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Abstract: A neural network wit h feed-for wa rd top ology and bac k pro pagat ion algo r it hm was used to pr ed ict the

effects of che m ica l composit ion and te nsi le test par ameter s on hardness of heat affected zone (HAZ) in X70 pipel ine

s tee ls. The mass percent of che mical composit ions ( i. e. ca rbon equivalent based upo n th e Inte rn a tion al Ins tit ute of

Weldin g equation (CE nw ) , th e carbo n equivalent based upon the che mical port ion of the It o-Bcssyo carbo n equivalent

eq uation (CE Porn ) ' t he sum of the niob ium, vanadium an d titanium conce ntrations (C VT;"b ) , t he sum of t he niobium

and vana dium conc en tr ation s ( C xsv ), t he sum of the chro m ium , mol ybdenum , nickel and co ppe r conc en tr ation s

( C c,,",o,,;cu ) ) , yie ld strength (YS) at O. 00 5 offset, ul tim ate tensil e strength ( UTS ) and percen t elo ngation (Ell

we re considered as input parameters to the network , w hi le Vickers m icr oh ardncss with 10 N load was cons idered as

its out put . Fo r the purpose of con structing this m odel , 101 differ en t data we re gathe re d fr om the experime nta l re 

sults. Scatter diagrams and t wo stat istica l crite ria , i. e. abso lute fra ction of variance ( R 2 ) and m ean relative error

(MRE ) , we re used to eva luate the pred ict ion perf ormance of th e develop ed m odel. T he develop ed model can be fur 

th er used in practical ap plications of a lloy and th ermo-mech an ical schedule design in man ufacturin g process of pipe

lin e s teels.
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HSLA st eels, also known as microalloyed stee ls ,

are mainl y low-carbon steels (C< O. 2% ) to which man

ganese (Mn ) and sma ll amo unts of other alloying ele

ments have been added. They are designed to provide

bet ter strength- to- weigh t ratios and high fracture tough

ness over conve nt ional low-carbon steels[1. 2] .

The p robl em of op timizing HSLA steel we ld

m etal and heat affecte d zone (HAZ) stren gth and

toughness remain s a major ch allen ge to m any weld

in g engi neers and research ers. It is conc lu de d from

prev io us works that the tou ghness inc reases with in 

creasing vol ume fraction of fin e interl oc ki ng ferri te

grains known as ac icula r ferrit e (AF) in w eld m et 

al[3]. W elding paramet ers and a llo ying elemen ts af

fect AF formation, whi ch in turn affects the toughness

of we ld m etals. Therefore, ac hie ving s uperio r w eld

properties and reducin g w eld defects require an opti 

m al control of a ll welding parameters and a skilful

welder. In ge ne ra l , the toughness of the HAZ is

lower than that of the w eld m et al due to mi crostruc

tural cha nges that resul t from the we lding p ro ces s

hea t in put [48] . The HAZ is less du ctil e than the weld

metal, thus becom ing the wea kest portion of the we ld

where st ress concentration usually occurs[4-8] .

In orde r to prev ent fai lures in pipelines , it is

importan t to hav e good we ld qu ality, high im pact

toughness, and high strength[9-12]. Thi s is a big chal

lenge for th e high s peed su b merge d arc w elding

(SAW) process since it is difficult to keep both high

strength and high impact toughness at the same time.

An y increase in strengt h is usually accompanied by a de

crease in toughness. The predict ion of final mechani cal
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properties of H Al of pipeline steels is a sop hist icated

task and requ ires a deep kn owl edge of whole proc essi ng

para meters. Recently , arti ficial neural networks

( A NNs) have been used to investigate the correlat ion

between final mechanical prop erties and the chemical

composition and/or processing parameters of differen t
steels[13-19] . T he ai m of presen t s t udy is to dev elop an

ar ti ficia l neural network m od el to pred ict the effec ts

of chemical co m posit ion and the rm om ech anical con

tro l p rocess (TMCP) paramete rs on hard ness and

impact properties of H Al of pipel ine steels.

1 Experimental Procedure

T en sile test was perform ed at room te m pe ra 

t ure. T ran sverse samples were cut from bod y of the

pip e acco rdi ng to A P I s ta nda r dl /' ", T he gauge length

was 50. 8 m m , and a O. 5 class extensometer was

used to m eas ure the extension. The te nsi le samples

w ere prepared accor ding to AST M E8. The hardness

test load was 10 N and the test m ethod was dead 

w eight . The transv erse sa m ples w ere prep ared ac 

co rding to IPS standard[21] . The chem ica l analysis on

steels was ca rried out using an ARL qu an t m eter

2460 m odel. Sa m ple prep aration and t es t w ere done

acco rding to AST M A75 1. Transv erse samples were

ext ract ed from bod y of the pipe.

Before hardness test , the transverse we ldment

cr oss-sect ion was prep a red and polished usin g diffe r

en t gra des of emery papers and diamond paste. T he

speci m en w as then et che d with 2 % n it a!' and exam 

in ed by op t ica l m icro scop y.

In total , 43 test poi n ts we re examined fo r each

tes t sam ple on the cross-sectio n of API X70 we ld

m en t , as shown in Fi g. 1. Inden ta tio ns were made

fro m one base m etal side to the other, below the

s urface and in the ho rizon tal centreline , on eit her side

of the w eld. From this, the hardness of test m aterial

w as determin ed for each pip e , and compared them to

I

~iSib)e heat ~feetedzonY
Fig. I Schematic of weldment cross-section demonstrating

different sub-zones for hardness measurement

indus try re quirements set by standard code . I t

sho uld be noted that, while the co n t ro l of a ll 43 dat a

poin ts was re quire d fo r hard spots examinat ion , onl y

th ree test po in t s (ou t of 43 ) we re used for average

hardness m easurement in each zone. T his is common

ind us t ry practice , based on pi pe del ivery condi tions.

The da ta poin t s used fo r hardness evaluat ion we re

10 , 23 , 36 (in vert ica l centreline of seam we ld ) for

we ld m etal , 7, 21 , 33 for H Al in the left side of fu

sio n lin e, 13, 25, 39 for H A l in the r ight si de of fu 

sio n line , and 3 , 18, 29 for base m etal, res pect ivel y.

The art ific ia l neural ne tw ork has been traine d

and tested for p redi cti on of H Al hardness of X7 0

pipeline steels . For th is pu rp ose , the expe r imental

da ta of 104 pipel in e s teels w ith diff eren t che mi ca l

co m positions were used . The inp ut va ria bles of the

A N N m od eling were the m ass percen t of alloying el

ements and te nsile strength test res ults. These pa

ra mete rs alo ng wit h thei r ranges a re sum marized in

Table 1 , where, CE nw is carbon equiva le n t based

upo n the In terna tional Instit ute of Welding equation;

CEl'cm is th e carbon equivalent based upon the che mi ca l

po r tio n of the Ito-B essyo ca r bo n equiva len t equa t ion

(Eq. ( 2»; C VT i:\b is the s u m of the ni ob ium, vanad i

um and tita nium concentrations ; C :\ bV is the sum of the

Table I Parameters and their range used in the artificial neural network

Input layer

Ou tpu t layer

P arameter Minim um Maxim um Mea n Standard deviati on

CEnw /mass % 0.35183 O. 39635 0.3710 10 0.007 693

CEl'cm/ mass % O. 151 01 O. 189 37 0. 171015 0.0076 93

C VTi"h / mass % O. 011 33 O. 051 99 O. 019 720 O. 002 206

CCr.\t1o;..;'iCu / ma ss% 0.37588 0.16891 0. 105 175 0.0223 25

C " hV / mass % 0. 03319 0.01 1 96 0. 0379 60 0.001 577

YS/ MPa 16 2.99 570. 78 521.19 22. 705 51

UTS/ MP a 567 .90 681. 79 61 9. 17 18. 77122

£1/ % 32 11 35 1. 815621

HV, /HV IO 201 227 213. 5 3. 566 21 1

HVz!HV lO 172 198 182 . 5 5.71138
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niobium and vanadium concen t ra t ions ; CCeMol'iCu is

the sum of the chromium, molybdenum, nickel and

copper concentrations; YS is the yield strength at

0.005 offset; UTS is the ultimate tensi le stress; E l

is percent elongation; and HV1 and HV2 are maxi 

mum and minimum Vi ckers mi crohardness (I-IAZ

max and HAZ-min) of the heat affected zone for the

ou tput layer with 10 N load, respectively.

In Figs. 2(a) and 2(b), the cumulative proba

bility and probability density function of weld, HAZ

and base metal hardness are demonstrated. A s can be

seen in these plots, average hardness values of 220,

200, 205 I-IVIO were obtained for weld, HAZ and base

m etal, respectively.
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Fig. 2 Cumulat ive probability and probabili ty density function versus hardness in API X70 steel

Sp ecification 5L/ ISO

CE nw and CE Pcm are

where, I j is the m easured (actual) i th data of the

A four-l ayer feed-forward neural network wi th

back propagation a lgorith m was used to predict the

HAZ hardness of pipeline s teels. This neural net

work model has a powerful input-output mapping

capability. With the us e of enough hidden neurons,

it can effectively approxima te an y con t in uous nonlin

ear function . In the proposed model, one input lay 

er, two hidden layers wi th hyperbolic sigmoid ac ti

vation function, and one output layer with linear ac 

tiva tion function were used. In feed-forward neural

networks, w eights and biases w ere it eratively adjus

ted to minimize the network performance function

using a training al gorithm. The commonly used per

formance funct ion in these neural networks was

mean square error (MSE, % ):

1 n

MSE( %) = - I: Ct , - O J ) 2 ( 3)
n i = l

output variab le; and O J is the predicted i t h data of

the variable; and 11 is the to ta l number of variables.

H ere , Bayesian regularization training al gorithm is

us ed to train the network. In this training algo

rithm, w eights and biases w ere updated with Lev en

berg-Marquardt optimization algor ith m . The net

work generali zation can be improved by minimizing

a com bina t ion of MSE and the mean square of the

network weights. Also, the weights were considered

as random variables wi th Gaussian distribution.

To improve the generalization property of pro

posed neural network model, the ea rl y stopping

te chnique was used and the overall da ta were ran

domly divided into three subsets of training, valida

tion and testing. In this technique, training process

should be stopped when the error for the validation

set s tar ts to increase. The er ror va lu e for te sts

shows if the ov er fitting has occurred or not. As

summarized in Table 1, the collected expe r imen ta l

data sets include 104 patterns, of which 74 patterns

w ere us ed for training the network. The remaining

data w ere divided equall y into two subsets to vali 

dat e and tes t the trained network.

The numbers of nodes in inp u t and ou tput la y

ers were equal to the number of inputs and outputs

of the network, i. e. , 8 and 1 for the present work,

respectively. The number of nodes in the hidden lay

er was obtained through trial and error during train

ing and tes t ing process of the network. U s ua ll y ,

sca tter diagrams are used to plot predicted values of

the neural network versus measured (experimen tal)

val ues. In this res earch, in addition to scatter dia -

(1)

(2)
W i'\i W M o io -;

6O+~+1O+ 5w B

According to the API

3183[20J, the expressions of

shown as Eqs, (l) and (2),

, . _ + W Mn + ( W Ce + W Mo+ W v ) +
CEnw - w c 6 5

(Wl'i+ Wcu)

15

2 Neural Network Training and Testing
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( 5 )

(4)

grams , two stat ist ica l cr iteria (i . e. , absolute fr ac

t ion of variance (R 2
) and (MRE», were used to evalu

ate the pre dictio n precision of the proposed m od el

(Eqs. ( 4) and ( 5» :

[
~ (t ; - O ; ) 2 ]

R 2 = 1- -;~~-
~ (O ; ) 2
;

MRE( % ) =~ i: I t i r:o , I X 100
11 , ~ l t ,

T he rel iability and robustness of a neural net 

w ork dep end on m any pa ram eters includin g learnin g

constants , activation fu nction an d random dis tribu

t ion of the weights in the ini tia tio n of t ra in ing

process and the num be r of nodes in the hidden laye r.

T he small number of nod es in the hidden layer lead s

to lo w fitti ng and the high number ca uses over fi t

t in g. So m e neural networks w ith 12 to 36 nod es in

the h idden lay er w ere train ed and the MRE value fo r

train ing and test ing datas et s of these net w orks were

ca lc ulated. I t was determ ined that the network w it h

20 nod es in the fir s t hidden layer and 12 nod es in the

second hid den layer, had less MRE va lue for the tes

ti ng data. The inc rease in t he number of these nodes

did not improve the network res ults for training da

ta. So the networ k structu re in the presen t work is

8-20-12-l.

The results of the developed neural network

m od el to pred ict the H A Z hardness of pipe line s teels

(i n the form of scatter diagram s and calculated R 2

va lues ) are shown in Fi gs. 3 (a ) and 3 ( b ) , re lat ive ly.

Al so, ca lc ulated MRE va lues for overall da ta and

trainin g, val idation and test ing s u bse ts are presen

ted in Table 2. As can be seen in F igs. 3 (a) and 3 ( b)

and T abl e 2, the developed feed-fo rward neural ne t

wo rk model wit h R 2 larger than O. 82 and mean re la 

t ive error lower than O. 74 % for ov era ll dat a can p re

di ct the H AZ hardness of pipeli ne steels wit h an ac 

ceptable p r ecis ion. In o th e r words, there is a

good agree men t betw een the m easured ( experimen 

tal) hardness of H A Z and the results of the pr es en t

o Training
o Validati on
[, Testing
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Fig.3 Correlation of the measured and predicted HAZ hardness values in maximum (a) and

minimum Cb) sets for ANN model

Table 2 Calculated MRE values for training ,

validation and testing data

In this st udy, a neural network with feed-forward

topolog y and back propaga tion algorit h m was used to

predict H A Z hardness of pipeline s teels ( API X7 0 ).

The che m ica l co mposit ion and tensile t est pa ra m e

te rs were considered as inp ut s to the net work. These

we re used from a w ide ra nge da tab ase co ntain ing re 

s ults of pip el in e s t ee l pl at e through the pilot mill.

MRE

HAZ-m ax

H AZ-min

ANN m od el.

3 Conclusion

T raining

O. 529 789

0.731 659

Validat ion

0.159 271

0.51595 1

T est ing

0.100 25 1

0.119 298

The defini t ion of carbon equiva len t, based u pon the

Internat ional Ins t itute of W eldin g and Ito-B essyo e

qua tions , is a nov el feature of the present work tha t

en hances the app licability of the develop ed A N N

m od el. A good approximation perform ance with R 2 of

0.86 and mean relat ive err or of O. 74 % for the ove ra ll

data was obtained. Thi s showed that the re was a

good agr eem en t between the m easured ( experimen 

ta l ) and the predicted hardness fro m the A N N mod

el. The overall results showed that the develop ed

model can art ific ially be used ( as a parall el comp u

ting system ) to study the effects of a ll inp ut va ria

bl es on the output one.
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