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Abstract: In this paper, a method that combines the characteristic-based split finite element method (CBS-FEM) and the direct 
forcing immersed boundary (IB) method is proposed for the simulation of incompressible viscous flows. The structured triangular 
meshes without regarding the location of the physical boundary of the body is adopted to solve the flow, and the no-slip boundary 
condition is imposed on the interface. In order to improve the computational efficiency, a grid stretching strategy for the background 
structured triangular meshes is adopted. The obtained results agree very well with the previous numerical and experimental data. The 
order of the numerical accuracy is shown to be between 1 and 2. Moreover, the accuracy control by adjusting the number density of 
the mark points purely at certain stages is explored, and a second power law is obtained. The numerical experiments for the flow 
around a cylinder behind a backward-facing step show that the location of the cylinder can affect the sizes and the shapes of the 
corner eddy and the main recirculation region. The proposed method can be applied further to the fluid dynamics with complex 
geometries, moving boundaries, fluid-structure interactions, etc.. 
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Introduction0F

�� 
In the computational fluid dynamics, the discreti- 

zation of the computational domain, normally with a 
body-fitted procedure, is one of the most important 
procedures, which might be complicated and time 
consuming. In addition, a bad discretization reduces 
the simulation efficiency or even makes the calcula- 
tion invalid. One of the alternative approaches is the 
immersed boundary (IB) method, which was first put 
forward by Peskin[1] in the simulation of flow around 
the flexible leaflet of a human heart. Numerous further 
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improvements have been proposed since then. It was 
widely applied to handle various types of fluid dyna- 
mic problems, such as those related with the biologi- 
cal fluid mechanics[1], the fluid-structure interaction[2] 
and the multiphase flows[3]. 

The IB method is both a mathematical formula- 
tion and a numerical scheme[4]. Its primary advantages 
come from the fact that the procedure of the grid ge- 
neration is greatly simplified. The generation of a 
body-conformal grid is much more cumbersome than 
that of a pure Cartesian one: the former usually consu- 
mes approximately 25% of the total computation time 
for typical complex geometries[5]. In addition, for mo- 
ving boundary problems with a body-fitted grid, not 
only the dynamic meshes but also the procedures of 
projecting the solution onto the new grid are needed. 
Both steps can negatively impact the simplicity, the 
accuracy, the robustness and the computational cost of 
the solution procedure, especially, in cases involving a 
large deformation of the grid. On the other hand, the 
IB method uses a fixed Cartesian grid for fluids (or 
virtual fluids) and independent Lagrangian points to 
represent solid surfaces, which make it easier to hand- 
le complicated geometries. The coupling of the “solid 



 659 

points” and the flow is realized by the forcing density 
exerted on the fluids from the solid points. Unlike 
body-fitted grids, there are no boundary grid points, 
and therefore all grid points are treated in the same 
manner. It should be mentioned that, as a payment for 
the easiness, a higher grid resolution is required for a 
high Reynolds number flow simulation[6]. However, in 
some cases, it is worthwhile. 

The numerical approaches for the IB method can 
be extensively classified into two major categories, 
the continuous forcing and the discrete forcing app- 
roaches. The force density of the continuous forcing 
approach[7] must satisfy certain mechanical relations 
���������	

��
������������������������������parame- 
ters are involved. With the force density obtained, the 
wall boundaries are handled. At the same time, the 
discrete forcing approach[8] is implemented by discre- 
tizing the governing equations and using the no-slip 
conditions. Generally speaking, it is mainly used to 
handle flows around rigid walls. 

For the N-S equation solver, we adopt the chara- 
cteristic-based split (CBS) scheme, proposed by 
Zienkiewicz et al.[9]. It is very similar to the original 
Chorin split and also has similarities with other split 
schemes, widely employed in incompressible flow 
calculations[10]. With the introduction of the Characte- 
ristic Galerkin to the split, the scheme becomes more 
stable and can be used as a general approach to solve 
problems of both compressible and incompressible 
flows[11]. As the same interpolation function is emplo- 
yed for the velocity and pressure terms to discretize 
the N-S equations, the well-known Babuška-Brezzi 
condition is fully satisfied, and the calculation is fast 
and robust. Such method is applied in various discipli- 
nes[12]. 

With the application of the aforementioned CBS 
and discrete forcing IB method, the structured triangu- 
lar meshes are adopted to discretize the computational 
domain in this paper. The underlying idea is of two- 
fold, the 2-D triangular meshes are convenient to be 
coupled with the FEM, especially, for stationary exte- 
rior boundaries, and its structurization makes it easier 
to handle the IB approaches. In this paper, the feasibi- 
lity and the flexibility of the proposed method is exa- 
mined, including the geometry setting, the accuracy 
control, etc.. 
 
 
1. Methodology 

In the present paper, we combine the direct for- 
cing IB approach with the CBS-FEM. They are descri- 
bed as follows. 
 
1.1 Direct forcing IB approach 

The main advantage of the IB approach is that 
the background grid is independent of the wall boun- 
daries. We could consider a flow in a two-dimensional 

rectangle domain � , containing a one-dimensional 
closed boundary � , as shown in Fig.1. The location 
of the boundary is expressed in the parametric form of 

( , )s tX  for 0 s L� �  and (0, ) = ( , )t L tX X . The pa- 

rameter s  tracks the marker points on the boundary, 
and the governing equations for the system are as fo- 
llows: 
 

+ + = +p
t

��
�	 	 


�
u u u u f                   (1) 

 
= 0	 �u                                   (2) 

 

0
( , ) = ( , ) [ ( , )]d

L
t s t s t s� �
f x F x X             (3) 

 
( , )

= [ ( , ), ] = ( , ) [ ( , )]d
s t s t t x t s t
t �

��
�

� 

X u X u x X x  

(4) 
 
where = ( , )x yx , 1 2( , ) = ( ( , ), ( , )), ( , )t u t u t p tu x x x x  

are the coordinates, the velocity and the pressure of 
the fluid on the Eulerian grid, respectively. The positi- 
ve constant v  denotes the fluid kinematic viscosity 
coefficient. 1 2( , ) = ( ( , ), ( , ))t f t f tf x x x  is the force 

density on fluid, while the Lagrangian coordinates and 
the force density on the immersed boundary are deno- 
ted by ( , )s tX  and 1 2( , ) = ( ( , ), ( , ))s t s t s tF F F , respe- 

ctively. And [ ( , )]s t� �x X  is Dirac delta function for 

interpolation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Configuration of immersed boundary method 
 

Equations (1) and (2) are the N-S equations with 
external force. Equation (3) describes the wall effects 
on the fluid by distributing the boundary force on the 
Lagrangian points to the Eulerian points, and Eq.(4) 
interpolates the velocity from the Eulerian points to 
the Lagrangian points. The former one (Eq.(3)) repre- 
sents the interaction between the fluid and the solid 
force, while the latter indicates that the no-slip boun- 
dary condition is satisfied. These two equations are 
the essences of the IB method. 
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Furthermore, according to the theory of Peskin[4], 
the numeric approximated -� function in Eqs.(3) and 
(4) must satisfy the following criteria 
 

2( ) = 1
i

h
x

x X h� �� , 2( ) ( ) = 0
i

h
x

x X x X h�� ��   (5) 

 
And we use the following smooth Dirac -� fun- 

ction in the two-dimensional case 
 

( ) = ( )h h ix� �x , ( = 1, 2)i                    (6a) 

 

1
( ) = 1+ cos

4 2h
xx

h h
� � � �� �

� �� �� �� �
, 2x h�           (6b1) 

 
( ) = 0h x� , 2x h�                        (6b2) 

 
where h  is the spacing of the Cartesian grid. Other hi- 
gher order moment constraints or expressions could be 
found in Ref.[4]. 

The remaining question is how to obtain the ex- 
pression of the “forcing term” corresponding to the 
correct wall effect. According to Eq.(1), the hydrody- 
namic force at any point x  is 
 

( , )t p
t

��
� � �	 �	 � 


�
uf x u u u              (7) 

 
Assuming that the velocity and the pressure are 

known at time = nt t , then Eq.(7) can be expressed 

approximately in the explicit discretizing form as 
 

( +1) ( )
( ) ( ) ( ) ( )( , ) = + +

n n
n n n nt p

t
�

�
�

�	 	 � 

u uf x u u u (8) 

 
In order to satisfy the no-slip boundary conditio- 

ns on the immersed boundary, we let +1 +1=n nu U  on 
the boundary, i.e. the velocity =u U  on the boundary 

=x X , which leads to the virtual forcing density 
 

( +1) ( )
( ) ( ) ( ) ( )( , ) = + +

n n
n n n nt p

t
�

�
�

�	 	 � 

U uf X u u u  

(9) 
 

With the above equation, we come to the direct 
forcing approach, proposed by Fadlun[8]. The advanta- 
ge of the method is that the forcing density of the im- 
mersed boundary is calculated according to the discre- 
tized N-S equations, without adding any ad  hoc  pa- 
rameters. Since the concerned u  and p  are defined 

on the Cartesian grid and the Lagrangian points are 
usually off the grid, by combining with Eq.(6), Eq.(4) 
can be calculated numerically as follows 

( ) = ( ) ( )d ( ) ( )dhu u
� �

� �� � � �
 
u X x x X x x x X x  

 
2( ) ( )

j

j h j
x

h� ��u x x X                 (10) 

 
The differential terms in the equation can be sol- 

ved through normal discretization approaches. On the 
other hand, the counterforce (exerted on the 
Lagrangian points) could be obtained. As illustrated in 
Fig.2, the fluid around the kX  is forced with the den- 

sity value of ( )kf X , and the corresponding counter- 

force on the line segment +1/ 2 1/ 2=s k k� ��X X  can 

be expressed as 
 

( , )d = [ ( , )]d
k

s t s t
�  
 
F X f X A               (11) 

 
where = sh �  denotes the area of the considered con- 

trolled volume (grayed in Fig.2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Calculation of the interaction forces on the immersed 

boundary. The horizontal and vertical lines give the 
Cartesian meshes. The solid discs denote the grid points 
influenced by the point at kX . The dashed curve is the 

immersed boundary and the circles are the Lagrangian 
points. The thick line denotes the linear segment and the 
shaded rectangle is the corresponding integral area   

 
We then assume that the Eulerian points (the 

dark points in Fig.2) in certain zone along the 
Lagrangian points are influenced by the wall. This in- 
fluence is calculated as 
 

( ) = [ ( , )] ( )
k

j K h j k
X

x s t s� ���f F X x X          (12) 

 
Outside the zone, the wall effects are neglected, 

that is to say, ( ) = 0h� x  if 2x h� . 

 
1.2 Characteristic-based split FEM 

The derivation of the explicit CBS algorithm in- 
volves a local Taylor series expansion. The main idea 
of the CBS-FEM can be outlined as follows. 
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Fig.3 Characteristic in a space-time domain 
 

According to the characteristics Galerkin (CG) 
scheme[9], we transform the coordinate by introducing 

a moving characteristics coordinate = ( , ) =i ix x x t! !  

( , ) +ix x t U t
 , as illustrated in Fig.3. From the thn  to 

( +1)n th  levels, the incremental time interval is t
  

and the corresponding displacement of the particle is 
x
 . If a moving coordinate is assumed along the path 

of the characteristic wave with a speed of U , the con- 
vection terms of Eq.(1) disappear (as in a Lagrangian 
fluid dynamics approach). That is to say, mathemati- 
cally speaking, along the characteristic line, we can 
transform the partial differential equation to the total 
differential equation (the compatibility equation). 
Therefore, using the Taylor series expansion we ob- 
tain 
 

+1

( )

( )
= (1 )( + + ) +

n n

x x x n

x xt
" ��


�


�
� �	 





u u
p u f  

 
+1( + + )n

x
" ��	 
p u f                   (13) 

 
2= = + ( )n n

x x x
t t t#

�


 
 
 
x u u              (14) 

 
where the parameter "  takes value in the range 0 �  

1" � . When = 0" , the scheme is fully explicit. And 
we adopt = 0.5"  in this paper. 

Substituting Eq.(14) into Eq.(13), the truncated 
expression could be obtained through Taylor series 
expansion with higher-order terms neglected 
 

+1

= ( + + ) +
n n

nx x
xt

�
�

� �	 � 
 	



u u
u u u p f  

 

( + + )
2

n n

x

t

�	 �	 	u u u p f              (15) 

 

To couple the continuous and momentum equa- 
tions, we introduce two-step prediction-correction 
procedures for the CBS algorithm. In the first step, the 
pressure term in the momentum equation will be dro- 
pped and an intermediate velocity field will be calcu- 
lated. In the second step, the intermediate velocities 
will be corrected. The prediction-correction procedure 
is widely used in finite volume procedures or finite di- 
fferent schemes, with two advantages. The first is that 
without the pressure terms, each component of the 
momentum equation is similar to that of a convection- 
diffusion equation and the CG procedure can be readi- 
ly applied. The second advantage is that with the pre- 
ssure term removed from the momentum equation, the 
pressure stability is enhanced and the arbitrary inter- 
polation functions may be used for both velocity and 
pressure. In other words, the well-known Babuška- 
Brezzi condition is satisfied. It is clear that the gove- 
rning equations can be solved after the temporal and 
spatial discretizations in the following steps: 

Step 1: The intermediate velocity, the auxiliary 
variable iu$ , is introduced as 
 

= ( + ) +n nt �$ � 
 �	 � 
u u u u u f  
 

21
( + )

2
n nt
 �	 �	u u u f                   (16) 

 

Step 2: The pressure calculation, where the 
Poisson equation is solved with a conjugate gradient 
solver 
 

1
=

n
n

t%



	



p u                             (17) 

 

Step 3: The velocity correction 
 

2
+1 1 1

= + ( )
2

n n
n tt

% %
$ � � � �

� 
 	 �	 	� � � �

� � � �
u u p u p     (18) 

 

The higher-order terms in the above equations 
may be neglected as they have very small influence on 
the related velocity and pressure. 

Finally, the finite element-immersed boundary 
method is used as follows: 

(1) Obtain the forcing density by the velocity de- 
viation between the interpolation boundary and the 
physical boundary using Eqs.(7)-(12). 

(2) Solve the momentum equation without pre- 
ssure terms. 

(3) Calculate the pressure from the Poisson equa- 
tion. 

(4) Correct the velocity, and finally. 
(5) Go back to step 1 for iteration, until the con- 

vergence criterion is satisfied. 
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2. Results and discussions 
To verify the flexibility and the robustness of the 

present approach in solving the incompressible N-S 
equations, three typical numerical simulations are ca- 
rried out as the benchmarks, namely, the Poiseuille 
flow, the laminar boundary development and the flow 
around a cylinder. For the first two cases, = 100Re  
(Reynolds number is defined as = /Re UL � , where 
U , L  are the characteristic velocity and length, re- 
spectively), and one of the wall condition is treated 
with the IB approach, and uniform meshes are adopted. 
While in the simulation of the flow past a circular cy- 
linder, Re  varies from 40 to 200. At last, the flow 
around a cylinder behind a backward facing step is 
simulated to show the combination of the feasibility of 
the IB method for complex external and internal geo- 
metries. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Flow through a 2-D rectangular channel. The continuous 

line represents the analytical result and the crosses deno- 
te the numerical result 

 
2.1 Exterior boundary simulation 
 
2.1.1 Poiseuille flow 

Figure 4(a) shows the computational domain for 
the Poiseuille flow. The IB approach and an exactly 

no-slip boundary condition are imposed on the upper 
and lower boundaries, respectively. The inlet 
Reynolds number of the flow is set to be 100 with an 
uniform profile, which is supposed to be a laminar 
flow, and the grid solution is = 0.01h a . The follo- 
wing convergence criterion is adopted, which is also 
suitable for the other steady cases 
 

( +1) ( )

6
( ) ( )

max 1.0 10
j

n n
j j

x

u x u x
U

�

&

�
� '           (19) 

 

The viscous boundary layer develops in the st- 
reamwise direction. Figure 4(b) shows a comparison 
of the velocity profiles at non-dimensional distances 

2
0= 100 /x vx a U$  from 0 to 6. It may be observed that 

the parabolic profile is reached at a distance of about 
4.0, which is well consistent with the analytical solu- 
tion by Schlichting[13], who proposed that a fully deve- 
loped parabolic velocity profile could be achieved 
after = 0.04x Re$ . Figure 4(c) shows that the error of 
the “ultimate” velocity is less than 0.1%. And it shou- 
ld be noted that the consistent data are achieved near 
the upper and lower boundaries ( = 0y  and a ), where 

different approaches are applied as mentioned before. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Flow in laminar boundary layer 
 
2.1.2 Laminar boundary layer flow 

In addition, the developments of the Poiseuille 
flow could be considered as a process of establishing 
the boundary layer. More details of the flow could be 
extracted through analyses of the boundary layer de- 
velopment, and several well-known analyses could be 
found for the boundary layer development as well. To 
further show the details of the boundary layer, as 
shown in Fig.5(a), a square zone of 4×4 is considered, 
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the concerned flat plate is represented by the imme- 
rsed boundary and the symmetrical boundary is impo- 
sed on the upper and lower sides. A uniform velocity 
is applied on the inlet. The Reynolds number of the 
boundary layer is defined according to Ref.[13] as 
 

=x
U XRe
�
&                               (20) 

 
where the characteristic length X  is the distance do- 
wnstream from the start of the boundary layer, and the 
dimensionless wall distance is defined as 
 

=
U Xy(
�
&                             (21) 

 
The velocity profiles at =X 2.0 and 3.0 are cho- 

sen for comparison as in Fig.5(b) with different boun- 
dary layer Reynolds numbers. The results agree with 
the Blasius’s predictions[14] quite well, except devia- 
tions found in some places, caused by the limited size 
of the computational domain across the channel. As 
depicted in the figure, the larger the value of xRe , the 

further the upper boundary locates wall( = 4 / )X( �  

and the more precise results are achieved. Besides, 
since at = 2.0X , the boundary layer is thinner than 
that at = 3.0X , comparatively better results are obtai- 
ned. 
 
2.2 Interior boundary simulation 

In this part, the flows around a circular cylinder 
are simulated, and the diameter D  of the cylinder is 
chosen as the characteristic length. 

At a very low Reynolds number, the flow is stea- 
dy and symmetrical. As the Reynolds number increa- 
ses, the asymmetries and the time-dependence of the 
flow are developed, the famous Von Karman vortex 
street is formed, and finally, the turbulence occurs. As 
pointed out by Qu et al.[15], when 50Re � , the unstea- 
diness arises spontaneously even though all the impo- 
sed conditions are being held steady and the vortex 
shedding appears behind the circular cylinder. There- 
fore, we simulate the flow at = 40Re  for the steady 
flow and at Re  from 60 to 200 for the unsteady flows. 
 

 
 
 
 
 
 
Fig.6 The geometric configuration and boundary conditions for 

the flow past a cylinder symmetrically placed in the cha- 
nnel 

 

In the present study, a symmetrical computatio- 
nal domain with width of 4D  and length of 22D  is 
adopted, and the cylinder is located at (2 ,2 )D D  (as 

illustrated in Fig.6). The boundary conditions are as 
follows: on the top and bottom sides, the symmetrical 
boundary conditions are applied, while on the cylinder 
surface, the no-slip boundary condition is imposed th- 
rough the IB method. On the inlet (left side of the do- 
main), = 1u , = 0v  are given. At the far-field boun- 
dary, the pressure condition is applied. 

In this flow, the pressure coefficient pC  is defi- 

ned as 
 

2 2

= =
1 1
2 2

k
p

pp pC
u u% %

&

& &

�
                      (22) 

 

where p&  is the far-field pressure and kp  is the pre- 

ssure on the Lagrangian points. Then the dimension- 
less drag coefficient can also be defined as 
 

2

=
1
2

D
D

FC
U D% &

                            (23) 

 

where DF  is the drag force and can be easily calcula- 

ted according to the x  component of the force exerted 
on the Eulerian or Lagrangian points 
 

= d = dD x xF f F
� �

� �
 
�x X                   (24) 

 
It is interesting to note that both the contributions 

from the shear stress and the pressure distribution to 
the drag force could be obtained directly from the in- 
tegral force[7] in the IB procedure. 

Furthermore, for the unsteady flow, the shedding 
frequency could be represented as the Strouhal num- 
ber, 
 

= wf DSt
U&

                                (25) 

 

where wf  is the frequency in the lift force exerted on 

the cylinder. 
In addition, we define L&  and 2L  as the norms 

of error as 
 

=1,
= max e

i ii N
L u u& � , 

1/ 2
2

2
=1

1
=

N
e

i i
i

L u u
N

� �
�� �

� �
�     (26) 

 

where N  is the total number of the grid nodes and 
e
iu  

represents the solution at the finest grid density. 
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Fig.7(a) Pressure contour and streamlines for a stationary cyli- 

nder at = 40Re  by IBM 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.7(b) Streamlines for flow past a stationary cylinder at 

= 40Re  obtained by Wu et al. 

 
2.2.1 Steady flow 

Figure 7 shows the pressure contours and the st- 
reamlines of the flow and the corresponding results of 
Wu et al.[16] are also presented for comparison. It is 
obvious that the flow separates at the front stagnation 
point, and then merges down-stream, forming a pair of 
steady and symmetrical vortices. It is also interesting 
to note that the virtual flow also occurs inside the cy- 
linder due to the fact that the whole domain is treated 
equally including that inside the cylinder. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Pressure coefficient distribution on the cylinder surface at 

= 40Re  

The pressure coefficient pC  is plotted against the 

circumferential angle "  from o0  to o180  in Fig.8. 
The results agree very well with the results of Wu et 
al.[16]. Then, another comparison is shown in Table 1 
of the vortex length /L D , which is the distance from 
the rear point of the cylinder to the stagnant point 
where the time-averaged streamwise velocity is zero. 
From the table, we can clearly see that the results are 
close to the previous data. 
 
Table 1 Length of recirculation bubble at = 40Re  

Source L  

Present work 2.23 

Wu et al.[16] 2.30 

Silva et al.[17] 2.52 

Niu et al.[18] 2.26 

 
For a balance between the grid resolution and the 

computational efficiency, the stretching grid approach 
is adopted in the following detailed analyses. As depi- 
cted in Fig.9, the finest constant grid spacing is impo- 
sed around the circle, while, a stretched grid is applied 
in the far region. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 Illustration of stretched mesh, partial enlarged details see 

(b) 
 

Then, the influences of the grid spacing on the 
convergence are analyzed for the case of = 40Re . 

We conduct a set of additional simulations with 
different grid sizes, = 0.04h D , = 0.02h D , =h  
0.01D  and = 0.005h D . In this part, = 0.005h D  is 
chosen as the baseline for comparison. The marker 
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points are dense enough to avoid the influence of the 
marker points on the scheme accuracy. As depicted in 
Fig.10, a power between 1 and 2 is obtained for the 
norms ( L&  and 2L ) of the streamwise and transverse 

velocity components predicted by the present method, 
which indicates that the approach has a spatial accura- 
cy between first and second order. Considering the 
load and the accuracy of the calculation, hereinafter, 

= 0.01h D  is employed for further analyses. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 L&  and 2L  norms of the error of the streanwise velo- 

city and transverse velocity components versus the 
computational grid size 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.11 L&  and 2L  norms of the error for the streamwise and 

transverse velocity components versus the number of 
IB points 

 

On the other hand, the density of the Lagrangian 
points can influence the accuracy of the solution as 
well. To demonstrate it, we change the IB point num- 
ber in this case and at the same time fix the other pa- 
rameters. We make sure that the criterion of /s h� �  

2[19] is always satisfied. The numbers of the IB points 
of 500, 1 000, 2 000 and 4 000 are selected, respecti- 
vely. As shown in Fig.11, an error of 2( )O N �  is 

shown at certain stages based on the fixed grid spa- 
cing. However, this figure can change if the Cartesian 
grid resolution is changed. 
 

2.2.2 Unsteady flow 
Another interesting phenomenon is that the in- 

crease of the Reynolds number reduces the stability of 

the flow and the vortex shedding under certain values. 
The vorticity contours at = 60Re , = 100Re  and 

= 200Re  are illustrated in Fig.12. In these figures, 
the Karman Vortex Street is fully developed and can 
be clearly observed. Meanwhile, associated with the 
results of steady flows, the criterion for vortex she- 
dding in the flow around a cylinder should be 40 )  

60Re ) , which agrees with the previous results[15]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 Instantaneous vorticity contours for cylinder. The solid 

lines denote positive vorticity, while the dash lines de- 
note negative vorticity 

 
Table 2 The comparison of the numerical and experimental 

Strouhal numbers 

Re  Present results Qu et al.[15] Zhou et al.[20] 

60 0.135 0.135 - 

100 0.165 0.1648 0.165 

200 0.189 0.195 0.192 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.13 Lift and drag coefficients versus dimensionless time at 

= 100Re  
 

Table 2 shows the St  numbers at different 
Reynolds numbers, where we can obviously see that 
the results are consistent with published data. It should 
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be mentioned that Zhou[20] chose the turbulence model 
to simulate the 2-D flow, and his results indicate that 
its influence on the flows at a low Reynolds number 
could be neglected, otherwise, the 3-D turbulent stru- 
cture should be considered. Figure 13 presents the di- 
mensionless time ( = / )T tU L  evolution of the drag 

and lift coefficients at = 100Re . The periodicity of 
the flow pattern is clearly revealed. It can be seen 
from the figure that the period of the drag coefficient 
is different from that of the lift coefficient and the pe- 
riod of the lift coefficient is about two times the pe- 
riod of the drag coefficient. 
 

 
 
 
 
 
 
 
Fig.14 Geometry of flow around a cylinder behind backward- 

facing step 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.15 Streamlines in the vicinity of backward facing step with 

different locations of cylinder at = 200Re  

 
2.2.3 Flow around a cylinder behind backward facing 

step 
For a practical application of the IB-CBS method, 

the flow around a cylinder behind a backward-facing 
step at = 200Re  with the channel expansion =ER  

/ = 2H h  is selected for study (see Fig.14). The cyli- 
nder surface is represented by 2 000 Lagrangian poi- 

nts in a uniform distribution. The computation starts 
with the given free stream velocity = 4 ( )mu u y h� �  

2( ) /( )H y H h� � , where y  is the vertical coordinate 

of the inlet and mu  is the maximum velocity in the 

inlet. 
The velocity vector fields are shown in Fig.15. 

Similar to the flow over a circular cylinder, a small re- 
circulation zone is also seen behind the cylinder. The 
overall flow structure is in good agreement with the 
intuitive prediction. When the cylinder is inserted at 
different locations in the channel downstream of the 
backward facing step, where = 2 / 3s H , = 5 / 6s H  
and =S H  are adopted, respectively, the different 
phenomena occur. And as depicted in Fig.15, an inte- 
resting phenomenon is that the larger the value of s , 
the larger the corner eddies and the main recirculation 
region will be obtained. It should be mentioned that in 
the three cases, we just change the location of the cy- 
linder with a fixed background grid. Therefore, in the 
circumstances where both the outer and inner geome- 
tries are complex, our method could be applied easily. 
 
 
3. Conclusions 

The novel direct forcing IB approach coupled 
with the CBS-FEM is proposed in this paper. The 
Eulerian (Cartesian) grid for the flow domain and the 
Lagrangian grid for the marker of the immersed boun- 
dary are applied following the methodologies of the 
immersed boundary method. In view of the FEM im- 
plementation and the coupling of the structure stress 
evaluation, the structured triangular grid is adopted. 
The background Cartesian grid is stretched for the ba- 
lance between the accuracy and the efficiency. 

A series of viscous incompressible flow simula- 
tions, including the Poiseuille flow, the laminar boun- 
dary layer flow, and the flow past a circular cylinder 
at different Reynolds numbers are performed in order 
to see the flexibility and the validity of the method. 
The obtained results agree well with the previous nu- 
merical and experimental data. Furthermore, the grid 
resolution tests indicate that with the method, a spatial 
accuracy between first and second order is achieved. 
We also show that the accuracy could be controlled by 
adjusting the number density of the mark points. A se- 
cond power law could be achieved at certain stages. 
Finally, an interesting phenomenon is shown, that is. 
the location of the cylinder can influence the sizes and 
shapes of the corner eddy and the main recirculation 
region, by simulating the flow around a cylinder behi- 
nd a backward-facing step. The method of this work 
can be applied further to fluid dynamics with complex 
geometries, moving boundaries, fluid-structure intera- 
ctions, etc.. 
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