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Abstract: A neural network wit h feed-for wa rd top ology and bac k pro pagat ion algo r it hm was used to pr ed ict the

effects of che m ica l composit ion and te nsi le test par ameter s on hardness of heat affected zone (HAZ) in X70 pipel ine

s tee ls. The mass percent of che mical composit ions ( i. e. ca rbon equivalent based upo n th e Inte rn a tion al Ins tit ute of

Weldin g equation (CE nw ) , th e carbo n equivalent based upon the che mical port ion of the It o-Bcssyo carbo n equivalent

eq uation (CE Porn ) ' t he sum of the niob ium, vanadium an d titanium conce ntrations (C VT;"b ) , t he sum of t he niobium

and vana dium conc en tr ation s ( C xsv ), t he sum of the chro m ium , mol ybdenum , nickel and co ppe r conc en tr ation s

( C c,,",o,,;cu ) ) , yie ld strength (YS) at O. 00 5 offset, ul tim ate tensil e strength ( UTS ) and percen t elo ngation (Ell

we re considered as input parameters to the network , w hi le Vickers m icr oh ardncss with 10 N load was cons idered as

its out put . Fo r the purpose of con structing this m odel , 101 differ en t data we re gathe re d fr om the experime nta l re ­

sults. Scatter diagrams and t wo stat istica l crite ria , i. e. abso lute fra ction of variance ( R 2 ) and m ean relative error

(MRE ) , we re used to eva luate the pred ict ion perf ormance of th e develop ed m odel. T he develop ed model can be fur ­

th er used in practical ap plications of a lloy and th ermo-mech an ical schedule design in man ufacturin g process of pipe­

lin e s teels.
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HSLA st eels, also known as microalloyed stee ls ,

are mainl y low-carbon steels (C< O. 2% ) to which man­

ganese (Mn ) and sma ll amo unts of other alloying ele­

ments have been added. They are designed to provide

bet ter strength- to- weigh t ratios and high fracture tough­

ness over conve nt ional low-carbon steels[1. 2] .

The p robl em of op timizing HSLA steel we ld

m etal and heat affecte d zone (HAZ) stren gth and

toughness remain s a major ch allen ge to m any weld­

in g engi neers and research ers. It is conc lu de d from

prev io us works that the tou ghness inc reases with in ­

creasing vol ume fraction of fin e interl oc ki ng ferri te

grains known as ac icula r ferrit e (AF) in w eld m et ­

al[3]. W elding paramet ers and a llo ying elemen ts af­

fect AF formation, whi ch in turn affects the toughness

of we ld m etals. Therefore, ac hie ving s uperio r w eld

properties and reducin g w eld defects require an opti ­

m al control of a ll welding parameters and a skilful

welder. In ge ne ra l , the toughness of the HAZ is

lower than that of the w eld m et al due to mi crostruc­

tural cha nges that resul t from the we lding p ro ces s

hea t in put [48] . The HAZ is less du ctil e than the weld

metal, thus becom ing the wea kest portion of the we ld

where st ress concentration usually occurs[4-8] .

In orde r to prev ent fai lures in pipelines , it is

importan t to hav e good we ld qu ality, high im pact

toughness, and high strength[9-12]. Thi s is a big chal­

lenge for th e high s peed su b merge d arc w elding

(SAW) process since it is difficult to keep both high

strength and high impact toughness at the same time.

An y increase in strengt h is usually accompanied by a de­

crease in toughness. The predict ion of final mechani cal
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properties of H Al of pipeline steels is a sop hist icated

task and requ ires a deep kn owl edge of whole proc essi ng

para meters. Recently , arti ficial neural networks

( A NNs) have been used to investigate the correlat ion

between final mechanical prop erties and the chemical

composition and/or processing parameters of differen t
steels[13-19] . T he ai m of presen t s t udy is to dev elop an

ar ti ficia l neural network m od el to pred ict the effec ts

of chemical co m posit ion and the rm om ech anical con­

tro l p rocess (TMCP) paramete rs on hard ness and

impact properties of H Al of pipel ine steels.

1 Experimental Procedure

T en sile test was perform ed at room te m pe ra ­

t ure. T ran sverse samples were cut from bod y of the

pip e acco rdi ng to A P I s ta nda r dl /' ", T he gauge length

was 50. 8 m m , and a O. 5 class extensometer was

used to m eas ure the extension. The te nsi le samples

w ere prepared accor ding to AST M E8. The hardness

test load was 10 N and the test m ethod was dead ­

w eight . The transv erse sa m ples w ere prep ared ac ­

co rding to IPS standard[21] . The chem ica l analysis on

steels was ca rried out using an ARL qu an t m eter

2460 m odel. Sa m ple prep aration and t es t w ere done

acco rding to AST M A75 1. Transv erse samples were

ext ract ed from bod y of the pipe.

Before hardness test , the transverse we ldment

cr oss-sect ion was prep a red and polished usin g diffe r­

en t gra des of emery papers and diamond paste. T he

speci m en w as then et che d with 2 % n it a!' and exam ­

in ed by op t ica l m icro scop y.

In total , 43 test poi n ts we re examined fo r each

tes t sam ple on the cross-sectio n of API X70 we ld­

m en t , as shown in Fi g. 1. Inden ta tio ns were made

fro m one base m etal side to the other, below the

s urface and in the ho rizon tal centreline , on eit her side

of the w eld. From this, the hardness of test m aterial

w as determin ed for each pip e , and compared them to

I

~iSib)e heat ~feetedzonY
Fig. I Schematic of weldment cross-section demonstrating

different sub-zones for hardness measurement

indus try re quirements set by standard code . I t

sho uld be noted that, while the co n t ro l of a ll 43 dat a

poin ts was re quire d fo r hard spots examinat ion , onl y

th ree test po in t s (ou t of 43 ) we re used for average

hardness m easurement in each zone. T his is common

ind us t ry practice , based on pi pe del ivery condi tions.

The da ta poin t s used fo r hardness evaluat ion we re

10 , 23 , 36 (in vert ica l centreline of seam we ld ) for

we ld m etal , 7, 21 , 33 for H Al in the left side of fu­

sio n lin e, 13, 25, 39 for H A l in the r ight si de of fu ­

sio n line , and 3 , 18, 29 for base m etal, res pect ivel y.

The art ific ia l neural ne tw ork has been traine d

and tested for p redi cti on of H Al hardness of X7 0

pipeline steels . For th is pu rp ose , the expe r imental

da ta of 104 pipel in e s teels w ith diff eren t che mi ca l

co m positions were used . The inp ut va ria bles of the

A N N m od eling were the m ass percen t of alloying el­

ements and te nsile strength test res ults. These pa­

ra mete rs alo ng wit h thei r ranges a re sum marized in

Table 1 , where, CE nw is carbon equiva le n t based

upo n the In terna tional Instit ute of Welding equation;

CEl'cm is th e carbon equivalent based upon the che mi ca l

po r tio n of the Ito-B essyo ca r bo n equiva len t equa t ion

(Eq. ( 2»; C VT i:\b is the s u m of the ni ob ium, vanad i­

um and tita nium concentrations ; C :\ bV is the sum of the

Table I Parameters and their range used in the artificial neural network

Input layer

Ou tpu t layer

P arameter Minim um Maxim um Mea n Standard deviati on

CEnw /mass % 0.35183 O. 39635 0.3710 10 0.007 693

CEl'cm/ mass % O. 151 01 O. 189 37 0. 171015 0.0076 93

C VTi"h / mass % O. 011 33 O. 051 99 O. 019 720 O. 002 206

CCr.\t1o;..;'iCu / ma ss% 0.37588 0.16891 0. 105 175 0.0223 25

C " hV / mass % 0. 03319 0.01 1 96 0. 0379 60 0.001 577

YS/ MPa 16 2.99 570. 78 521.19 22. 705 51

UTS/ MP a 567 .90 681. 79 61 9. 17 18. 77122

£1/ % 32 11 35 1. 815621

HV, /HV IO 201 227 213. 5 3. 566 21 1

HVz!HV lO 172 198 182 . 5 5.71138



448 Journal of Iron and Steel Research. International Vol. 22

niobium and vanadium concen t ra t ions ; CCeMol'iCu is

the sum of the chromium, molybdenum, nickel and

copper concentrations; YS is the yield strength at

0.005 offset; UTS is the ultimate tensi le stress; E l

is percent elongation; and HV1 and HV2 are maxi ­

mum and minimum Vi ckers mi crohardness (I-IAZ­

max and HAZ-min) of the heat affected zone for the

ou tput layer with 10 N load, respectively.

In Figs. 2(a) and 2(b), the cumulative proba­

bility and probability density function of weld, HAZ

and base metal hardness are demonstrated. A s can be

seen in these plots, average hardness values of 220,

200, 205 I-IVIO were obtained for weld, HAZ and base

m etal, respectively.
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Fig. 2 Cumulat ive probability and probabili ty density function versus hardness in API X70 steel

Sp ecification 5L/ ISO

CE nw and CE Pcm are

where, I j is the m easured (actual) i th data of the

A four-l ayer feed-forward neural network wi th

back propagation a lgorith m was used to predict the

HAZ hardness of pipeline s teels. This neural net­

work model has a powerful input-output mapping

capability. With the us e of enough hidden neurons,

it can effectively approxima te an y con t in uous nonlin­

ear function . In the proposed model, one input lay ­

er, two hidden layers wi th hyperbolic sigmoid ac ti­

vation function, and one output layer with linear ac ­

tiva tion function were used. In feed-forward neural

networks, w eights and biases w ere it eratively adjus­

ted to minimize the network performance function

using a training al gorithm. The commonly used per­

formance funct ion in these neural networks was

mean square error (MSE, % ):

1 n

MSE( %) = - I: Ct , - O J ) 2 ( 3)
n i = l

output variab le; and O J is the predicted i t h data of

the variable; and 11 is the to ta l number of variables.

H ere , Bayesian regularization training al gorithm is

us ed to train the network. In this training algo­

rithm, w eights and biases w ere updated with Lev en­

berg-Marquardt optimization algor ith m . The net­

work generali zation can be improved by minimizing

a com bina t ion of MSE and the mean square of the

network weights. Also, the weights were considered

as random variables wi th Gaussian distribution.

To improve the generalization property of pro­

posed neural network model, the ea rl y stopping

te chnique was used and the overall da ta were ran­

domly divided into three subsets of training, valida­

tion and testing. In this technique, training process

should be stopped when the error for the validation

set s tar ts to increase. The er ror va lu e for te sts

shows if the ov er fitting has occurred or not. As

summarized in Table 1, the collected expe r imen ta l

data sets include 104 patterns, of which 74 patterns

w ere us ed for training the network. The remaining

data w ere divided equall y into two subsets to vali ­

dat e and tes t the trained network.

The numbers of nodes in inp u t and ou tput la y­

ers were equal to the number of inputs and outputs

of the network, i. e. , 8 and 1 for the present work,

respectively. The number of nodes in the hidden lay­

er was obtained through trial and error during train­

ing and tes t ing process of the network. U s ua ll y ,

sca tter diagrams are used to plot predicted values of

the neural network versus measured (experimen tal)

val ues. In this res earch, in addition to scatter dia -

(1)

(2)
W i'\i W M o io -;

6O+~+1O+ 5w B

According to the API

3183[20J, the expressions of

shown as Eqs, (l) and (2),

, . _ + W Mn + ( W Ce + W Mo+ W v ) +
CEnw - w c 6 5

(Wl'i+ Wcu)

15

2 Neural Network Training and Testing
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( 5 )

(4)

grams , two stat ist ica l cr iteria (i . e. , absolute fr ac­

t ion of variance (R 2
) and (MRE», were used to evalu­

ate the pre dictio n precision of the proposed m od el

(Eqs. ( 4) and ( 5» :

[
~ (t ; - O ; ) 2 ]

R 2 = 1- -;~~-­
~ (O ; ) 2
;

MRE( % ) =~ i: I t i r:o , I X 100
11 , ~ l t ,

T he rel iability and robustness of a neural net ­

w ork dep end on m any pa ram eters includin g learnin g

constants , activation fu nction an d random dis tribu­

t ion of the weights in the ini tia tio n of t ra in ing

process and the num be r of nodes in the hidden laye r.

T he small number of nod es in the hidden layer lead s

to lo w fitti ng and the high number ca uses over fi t­

t in g. So m e neural networks w ith 12 to 36 nod es in

the h idden lay er w ere train ed and the MRE value fo r

train ing and test ing datas et s of these net w orks were

ca lc ulated. I t was determ ined that the network w it h

20 nod es in the fir s t hidden layer and 12 nod es in the

second hid den layer, had less MRE va lue for the tes­

ti ng data. The inc rease in t he number of these nodes

did not improve the network res ults for training da­

ta. So the networ k structu re in the presen t work is

8-20-12-l.

The results of the developed neural network

m od el to pred ict the H A Z hardness of pipe line s teels

(i n the form of scatter diagram s and calculated R 2

va lues ) are shown in Fi gs. 3 (a ) and 3 ( b ) , re lat ive ly.

Al so, ca lc ulated MRE va lues for overall da ta and

trainin g, val idation and test ing s u bse ts are presen­

ted in Table 2. As can be seen in F igs. 3 (a) and 3 ( b)

and T abl e 2, the developed feed-fo rward neural ne t­

wo rk model wit h R 2 larger than O. 82 and mean re la ­

t ive error lower than O. 74 % for ov era ll dat a can p re­

di ct the H AZ hardness of pipeli ne steels wit h an ac ­

ceptable p r ecis ion. In o th e r words, there is a

good agree men t betw een the m easured ( experimen ­

tal) hardness of H A Z and the results of the pr es en t

o Training
o Validati on
[, Testing
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230 170 ISO 190
Measured HV,/HV IO
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Fig.3 Correlation of the measured and predicted HAZ hardness values in maximum (a) and

minimum Cb) sets for ANN model

Table 2 Calculated MRE values for training ,

validation and testing data

In this st udy, a neural network with feed-forward

topolog y and back propaga tion algorit h m was used to

predict H A Z hardness of pipeline s teels ( API X7 0 ).

The che m ica l co mposit ion and tensile t est pa ra m e­

te rs were considered as inp ut s to the net work. These

we re used from a w ide ra nge da tab ase co ntain ing re ­

s ults of pip el in e s t ee l pl at e through the pilot mill.

MRE

HAZ-m ax

H AZ-min

ANN m od el.

3 Conclusion

T raining

O. 529 789

0.731 659

Validat ion

0.159 271

0.51595 1

T est ing

0.100 25 1

0.119 298

The defini t ion of carbon equiva len t, based u pon the

Internat ional Ins t itute of W eldin g and Ito-B essyo e­

qua tions , is a nov el feature of the present work tha t

en hances the app licability of the develop ed A N N

m od el. A good approximation perform ance with R 2 of

0.86 and mean relat ive err or of O. 74 % for the ove ra ll

data was obtained. Thi s showed that the re was a

good agr eem en t between the m easured ( experimen ­

ta l ) and the predicted hardness fro m the A N N mod­

el. The overall results showed that the develop ed

model can art ific ially be used ( as a parall el comp u­

ting system ) to study the effects of a ll inp ut va ria­

bl es on the output one.
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