30 6000 6000 12
Bosh gas index m? e min~! e m~2  A,/78.5398125
inoti qche 9oh. he
as e ene . g1 ) _ L2A?
Blast kinctic energy k] +s 0.021q. +[6000O+6000O/[ 203, G]}/0 2AZ/50
Feed blast ratio mass ¥ q./2000
Resistance coefficient [(10000p,)2—100p2 ]/ALT
Volume of coal injection (Ay) kgt ! Manual set
Theoretical burning temperature C 1559+ (0. 839t,) +(49729,/g.) — (6. 033h ) — (3. 15A,X1000000/q.)
Actual wind speed (A,) mes ! 0.101325(273+11,)/[273€0. 101325+ p1) 1 X (q./3600X 4/3. 14/30)

Note: Ap—Hydrogen content in coal.

Meanwhile, because the excessive computational
complexity might be increased, and the efficiency
and accuracy of system could also be affected when
there is a strong correlation among these 16 input
variables; therefore, factor analysis based on PCA
algorithm is used to analyze the original samples to
ascertain the principal components influencing Si con-
tent y, (%), S content y, (%), P content y; (%) and
MIT vy, (°C) of molten iron. As a result, 6 principal
components, namely gas volume of bosh u; (m®/
min), blast temperature u, ('C), blast pressure u;
(kPa), oxygen enrichment percentage u, (%), blast
humidity us (g/m?*) and volume of coal injection ug
(kg/t), are chosen to constitute a new sample set as
the secondary variables for dynamic neural network
modeling.

Considering the dynamic characteristics of iron-
making, the time sequential and lagging correlations
between input and output, the data on both input
and output layer at previous time were led to the in-
put layer of the model to construct a self-feedback
model. And the nonlinear dynamic function and map
is given below:

i @) sy, sy () sy, D =¢Pan{u, @) su (),
ws () sus () sus () s () s G — D su (2 — 1),
us—Du, G— D us C— D) yusgt— 1) ,y, 2 —
Doy, ¢— 1D,y —1D),y, —1)} (13

In this study, the secondary variables at cur-
rent time u; (z), ***, us (¢), the secondary varia-
bles at last time u, (z— 1), ,us (t— 1), and the
estimated MIQ outputs at last time y, (£ — 1),
y4(t— 1) are taken as the comprehensive inputs of
the dynamic neural network, so the number of neu-
ral network input node is 16. In addition, through
numerous experiments, when the number of hidden
nodes is set as 33, a reasonable result is achieved.
Finally, a 16-33-4 three-layer net model is built and
a dynamic feedback-introduced neural network struc-
ture is achieved.

In order to validate the feasibility and the gener-
alization ability of the developed model, industrial
experiment has been made based on the data collect-
ed from 7am November 18th, 2013 to 4am Novem-
ber 21st, 2013 at BF No. 2 in Liuzhou Iron and Steel
Company with a sampling frequency about 1 h™',
The data selected in this paper has obvious volatility
and typicality, which can show the fluctuation condi-
tion of working condition under widespread load dis-
an ANN
model with less mean square error (MSE=[0. 1678,
0.1584,0.1504,0.1736]) is obtained. The modeling
results and its corresponding probability density func-

turbance. Through repetitive training,

tion (PDF) as well as the error autocorrelation curve are
shown in Figs. 3 and 4, respectively. The modeling
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Fig. 4 Probability density function (a) and autocorrelation curve (b) of modeling error with the proposed method

results show that the developed ANN prediction
model is excellent and the actual and estimated val-
ues agree well with each other.

Fig. 5 illustrates the testing results and the cor-
responding estimation MSE is [ 0.1140, 0.1036,
0.1904,0.2086 ]. The PDF of estimation error and
the error autocorrelation curve using the proposed
method are presented in Fig. 6, and the PDF of es-
timation error and the error autocorrelation curves
by the conventional ANN modeling method are
shown in Fig. 7. It can be seen that quite good esti-
mation has been obtained when practical industrial
data are used for testing, and the model can accu-

rately describe the MIQ index in each ironmaking
time, which is much better than that with the con-
ventional ANN modeling. The average estimation
accuracy with the proposed method is 87%, when
the average relative error by the model is less than
0. 05.

It is thus obvious that the proposed model
based on PCA and dynamic AGA-ANN has high es-
timation precision and good generalization capability
for multivariate prediction of MIQ. The experiments
show that the model can meet the actual production
requirements and could be used as a useful guide for
operators in practical BF operation process.
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4 Conclusion

A new nonlinear modeling method has been pro-
posed based on PCA and dynamic genetic neural net-
work to make multivariate parameters prediction for
Si content, S content, P content and MIT. To es-
tablish this model, time hysteresis existing in every
process parameters is seriously considered. Input
and output data at last time are stored in this mod-
el, and the whole network has the capacity of sto-
ring and handling data, thus improving the adaptabili-
ty of this network. At the same time, adaptive genetic
algorithm and neural network have been adopted for
network training, which improve the network con-
vergence speed and effectively avoid the network in-
to local minima. A compressed variables dimension
and more simple and effective model are obtained by
pretreating data with principal component analysis
on the premise of keeping all the relevant informa-
tion of original data. And through multivariate non-
linear prediction, more precise accuracy can be ob-
tained to reflect the status inside blast furnace than
a single parameter forecasting, which can guide op-
erators to take timely operation and realize optimal
control. Industrial experiments for molten iron qual-
ity prediction have been made through the proposed
model based on the data collected from practical in-
dustry field, and a high hit rate of prediction is real-
ized. Therefore, the method and the model proposed

are feasible.
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