
Available online at www.sciencedirect.com

-"
-:;" ScienceDirect

JOUI~NAL OF IRON AND STEEL RESEARCH, INTERNATIONAL. 2015,22(6) : 187-195

Intelligent Multivariable Modeling of Blast Furnace Molten Iron

Quality Based on Dynamic AGA-ANN and peA

Meng YUA j\P , P ing ZHOU l
, Ming-li ang LF, Rui-feng LP ,

Hong W A NGl. 3
, Tian -you CHAP

(1. St ate Key Laboratory of Synthetic al A utomation for Process Indust ries , Nor theastern University , Shenyang 110819 ,

Liaon ing , China, 2. Automation Studio of Iron Making Factory, Liuzhou Iro n and St eel Company, Liuzhou 515002 ,

Gu angxi, China ; 3. Control System Center, University of Manch ester, Ma nch ester M60, lQD, UK)

Abstract : Blast furnace (BF) ironmak ing pro cess has comple x and nonlinear dynamic charac te ris tics . The molten iro n

temperature (MIT) as well as Si , P and S contents of molten iron is diffic ult to be dir ectly measured online, and

large-time dela y exists in offl ine analysis through laborato ry sampling. A nonlinear multivariate int elligent modeling

method was proposed for mo lt en iron quality (MIQ) based on principal com ponent analysis (PCA) and dyn ami c ge­

neti c neu ral network. The modeling method used th e practi cal data processed by PCA dim ension redu ction as inputs

of th e dynamic art ificial neural network (ANN) . A dynamic feedback link was int rod uced to produce a dynamic neu ­

ral network on the basis of traditional back propagation ANN. The proposed model improved th e dy namic adaptabili­

ty of net wo rk s and solved th e strong fluctuation and res is tance problem in a nonlinear dynamic s ys te m. Moreover, a

new hybrid training method was pr esented wh er e ada ptive genet ic algorithms (AGA) and A NN were int eg rat ed,

which could improve net work convergence speed and avoid network into local m inima . The proposed method made it

easi er for operators to understand the insi de status of blast furnace and offer ed real-time and reliable feedb ack infor­

mation for rea lizing close - loop cont ro l for MIQ. Indust r ial expe rime nts were made th rough th e proposed mod el based

on dat a collec te d from a pr acti cal s te el company. The acc urac y could meet th e requ irem ents of actual op eration.

Key word s : molten iron qua lity, blast furnace; nonlinear m ult ivariate modeling, dynamic neural network, pr inc ipa l

component analysis ; adaptive geneti c algorithm

Steel is one of the mos t important industria l

raw m ateria ls in so cia l deve lopment, and bl as t fu r­

nace CBF) ironmaking is the primary unit of the

w ho le s teel m an ufact ure process. At pres ent, the

m ol ten iron qua li ty CM IQ) determines the level of

the products and also refl ects t he ene rg y consump­

tion state of the blas t furnace to some extent[1-1 ].

T hus, it is esse n t ial to accura tely learn t he param e­

ters of hot m etal quality so as to rea lize optimal con ­

t rol and ene rgy saving of blast furnace. H ow ever ,

the tec hno logical param eters tha t can r efl ect t he

MIQ such as temperature of ho t metal, con ten t s of

S i , P and S, et c. are diff icul t to be directl y de te cted

online using conven tiona l inst ruments, and the off-

line ana lysis process serious ly lag s beh ind , which

greatly in fluence and limit the needs of real-time and

optimal cont ro l in iron m aking process.

Recently, many predict ive models fo r MIQ have

been developed to optimize the BF operation and

cont ro l, including mathematical models fo r si licon

content prediction based on theoretica l ana lysis of

BF t hermal condi tion, lik e W U [ 5] and EC[6] s truct ure

designed in France and Ben elux res pect ivel y. Moreo ­

ver, num erous artificial in telligenc e models based on

expert-like lea rning method have also been pro­

posed [7-9] . H ow ever , these MIQ predictive m odel s

are on ly some idea lized descrip t ions for on ly one pa­

rameter fl uct ua tion am ong m any ch ange facto r s ,
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s uc h as the m olten iron te mperature (MIT ), or Si

con tent predic tion[lO-12J. BF iron maki ng process is a

com plicated dy na m ic system wit h m an y influen ti al

facto rs, so the target predi cti on of one component is

fa r from enough in pract ice.

In a r tificial in te lligence fiel d, a r tificial neural

net w ork ( A N N ) as an em erg ing discipl in e developed

in 1980s is an in telli gen t too l, w hic h sim ulates the

h um an nervous system to do percept ion, analysis

an d proble m so lvi ng. Currently, there a re a lo t of

research reports on MIQ pre dic tion or es ti mation

m od el s wi t h ANN t echnique, s uc h as R efs. [1 3-17].

However, these ex ist ing MIQ neural network p re­

dictive m od el s a re just so me static m od el s, and can

on ly pre dict for one pa rt icu la r pa ra meter[l5.18J.

Focu sin g on this practical cha lle nge, a dat a­

driven nonlin ear mult ivariat e m od el in g m ethod was

prop osed for M IQ in bl as t furnace smelt ing p rocess

based on dyn amic genet ic neural network and p rinci­

pal co m po nent analys is ( PCA) in this study. Firstly ,

by ana ly zing the pract ical process m ech anism and in­

s ta ll ed in st rument s ta t us, sev eral key process va r ia ­

bl es or s ta te variables that are di rectly related to the

MIQ (namely MIT , Si content, P co ntent an d S

content ) we re determ ine d. Then , the m os t im por­

tant va ria bles fro m sta te variables we re det ermin ed

as the seconda r y variables ( in puts ) for multiva r iat e

pred ict ion m od eling us ing the P CA. A fter that,

based on the act ua l in d ustrial da ta, a da ta-based

nonlinear m ult iva riate dyn amic in tell igen t m od el was

es tablishe d for M IT pred ict ion by co m bini ng adap ­

t ive geneti c a lgori t h m ( A G A ) wi t h ANN. F inally,

indus tria l expe r im en t s w ere made w ith the p ropos ed

predic tive m od el. The r esult s demonst rate that the

proposed multivar iat e AGA-ANN dy na mi c m od el

fo r MIQ in BF smelting process ca n simultaneously

m ake a better p redi cti on fo r MIT , Si content, P

content an d S content, according to the change of

process pa ra m eters.

1 Process Description

The BF iron mak ing is a co m plex nonli nea r dy­

namic p rocess , and the BF bod y is the m os t co m pli­

ca ted m etallurgical reacti on vessel wi th the larges t

vo lu m e and h ighest ene rgy co ns u mptio n. T he w ho le

BF smelt in g process is co nducted in a closed vertical

fu rn ace. Many physi cal and che mical reactions be­

tween furnace cha rges and gas are in ter twin ed and

m ixed in the co un terc urrent m ov ement of t he s mel ­

t in g process. Becau se the closed nature of BF and re­

action status cannot be observed by operators directly,

s trict en viron men t s fo r di rect m easurement m ake

the op era tion of iron maki ng s ti ll depend on indi rect

m easurem en t b y virtue of in s t r um en ts. Hence, m ol­

te n iron quali t y in dices a re required to in direc tly re ­

fl ect the inside sit uation of furn ace and ensure sa fe

opera tion of the BF. Bei ng a ble to m ake acc urate es­

t imation of MIQ m akes it easier for op erato rs to dis­

co ver problem s and adjus ts operation m agni tu de ear­

lier so as to re duce poll utan t emissions and ac hieve

the optimal control to improve the operat ional per­

fo r manc e of this co mplex process.

MIQ is one of the m ost impor ta n t production

in dexes in the BF ir onm akin g process. I t de ter­

mines the s ubsequent steel product s qu ali ty an d en ­

ergy co nsumpt ion of the w hole m el ting p rocess . In

p rac tica l pro d uc tio n si t uation, m olten iro n tem per ­

a t ure ( physical heat ), si lico n m ass fr action in m ol ­

te n iron ( w [SiJ ' chemical h ea t) , sulfur m ass fr ac­

tion (w [sJ ) and phosphor us mass fraction ( w [I'J )

have b een chosen to m easure the quality of m ol ten

iro n com p rehen s ivel y. M any fact o rs affec t the MIQ

in the w ho le BF m elt in g process, incl uding not on ­

ly in trinsic prop ert ies o f both iro n ore and fuel, bu t

a lso the p rocess operatin g param ete rs. And the op­

erat in g pa ram eters can also be divided in to two

par ts : the opera ti ng param ete rs in loading and

cha rging pa rt, and t he pa ram eters in bosh and

hea r th pos it ion. Due to the exis t ing long lag t im e

( al w ays 5 - 6 h) fr om the fresh ore into the load­

in g and charging par t to the hea r th of the BF, the

opera tio n para meters in load in g and cha rging pa r t

ca n be ignored in the proced ure of m od eling and

contro l for MIQ, and just ac te d as adjus tab le

boundar y co ndi tio ns. T herefore, the secondar y var­

ia bles fo r MIQ p redic tive m od el in g must be ap pro­

priate ly se lected fr om these variab les, and the

dominant variab les of the mode l are the quali ty pa­

rameters needed to b e online est imated such as the

m olten iro n tem peratu re, Si co n ten t , P co n t en t

and S co n t en t.

2 Data-driven Nonlinear Multivariate Dynam­
ic Modeling for MIQ in BF

Co nsideri ng the nonlin ea r dynamic cha racteris­

tics lik e the la rge t im e delay , t im e-va ryin g , and

mul ti-phase and mul ti-fi eld coup ling in complex BF

ir on m aking p rocess , a mul ti va ria te nonlinear m od el­

ing metho d is prop osed based on PCA and dynam ic

AGA-ANN m ethod, as sho wn in F ig. 1. Fi rstly , a

dy na mic feedback link is introduced on t he bas is of

tradi t ional neura l network, wh ich stores the previous
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Contro l inputs

,----- -;-::;= = c;----, Act ual value of
"'lSi" U'ISIr WlPl,

Y(t)

PCA based
,dimension reducti on

2. 1 PeA-based dimension reduction and secondary

variable selection
PCA is one of the widely us ed mul tivariate sta­

tis tica l te chniques which consider all the noisy and

highly correlated measurements in a process. bu t

proj ect the information down to low dimensional

subspaces where all the relevant information about th e

process are concerned[19.20] . As for principle com po­

nent.

u , = XVi (1)

where. u , is the ith score vector; X "X m = [ X l ' X 2 '

••• • X m ] is the 11 samples' m easured data array on m

variables; and viis the cha racter is t ic uni t vector of

cov ariance matrix X TX. The vari ance of X TX is eigen­

value Ai' and satisfies Var(t i )=Ai' A I ~"·~Am ~O.

PCA is a procedure used to explain the variance

III a single data matrix X . The principal component

decomposition of X can be r epres ented as follows:

Fig. 1 Structure of hybrid intelligent dynamic modeling
X =UVT= 'f.U iV; +E

i = l
(2)

where. Uk is the score vector of the firs t k terms;

and V k is the loading vector of the first k ter m s.

The number of principal component kept is de­

termined by the total variance. which often vari es from

85% to 90%. In this way. dimension of the data space

could be shrunk without losing any useful message.

( 5)

(3)

(4)

k

X = U, vI = 2.: U i V ;
i =l

r;k=A k/'f.A j
) =1

k k A
Cn, = .2.: r; i = 2.: ,1 i / 2..., Aj

1= 1 1= 1 ) = 1

where. r;k is the k th principal component vanance

contribution; Cr;k is the total vari an ce of the first k

terms; and k is the number of remaining principal

component. And if the noise has been filt ered. the

m easurement data can be m ean centered and repre-

sented as:

where. U is the score vector; V is the loading vec ­

tor; UiV; is the i th princip al component; and E tS a

m atrix of residuals.

A rank 11 matrix X can be decomposed as the

sum of one principal component with 11 rank. How­

eve r . if correlations and noise exis t in the data. then

a few principal components are usually sufficient to

describe the m ajor variances in the data. The remai­

ning principal components usually describe the vari­

ances of noise and by discarding them. noise filt e­

ring effe ct s are achiev ed. The variance contribution

and the total variance of principal component can

then be represented as follows :

input variables and output variables data with the

current input variables together as the current inputs

of dynamic neural network. enabling the network to

have historical data storage and processing capabili­

ti es and improving the adaptability of dynamic BF

system. In addition. AGA and ANN are combined

for neural network training. which can improve net­

work convergenc e speed and avoid network into local

minima. Too high dimension of input vari ables may in­

crease computational complexity of pr edictive model and

further affect the prediction eff iciency and accuracy;

therefore. the data-driven PCA has been used for di­

mension reduction of the model input variables in off­

line mode. This factor analysis based dimension r educ­

tion method does not require any transcendental

knowledge. and has low computation com plexity.

Since the previous models are some idealized de­

scriptions for the fluctuation of only one paramet er.

the target prediction of one component cannot give a

comprehensive reflection of bl ast furnace and offer

sufficient guidance for operators. U nder this circum ­

stance. a multivariate parameters model is es ta b­

lished. which can not only offer more comprehen­

sive information for op erators but also en hance the

prediction accuracy of the model with the help of in­

troduced feedback structure. The inside correlation

of model is en hanced and corresponding accuracy is

improved when more variables are led as the inputs

of the new model when the model is expande d for

multivariate prediction.
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or

~i =Vi + (f3i ,min - Vi ) X O-r ( I -~ ) ') (2)

where, the range value of the gene in the mutation

site Vi is [f3i, min ,f3i,max ]' and l max is the maximum ad­

aptation degree of the problem. It has to be noticed

that since 1m" is always difficu lt to be determined,

the maximum ad ap tation degree in the present group

can b e us ed to substitute l max. And r is a random

(9)

(1)

(0)

p

1= I; I; II Y k-Y k liZ
P k

where, 1 is the fitness function; P is the number of

training samples; p is the current study sample; Yk

is the id eal output of node k; and Y k is the actual

output of node k. It is noted t ha t the batch process­

ing method is used to train the sample here.

(3) Crossover operation

Crossover operation is a method used to choose

the parent chromosomes engaging in crisscross-in­

heritance according to a given crossover probability.

Here , the following a rit h m et ic cros sover alg o r it h m

is used to ensure that the resulting offspring lies be­

tween the two parent chromosomes:
A

{

V I = aVz + 0 - a )VI

V z=aV1+(1 -a)Vz

convergence speed and avoid n etwork into local

minima.

(1) Coding scheme

To ensure the ac curacy of network learning and

avoid weigh t step change, real-coded genetic algo­

rithm is adopted here. Sigmoid function is used as a

transfer function of hidden layer. In the process of

coding, all the weight and bias of neural n etwork are

served as gene on chromosome, and eve r y gene con­

stitutes the chromosome vector V = [V I' L, VL]'
where Vi' i = 1, .. ·,L is the ith gene.

(2) Fitness func tion

Following error square m easure IS us ed to do

the fitness evaluation :

A

where, V I' V 2 are two chromosome vectors; V I'
A

V z a re the co r respon d ing new chromosome ve ctors

by arithmetic crossover; and a is a random number

in [ 0 , 1].
( 4) Mutation operation

Adaptive mutation operator is developed to ad­

just the se arch a rea adaptively , an d this algo r it h m

can obtain better global searching capability and

convergence performance:

A _ + (13 ) ( (I - ----'L ) ' )V i -Vi i . ma x -Vi X l -r 7}max

2. 2 M ultivariate prediction modeling for MIQ using

dynamic AGA-ANN
2.2. 1 Network structure

In this study, three-layer dynamic error back prop­

agation neural network architecture is used to achieve

the following nonlinear dynamic mapping:

Y Ct ) = lfINN {U Ct ) , ... ,U (t - k r ) ,Y Ct -1) , .. . ,

YCt -k o)} (6)

where, x = {U(t),"',U(t-kr),Y(t-l),"',Y(t­

k 0) } E R d is the input vector of dynamic neural net­

work; U'Ct ) = [UI Ct r ,> .u; (t) ] is the values of sec­

ondary variables simplified by PCA at time t; U(t­

kI) = [U ICt -kr),"',unCt -kr) ] is the values of

secondary variables at previous time t-k r ; {Y ( t)=

[ y I (t ) , .. . , v ; (() ] is the output values of dynamic

neural network at time t; Y Ct - k () ) = [ y I (t - k 0) ,

.. . ,y", (t -k o ) ] is the values ofY at previous time t ::

k o . Here, m = 4, and Y I' Yn Y 3' Y 4 are the pri­

mary variables that n eed to be predicted and deno­

ted, namely W [ Si] , w [!' ] , W [s] and MIT, respective­

ly. In addition, the values of k r and k o (k r ,k o E Z +)

are selected according to dynamic characteristics of

specific process.

The output of j th hidden layer nodes in the pro ­

posed dynamic neural network is:
d

Zj = F ( I;W jiX i + W jo ) (7)
i = }

where, F is the activation function of hidden layer

nodes, which usually us es the popular sigmoid func ­

tion F(a) =l/C1 +exp(-a», a ER; W ji is the

w eight connecting the j th hidden node and the i th

input nodes; W jO is the bias of the j th hidden node;

and d is the number of hidden layer nodes.

The output of network according to x of k th

node in output layer is:

Y k (x) = 'tW kjZ j + WkO =
j ~ I

'tW kj d 1 + WkO (8)
j ~ I 1+ e xp { - I;W jiX i - W jo}

i =l

where, Wkj is the w eight connecting the k th output

node and the j th hidden nodes, and WkOis the bias of

the k th output node.

2.2.2 Hybrid training method for neural net-

works based on ada pt iue genet ic algorithm

Traditional BP neural network has the disad­

vantage of slow convergence speed and will eas ily

get into local dinky value. As known, genetic algo ­

rithm (GA) is a global optimization algo r it h m , a nd

is a good candida te for dealing with th e above prob­

lem. Therefore, a hybrid a lg or it h m which combines

AGA with AN N is used to improve the network
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number in (0,1), AE [2, 5J.

In AGA-ANN hybrid algorithm, the AGA is

used to do the global optimal search for the thresh­

old, weight values of BP algorithm and location in a

satisfying search space under certain condition in the

solution space. Then, the w eight value and thresh­

old calculated by the AGA can be us ed as the corre­

sponding initial weight and bi as of BP algorithm.

Thus, the global optimal solution converges qui ckly

in the located small space and can be searched easily

by the BP algorithm which has exce lle n t local search

ability. The specific process is as follows:

Step 1 Determine the parameters of AGA and

BP algorithm.

Step 2 Randomly generate 11 groups of initial

w eight values and threshold, and us e real-coded

m echanism to code the weights and bias in order to

construct chromosomes one after ano ther.

Step 3 Calculate the error function and deter­

mine the fitness function value of each correspond­

ing chromosomes. The gre a ter error is, the smaller

fitness value will be.

Step 4 Choose the individual with the biggest

fitness function value and inherit its iden tities to

next generation (preservation of optimal individuals).

Step 5 U se gen etic operators like crossover

and mutation to deal with the current gen eration of

groups and produce the next gen eration groups.

Step 6 Repeat S tep 2 to Step 4 to make the

distribution of w eight values and bias evolve contin­

uously until the r; m3Xis less than the target error .

Step 7 U se the weight values and chromo-

somes produced by GA algorithm to train the ne t

until re ach the target error square. And repeat Step

2 to Step 6, if the er ro r did not m eet the target

within a prescribed number of training.

3 Acquisition of Basic Database for Model
Training and Model Testing

Industrial expe r iment s with the proposed m eth­

od have been m ade at BF No. 2 in Liuzhou Iron and

Steel Company. This BF went into operation in Sep­

tember, 2012, and its volume is 2600 m ", Since the

raw material in the ironmaking process is closely re­

lated to Si , P and S contents, the relevant parame­

te rs are seriously considered in the selection process.

Based on the process mech anism and existed instru­

ment status, the process parameters influencing the

MIQ are det ermined including blast temperature,

blast pressure, oxygen en r ich men t percentage, flow

rate of oxygen en r ich men t , gas permeability, gas

vol ume of bosh, bosh gas index, blast kinetic energy,

bl ast humidity, cold a ir flow, feed bl ast ratio, re­

sistance coefficient, volume of coal inj ection, theo ­

retical burning t emperature, actual wind speed and

furnace top pressure. Fig. 2 shows the schematic dia ­

gram of the blast furnace smelting system.

Air
blower

Co ld air

Oxygen
enriclunent
pe rcentage

t
\- {Model r ~'~""'\

I

Ph,q~ - - .......-------
~ P, 1 Model ;- - - Gas permeability-- 1'1'---

[-- - '"I ~ " '- ' - ' - '-'- ' - '- ' - '- 'fT ' - '- ". -+-l lotm .
I
I

Blast j
stove'

I
I

!
I
I/",-'" \-_ _ -J=~~=.J I

I ' !
Coal \ I

injection I 'Ie, '10' II , I Taphole i
volume I I c h . " i

(Manual set)~ + (MIT," ISLI."IP[, \I [S I ) . a=!!==d!;===O!~=~=d!;===!~==~~~~==!.'==r=l
("ode~ L._ ._ ._._ ._ ._ ._ ._ ._._ ._ ._. I
l' S I __~Feed blast rat io I
1- G'L~ volume of bosh Ilesistance . tanc '" I

r--p-;:,"P;+(Model}-. coefficient vt~'{~ed C.IIl!l~e~~Model ',. ~rj;;>.. _
I Bosh --. Blast ' ---Model ~ "-J I
Igas index kinetic...--Model l ~i+- -- lh ' Ph II r.=:-. I
\_-~ Theoretlcal burning energy - I

h
, P ..... _r_, IfL ...- 1

tempera tur e h '---./

Fig. 2 Schematic diagram of blast furnace ironmaking system

Direct detecting variables in Fig. 2 a re explained

as follows.

(1) Two flowmeter FT." ar e locat ed on the pipe­

line of cold air and oxygen to me asure the flow of cold

air q c and flow of oxygen enrichment q 0 online.

( 2) Two DPharp E] A pressure transmitter

PTs are mounted on the inlet air pipe of hot air and

the top of blast furnace sep arately to m easure the

hot air pressure /) h and the pressure of the top bl as t

furnace Pr, respectively.



492 Journal of Iron and St eel Research, International Vol. 22

( 3) A temperature transmitter TT is mounted

on the pipeline of hot air to detect the temperature

of hot a ir t ho

( 4) An air humidi ty sensor HT is located on

the ent ra nc e of blower to regula te the humidi ty of

blowing air h , .

The r est of us ed preliminary input variables in

Fi g. 2 are give n in T able 1. All of them are calculat­

ed by the above directly detec ted variables, and their

rel a tionships ca n als o be se en cle arl y from Fig. 2.

The name of these indirect variables and their calcu­

lation formulas are demonstrated in T able 1.

Table 1 A list of preliminary input variables

Va riabl e nam e U nit

O xygen en richme nt percen tag e m ass%

Gas perm eabili t y m ' • m in -I . kPa - 1

Gas volume of bosh (A .) m ' • m in - 1

Bosh gas index m' • m in -I . m - '

Blas t kin eti c ene rgy k] • s - 1

F eed blas t rati o mass %

R esist an ce coe fficie nt

Vol um e of coa l inj ecti on (A, ) kg' t - 1

T heo ret ical b urning t em perat ure 'C

A ctu al wind speed (A ,) m • s - 1

No t e , Ah - Hydrogcn content in coa l.

Calc ula t ion form ula

( [0. 0 163q o+ [[0.21 + 0' 8209~1 ' ] X ~~] H~~ + ~~] - [0. 21+ 0'8209~1 ' ] l X 100

100q c! ( P h- P f)

1. 2 1q , q o 44 . 8h , q , 44.8h , q o 22.4A , X Ah
~+ 30 + 6 000 + 6 000 + 12

A . /7 8. 5398125

10. 021 +[~+~/[I-~] l/o , 2A ' / 50
\ q , 60 00 0 60000 803 . 6 a

q , / 2 000

[ ( 10 000 P h) 2-100p U /A ~' 7

M anual set

1 559 + ( 0. 839t h) + ( 4 972 qo/ q , ) - ( 6. 033h , ) - ( 3. 15A , XI 000 OOO / q , )

O. 101 325 ( 273 + t h) / [ 273 ( O. 101 325 + P h) ] X (q ,/3 600 X 4/ 3. 14/ 30)

M eanwhile, because the excessive computational

complexity might be increased, and the eff iciency

and accuracy of system could also be aff ected when

there is a s trong correlation am ong these 16 inpu t

variables; therefore, factor analysis ba sed on PCA

algor it h m is us ed to ana lyze the original samples to

asce r tain the princip al com ponen t s influencing Si con­

tent Y l ( %), S content Y 2 ( %), P content Y 3 ( %) and

MIT Y 4 CC) of molten iron. A s a result, 6 princip al

com ponen t s , namely gas volume of bosh U 1 Crn"/
min), bl ast temperature u , CC), bl as t pressure U 3

CkPa) , oxygen enrich m en t percentag e U 4 ( %), blast

humidity u s(g/m 3
) and volume of coa l injection U 6

(kg/t) , a re chosen to cons t it u te a new sample set as

the secondary variables for dynamic neural network

modeling.

Considering the dynamic chara ct er is t ics of iron­

m aking, the time sequential and lagging correlations

between input and output, the data on both input

and ou tput layer a t previous t ime were led to the in­

put lay er of the model to cons t r uc t a self-feedback

model. And the nonlinear dynamic function and map

is gi ven below:

(Y 1 (t ) ,y 2 Ct ) ,y 3 Ct ) , y 4 (t ) ) = t/J NN { U 1 (t ) , U Z (t ) ,

U 3 Ct ) ,U 4 (t ) ,U S Ct ) , U 6 Ct ) , U 1 Ct - 1) , U Z Ct - 1) ,

U 3 Ct -1) ,U 4 Ct -1) ,U s Ct -1) ,U 6 (t -1) ,y 1 (t­

1) ,y, Ct -1) 'Y 3(t -1) 'Y 4Ct -1) } (13)

In th is study, the secondary variables a t cur­

r ent tim e U 1 ( t ) , ... , U 6 ( t ), the secondary varia­

bles a t las t tim e U l (t-1)," ', U 6 (t-l), and the

est ima ted MIQ outputs a t las t time Y l (t - 1), ...

Y 4( t -l) a re taken as the comprehen sive inputs of

the dynamic neural n etwork, so the num ber of neu­

ral network input node is 16 . In addi t ion , through

numerous expe r im en ts , when the number of hidden

nodes is se t as 33 , a reasonable resul t is ac h ieve d.

Finally, a 16-33-4 three- la ye r net model is buil t and

a dynamic feedback-introduced neural network s t ruc­

ture is ac h ieved.

In order to validat e the feasibility and the ge ne r ­

aliza t ion abilit y of the dev eloped model , industrial

expe r iment has been m ade based on the da ta colle ct ­

ed from 7am N ove m be r 18 th, 2013 to 4a m N ove m ­

ber 21st, 2013 a t BF N o. 2 in Liuzhou Iron and Ste el

Company with a sampling fr equency about 1 h - 1 .

The data se lecte d in this paper has obvious vol atility

and typica lity , which can show the flu ctuation condi­

tion of working condition under widespread load dis­

turban ce. Through repe titive t ra ining , an AN N

model with less m ean square er ro r (MSE = [0.167 8,

O. 1584, O. 1504, O. 17 3 6J) is obtained. The modeling

resul ts and its corresponding probability den sity func­

tion (PDF) as well as the error autocorrelat ion curve a re

shown in Figs. 3 and 4, r esp ectively. The modeling
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results show that the dev eloped ANN prediction

m od el is exce lle n t and the ac t ua l and est im a te d va l­

ues agree we ll with each other.

Fig. 5 ill u s t ra tes the test in g resu lts and the cor­

respo nding estimation MSE is [0. 114 0 , O. 1036,

0. 1904 ,0.2086]. T he PDF of es t im a t ion error an d

the error au toco rrela tio n curve usin g the proposed

m eth od are presented in Fig. 6, an d the PDF of es ­

t imat ion error an d th e erro r au toco r rela t ion curves

b y the co nvent ional A N N mode ling m ethod are

show n in Fig. 7. It ca n be seen tha t qui te good es t i­

m ation has been o btained when prac tica l ind ust rial

da ta are used for t esting, and t he m odel can acc u-

ra t ely descr ib e the MIQ index in each iron making

t im e , w hic h is much better than that wi t h the co n­

vent ional A NN m od eli ng. T he average est imation

ac curacy with the p rop osed m ethod is 87 %, w he n

the average rel a tive error b y the m od el is less than

0.05.

It is thus obvio us that the proposed m od el

based on PCA and dynam ic A GA-AN N has hi gh es ­

tima t ion precisi on and good generalizat ion capa bilit y

fo r mul ti va r ia te p redicti on of MIQ. T he experiments

show that t he m od el ca n m eet the act ua l prod uc tion

req ui rem en ts and co uld be used as a useful g uide fo r

opera to rs in p ract ical BF operation process.
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4 Conclusion

A new nonlinear mo deling metho d has been pro­

posed based on PCA and dynamic ge netic neural net ­

wo rk to m ake mul ti va ri a te parameters prediction for

Si con t en t, S con ten t, P co n t en t and MIT. To es­

tablish this m od el, t ime h yster esis exis t ing in ever y

process pa ram eters is serious ly considered. Inpu t

and output data at las t time are stored in this m od­

el, and the w ho le network has the capacity of sto ­

r ing and handlin g dat a, thus impro ving the adapta bili­

ty of this network. At th e sa me tim e , adap tive genetic

a lgor ith m and ne ural network have been ado pted for

network training , wh ich im prove the network con­

ve rgence speed and effe ctive ly avoid the network in ­

to local m in ima. A co mpressed variables dimen sion

and m ore si mple and effe ct ive m od el are obtained by

pretrea ting da ta with princip al com po nent analysis

on the premi se of keep ing a ll the rel evan t informa­

t io n of original data. And through m ultivariate non­

linear pr ediction , m ore precis e acc uracy can be 0 b­

tain ed to refl ect the s ta t us inside bl ast furnace than

a s ingle parameter forecast in g, w hic h can guid e op ­

erators to take ti mely operat ion and reali ze opt im al

cont ro l. Indus t rial ex periments fo r mol ten iron qu al­

ity pred ict ion hav e been m ad e throu gh the proposed

m od el based on the data co ll ec ted fr om pract ical in ­

dustry field, and a h igh hit rate of pred ict ion is real ­

ized . Therefore, the m ethod and the model p roposed

a re feasibl e.
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