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Abstract: A neural network with feed-forward topology and back propagation algorithm was used to predict the
effects of chemical composition and tensile test parameters on hardness of heat affected zone (HAZ) in X70 pipeline
steels. The mass percent of chemical compositions (i. ¢. carbon cquivalent based upon the International Institute of
Welding cquation (CEpw ), the carbon cquivalent based upon the chemical portion of the Ito-Bessyo carbon cquivalent
equation (CEpq, )+ the sum of the niobium, vanadium and titanium concentrations (Cyr,) s the sum of the niobium
and vanadium concentrations (Cpnyy ) s the sum of the chromium, molybdenum, nickel and copper concentrations
(Cemvonicy) ) » yicld strength (YS) at 0. 005 offsct, ultimate tensile strength (UTS) and percent clongation (El)
were considered as input paramecters to the network, while Vickers microhardness with 10 N load was considered as
its output. For the purpose of constructing this model, 104 different data were gathered from the experimental re-
sults. Scatter diagrams and {wo statistical criteria, i. e. absolute fraction of variance (R?) and mean relative error
(MRE), wecre used to evaluate the prediction performance of the developed model. The developed model can be {ur-
ther used in practical applications of alloy and thermo-mechanical schedule design in manufacturing process of pipe-
line steels.
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HSLA steels, also known as microalloyed steels,
are mainly low-carbon steels (C<C0. 2%) to which man-
ganese (Mn) and small amounts of other alloying ele-
ments have been added. They are designed to provide
better strength-to-weight ratios and high fracture tough-
ness over conventional low-carbon steels™ 2.

The problem of optimizing HSLA steel weld
metal and heat affected zone (HAZ) strength and
toughness remains a major challenge to many weld-
ing engineers and researchers. It is concluded from
previous works that the toughness increases with in-
creasing volume fraction of fine interlocking ferrite
grains known as acicular ferrite (AF) in weld met-
al'®!', Welding parameters and alloying elements af-
fect AF formation, which in turn affects the toughness

of weld metals. Therefore, achieving superior weld
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properties and reducing weld defects require an opti-
mal control of all welding parameters and a skilful
welder. In general, the toughness of the HAZ is
lower than that of the weld metal due to microstruc-
tural changes that result from the welding process
heat input™®. The HAZ is less ductile than the weld
metal, thus becoming the weakest portion of the weld
where stress concentration usually occurst*,

In order to prevent failures in pipelines, it is
important to have good weld quality, high impact
toughness, and high strength™'?. This is a big chal-
lenge for the high speed submerged arc welding
(SAW) process since it is difficult to keep both high
strength and high impact toughness at the same time.
Any increase in strength is usually accompanied by a de-
crease in toughness. The prediction of final mechanical
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properties of HAZ of pipeline steels is a sophisticated
task and requires a deep knowledge of whole processing
parameters. Recently, artificial neural networks
(ANNs) have been used to investigate the correlation
between final mechanical properties and the chemical
composition and/or processing parameters of different

[3191  The aim of present study is to develop an

steels
artificial neural network model to predict the effects
of chemical composition and thermomechanical con-
trol process ( TMCP) parameters on hardness and
impact properties of HAZ of pipeline steels.

1 Experimental Procedure

Tensile test was performed at room tempera-
ture. Transverse samples were cut from body of the

[20]

pipe according to API standard *°'. The gauge length

was 50.8 mm, and a 0.5 class extensometer was
used to measure the extension. The tensile samples
were prepared according to ASTM E8, The hardness
test load was 10 N and the test method was dead-
weight. The transverse samples were prepared ac-
cording to IPS standard'?"!
steels was carried out using an ARL quant meter

. The chemical analysis on

2460 model. Sample preparation and test were done
according to ASTM A751. Transverse samples were
extracted from body of the pipe.

Before hardness test, the transverse weldment
cross-section was prepared and polished using differ-
ent grades of emery papers and diamond paste. The
specimen was then etched with 2% nital, and exam-
ined by optical microscopy.

In total, 43 test points were examined for each
test sample on the cross-section of API X70 weld-
ment, as shown in Fig. 1. Indentations were made
from one base metal side to the other, below the
surface and in the horizontal centreline, on either side
of the weld. From this, the hardness of test material
was determined for each pipe, and compared them to
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Fig. 1 Schematic of weldment cross-section demonstrating

different sub-zones for hardness measurement
industry requirements set by standard code. It
should be noted that, while the control of all 43 data
points was required for hard spots examination, only
three test points (out of 43) were used for average
hardness measurement in each zone. This is common
industry practice, based on pipe delivery conditions.
The data points used for hardness evaluation were
10, 23, 36 (in vertical centreline of seam weld) for
weld metal, 7, 21, 33 for HAZ in the left side of fu-
sion line, 13, 25, 39 for HAZ in the right side of fu-
sion line, and 3, 18, 29 for base metal, respectively.

The artificial neural network has been trained
and tested for prediction of HAZ hardness of X70
pipeline steels. For this purpose, the experimental
data of 104 pipeline steels with different chemical
compositions were used. The input variables of the
ANN modeling were the mass percent of alloying el-
ements and tensile strength test results. These pa-
rameters along with their ranges are summarized in
Table 1, where, CEqw is carbon equivalent based
upon the International Institute of Welding equation;
CE .., is the carbon equivalent based upon the chemical
portion of the Ito-Bessyo carbon equivalent equation
(Eq. (2)); Cyrin is the sum of the niobium, vanadi-

um and titanium concentrations; Cy,y 1s the sum of the

Table 1 Parameters and their range used in the artificial neural network

Parameter Minimum Maximum Mean Standard deviation
Input layer CEnw/mass % 0. 35183 0.39635 0.3741010 0.007693
CEpem /mass %4 0. 15404 0. 18937 0.171015 0.007693
Cyring/mass % 0.04433 0.05499 0.049720 0. 002 206
Cenvonics /mass ¥ 0. 37588 0.16894 0.405175 0.022325
Cxbv/mass % 0.03349 0.04196 0. 037960 0.001577
YS/MPa 162.99 570. 78 524. 19 22.70551
UTS/MPa 567.90 684. 79 619. 47 18. 77422
El/% 32 41 35 1.815624
Output layer  HV1/HVyo 204 227 213.5 3.566241
HV,/HV, 172 198 182.5 5.71138
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niobium and vanadium concentrations; Cemonice 1S
the sum of the chromium, molybdenum, nickel and
copper concentrations; YS is the yield strength at
0. 005 offset; UTS is the ultimate tensile stress; El
is percent elongation; and HV, and HV, are maxi-
mum and minimum Vickers microhardness (HAZ-
max and HAZ-min) of the heat affected zone for the

output layer with 10 N load, respectively.

In Figs. 2(a) and 2(b), the cumulative proba-
bility and probability density function of weld, HAZ
and base metal hardness are demonstrated. As can be
seen in these plots, average hardness values of 220,
200, 205 HV,, were obtained for weld, HAZ and base
metal, respectively.
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Fig. 2 Cumulative probability and probability density function versus hardness in API X70 steel

According to the API Specification 5L/ISO
31832, the expressions of CEqw and CEp.. are
shown as Egs. (1) and (2),
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2 Neural Network Training and Testing

A four-layer feed-forward neural network with
back propagation algorithm was used to predict the
HAZ hardness of pipeline steels. This neural net-
work model has a powerful input-output mapping
capability. With the use of enough hidden neurons,
it can effectively approximate any continuous nonlin-
ear function. In the proposed model, one input lay-
er, two hidden layers with hyperbolic sigmoid acti-
vation function, and one output layer with linear ac-
tivation function were used. In feed-forward neural
networks, weights and biases were iteratively adjus-
ted to minimize the network performance function
using a training algorithm. The commonly used per-
formance function in these neural networks was

mean square error (MSE, %)
1 ,
MSE(%)Z;Z([,-*O,-)Z (3)

i=1

where, ¢; is the measured (actual) ith data of the

output variable; and o; is the predicted ith data of
the variable; and n is the total number of variables.
Here, Bayesian regularization training algorithm is
used to train the network. In this training algo-
rithm, weights and biases were updated with LLeven-
berg-Marquardt optimization algorithm. The net-
work generalization can be improved by minimizing
a combination of MSE and the mean square of the
network weights. Also, the weights were considered
as random variables with Gaussian distribution.

To improve the generalization property of pro-
posed neural network model, the early stopping
technique was used and the overall data were ran-
domly divided into three subsets of training, valida-
tion and testing. In this technique, training process
should be stopped when the error for the validation
set starts to increase. The error value for tests
shows if the over fitting has occurred or not. As
summarized in Table 1, the collected experimental
data sets include 104 patterns, of which 74 patterns
were used for training the network., The remaining
data were divided equally into two subsets to vali-
date and test the trained network.

The numbers of nodes in input and output lay-
ers were equal to the number of inputs and outputs
of the network, i.e. , 8 and 1 for the present work,
respectively. The number of nodes in the hidden lay-
er was obtained through trial and error during train-
ing and testing process of the network. Usually,
scatter diagrams are used to plot predicted values of
the neural network versus measured (experimental)

values. In this research, in addition to scatter dia-
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grams, two statistical criteria (i. e. , absolute frac-
tion of variance (R?) and (MRE)), were used to evalu-

ate the prediction precision of the proposed model
(Egs. (4) and (5)):

E(tii(),‘)z
R=1—|+__ 4)
Z(O,‘)Z
MRE(%):%i L0 100 (5)
ni=1 ;

The reliability and robustness of a neural net-
work depend on many parameters including learning
constants, activation function and random distribu-
tion of the weights in the initiation of training
process and the number of nodes in the hidden layer.
The small number of nodes in the hidden layer leads
to low fitting and the high number causes over fit-
ting. Some neural networks with 12 to 36 nodes in
the hidden layer were trained and the MRE value for
training and testing datasets of these networks were
calculated. It was determined that the network with

20 nodes in the first hidden layer and 12 nodes in the
second hidden layer, had less MRE value for the tes-
ting data. The increase in the number of these nodes
did not improve the network results for training da-
ta. So the network structure in the present work is
8-20-12-1.

The results of the developed neural network
model to predict the HAZ hardness of pipeline steels
(in the form of scatter diagrams and calculated R?
values) are shown in Figs. 3(a) and 3(b), relatively.
Also, calculated MRE values for overall data and
training, validation and testing subsets are presen-
ted in Table 2. As can be seen in Figs. 3(a) and 3(b)
and Table 2, the developed feed-forward neural net-
work model with R? larger than 0. 82 and mean rela-
tive error lower than 0. 74 % for overall data can pre-
dict the HAZ hardness of pipeline steels with an ac-
ceptable precision. In other words, there is a
good agreement between the measured (experimen-
tal) hardness of HAZ and the results of the present

230 [ 200 7> 8
. O S
© Training R PR
- O Validation o s B
E 220 o Testing o E 190 | .é""—;‘o ©
~ 257} : 18
E o a Oggg S A é <o
b o,.gg8857 " »=09224x+16672 | 0008t »=0.879 1x+21.957
g 210} A@@-S'SA R?=0.8192 S 150l 8 §8 R2=0.9169
] oy y=0.8619x+29.841 | € 3 Ag © y=0.8791x+22.347
E s R%=0.8459 Z 808, R2=0.9643
o =0.8019x+42.804 0, 8% ¢ y=1.028x-52118
R*=0.8295 R*=0.9587
1 1 1 1
200 210 220 230 170 180 190 200
Measured HV,/HV Measured HV,/HV,

Fig. 3 Correlation of the measured and predicted HAZ hardness values in maximum (a) and

minimum (b) sets for ANN model

Table 2 Calculated MRE values for training,

validation and testing data

MRE Training Validation Testing
HAZ-max 0.529789 0.459274 0.400251
HAZ-min 0.731659 0. 545951 0.419298

ANN model.

3 Conclusion

In this study, a neural network with feed-forward
topology and back propagation algorithm was used to
predict HAZ hardness of pipeline steels (API X70).
The chemical composition and tensile test parame-
ters were considered as inputs to the network. These
were used from a wide range database containing re-

sults of pipeline steel plate through the pilot mill.

The definition of carbon equivalent, based upon the
International Institute of Welding and Ito-Bessyo e-
quations, is a novel feature of the present work that
enhances the applicability of the developed ANN
model. A good approximation performance with R” of
0. 86 and mean relative error of 0. 74% for the overall
data was obtained. This showed that there was a
good agreement between the measured (experimen-
tal) and the predicted hardness from the ANN mod-
el. The overall results showed that the developed
model can artificially be used (as a parallel compu-
ting system) to study the effects of all input varia-
bles on the output one.

References;

[1] K.G. Budinski, M. K. Budinski, Engincering Materials Proper-
ties and Sclection, 7th ed. » Prentice Hall, NJ, USA, 2002.

[2] M. Hajisafari, S. Nategh, H. Yoozbashizadch, A. Ekrami, J.



150 Journal of Iron and Steel Research, International Vol. 22

Iron Steel Res. Int. 20 (2013) No. 1, 66-73. Int. 16 (2009) No. 7, 68-72.
[3] J. T. McGrath, J. A. Gianetto, R. F. Orr, M. W. Letts, Can. [12] F. Fang, Q. L. Yong, C.F. Yang, H. Su, J. Iron Steel Res.

Mect. Quart. 25 (1986) 349-356. Int. 14 (2007) No. 5, 29-33.
[1]  N. Ishikawa, T. Shinmiya, S. Igi, J. Kondo, in: 2006 Intcrna- [13] G. Khalaj, H. Yoozbashizadch, A. Khodabandch, A. Nazari,

tional Pipeline Conference, American Society of Mechanical Neural Comput. Appl. 22 (2013) 879-888.

Engineers, USA, 2006, pp. 223-230. [14] S. Hosseini, A. Zarei-Hanzaki, M. Yazdan Panah, S. Yue,
[5] Z.X. Li, Z.C. Jing, J. L. Kang, F.Y. Rong, Z. Wenzhen, Mater. Sci. Eng. A 374 (2004) 122-128.

H.C. Yong, Z. X. Wei, G.S. Tao, in: 2006 International [15]  G. Khalaj, A. Nazari, H. Pouraliakbar, Neural Network World

Pipeline Conference, American Society of Mechanical Engi- 23 (2013) 117-130.

ncers, USA, 2006, pp. 251-259. [16] G. Khalaj, T. Azimzadegan, M. Khocini, M. Etaat, Neural
[6] J. Lancaster, Metallurgy of Welding. Allen & Unwin Pub. Comput. Appl. 23 (2013) 2301-2308.

London, UK, 1987. [17] (5. Khalaj, M. Khoeini, M. Khakian-Qomi, Neural Comput.
[7] S.K. Sen, S. K. Dhua, D. Mukherjee, S. Mishra, B. B. Rath, Appl. 23 (2013) 769-777.

Kcy Eng. Mater. 84-85 (1993) 602-626. [18]  M.]. Faizabadi,» G. Khalaj, H. Pouraliakbar, M. R. Jandagi,
[8] Y.Q. Zhang, H. Q. Zhang, J. F. Li, W. M. Liu, J. Iron Steel Neural Comput. Appl. 25 (2014) 1993-1999.

Res. Int. 16 (2009) No. 1, 73-80. [19] N. Narimani, B. Zarei, H. Pouraliakbar, (5. Khalaj, Meas-
[9] M. Rakhshkhorshid, S. A. Tcimouri Sendes, J. Iron Steel Res. urement 62 (2015) 97-107.

Int. 21 (2014) 246-251. [20]  API Spccifications 5L, Specifications for Line Pipe, American
[10] W. Tan, Z. Y. Liu, D. Wu, G.D. Wang, J. Iron Stcel Res. Petroleum Institute, 44th ed. » 2007.

Int. 16 (2009) No. 3, 80-83. [21]  Iranian Petrolcum Standards (IPS), Matcrial and Equipment
[11] F. Fang, Q. L. Yong, C.F. Yang, H. Su, J. Iron Steel Res. Standard for Line Pipe, Iran, IPS-M-PI-190(2), 2004.





