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Abstract: In this paper, we investigate the implications of electro-osmosis on electrohydrodynamic transport of a non-Newtonian 
fluid on a hydrophobic micro-channel by developing a suitable analytical method. Velocity-slip and temperature-jump conditions are 
paid due attention. An attempt has been made to examine the effects of rheological and electro-osmotic parameters on the kinematics 
of the fluid. The nonlinear Poisson-Boltzmann equation governing the formation of the electrical double layer and the body force that 
is generated by the applied potential are accounted for in the study. Perturbation solutions are presented. In order to exhibit the 
applicability of the analysis, the problem of electro-osmotic flow and heat transfer of blood in an arteriole has been taken up as an 
illustrative example of a real-life problem. An intensive quantitative study has been made through numerical computation of the 
physical variables involved in the analysis, which are of special interest in the study. The computational results are presented 
graphically. The study reveals that the temperature of blood can be controlled by increasing/decreasing the Joule heating parameter. 
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Introduction0F

�� 
Microchannels refer to flow passages having hy- 

draulic diameter lying between 10 �m and 200 �m. 
When the smallest channel dimension is 0.1 �m or 
less, the channel is called a nano-channel. In microte- 
chnological devices like MEMS and lab-on-a-chip, the 
micro-channels constitute the basic structure. Micro- 
channels also exist in the micro-circulatory system of 
the human body. Remarkable characteristics of these 
channels are that all the energy is carried away when a 
fluid flows through them and that their heat dissipa- 
tion rate is very high. While studying the liquid flow 
and heat transfer through a micro-channel between 
two parallel plates, scientists have observed that for 
micro-channel flows, diffusion dominates over the 
momentum transport and that the mass-flow rate can- 
not be properly estimated on the basis of the conven- 
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tional Navier-Stokes equation. In this case, in the 
Navier-Stokes equation, the convective velocity shou- 
ld be replaced by the total velocity. In studies pertai- 
ning to slip flow, if the velocity-slip and temperature- 
jump are accounted for, one can use the Navier-Stokes 
equation for estimating liquid flow in micro-channels. 

A hydrophobic material is one, which possesses 
the physical property of repelling a mass of water. The 
formation of water drops on the hydrophobic surface 
of leaves is an example of hydrophobicity. Hydropho- 
bic materials are usually neutral electrically. In contra- 
st, a hydrophilic material is one that has affinity towa- 
rds water. Such a material normally carries charge due 
to which water is attracted towards it. In chemical se- 
paration processes, hydrophobic materials are extensi- 
vely used for removal of non-polar material content 
from polar compounds and also oil from water. In 
available scientific literatures, it has been mentioned 
that when micro-structured, the hydrophobic property 
of a surface gets enhanced. It is known that super-hy- 
drophobic micro-nano structured surfaces possess 
self-cleaning property. In recent years several super- 
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hydrophobic materials have been developed, which 
are very useful for the treatment of physiological flui- 
ds and various other fluids. Ressine et al.[1] pointed 
out that patterned surfaces with sufficiently high de- 
gree of hydophobicity can play a significant role in 
bringing about radical improvement in surface based 
bioanalysis. They also bear the promise of useful app- 
lications in lab-on-a-chip and different microfluidic 
devices. 

In a recent communication by Misra et al.[2], it 
has been mentioned that when a solid surface comes 
in contact with an aqueous solution of an electrolyte, 
it is observed that a structure comprising a layer of 
charges of one polarity on the solid side and a second 
layer of charges of opposite polarity on the liquid side 
of the solid-liquid interface are formed. This observa- 
tion is described by saying that an electrical double 
layer (EDL) has been in existence. There is experime- 
ntal evidence that when an EDL is formed, an internal 
third layer of charges, called the “Stern layer” is for- 
med in the immediate vicinity of the wall and that the 
ions that comprise this layer are bound quite strongly. 
It is worthwhile to mention that the typical thickness 
of Stern layer is nearly equal to the diameter of an ion 
and that the nature of charges of this layer is opposite 
to that of the wall. This is why the ions of the Stern 
layer are attracted towards the wall with very strong 
forces, which are electrostatic in nature. However, the 
ions in the outer layer, which is of diffuse type are less 
associated. If and when the system is subject to the 
action of an externally applied electric field, the ions 
belonging to the outer layer experience a force, resu- 
lting in a bulk motion of the liquid. The flow of a li- 
quid generated in this manner is termed as electro-os- 
motic flow (cf Ref.[2]). 

Electrokinetic transport provides a very effective 
technique of flow of liquids, which is actuated by fa- 
vorable interfacial phenomena at small scales in a 
controlled manner. Usually the electrokinetic pheno- 
menon essentially depends on the formation of a loca- 
lly non-neutral layer of liquid particles adjacent to the 
charged interface. In the close proximity of the said 
layer, a diffuse cloud of oppositely charged ions scree- 
ns the surface charge in an effective manner. Under 
the action of an externally applied electric field a force 
is likely to be exerted on the ionic species located 
within the charged diffuse layer, mentioned above. 
This may be transmitted to the incipient fluid due to 
viscosity effects. As a result, there occurs a motion of 
the liquid relative to the solid surface. The flow of the 
liquid (the so-called electro-osmotic flow) relative to 
the stationary solid surfaces has its origin in the pre- 
ferential transport of mobile counter-ions in the diffu- 
se portion of the electrical double layer, when acted 
on by an applied electric field. This type of flow be- 
haviour bears the promise of wide applications in ana- 
lytical chemistry and life sciences, as well. A systema- 

tic discussion on different types of fluid flows having 
relevance to different problems of physiological fluid 
dynamics has been made by Misra et al.[2]. 

Electro-osmotic flows of Newtonian fluids in 
micro-channels have been the subject of several inve- 
stigations in the recent past, because of their relevance 
to various industrial problems, including those of bio- 
medical engineering and technology. Reports are avai- 
lable for studies pertaining to the effect of the surface 
potential on liquid transport through ultrafine capillary 
slits, by using the Debye-Huckel linear approximation 
for the electric potential, when the liquid flow is sub- 
ject to an imposed electric field. Similar studies have 
also be carried out for a narrow cylindrical capillary. 
Successful attempts were also made to obtain analyti- 
cal solutions for the velocity distribution, mass flow 
rate, pressure gradient, wall shear stress, and vorticity 
in mixed electro-osmotic/pressure driven time-perio- 
dic flows in two-dimensional straight channels, consi- 
dering symmetry of the electrical double layers and 
assuming that these are small (but finite). These stu- 
dies have, however, limited applications, since they 
are restricted only to cases, where the distance be- 
tween the two walls of a microfluidic device is about 
1-3 orders of magnitude larger than the thickness of 
the electrical double layers. Wang et al.[3] analyzed a 
two-dimensional model for the electro-osmotic flow 
in a rectangular micro-channel. Another flow problem 
in the case of periodical electro-osmosis in a rectangu- 
lar micro-channel was also discussed by them, by 
using a semi-analytical approach. This study was per- 
formed by using Poisson-Boltzmann and Navier- 
Stokes equations. Solution of a problem of heat tran- 
sfer during electro-osmotic flow of a Newtonian fluid 
under combined pressure in planar micro-channels, in 
available in the literature. Solution of problems conce- 
rning two-dimensional, time-dependent/time-indepe- 
ndent electro-osmotic flows that are driven by a unifo- 
rm electric fields with non-uniform zeta potential dis- 
tributions along the walls of a conduit has also been 
reported. Electro-osmotic flow in capillaries filled 
with symmetric electrolyte has also been discussed. 
Analytical solution for problem concerning electro-os- 
motic flow and chaotic stirring in rectangular cavities 
is also available. Wang et al.[4] studied numerically the 
characteristics of electro-osmotic flow for varying 
zeta potential and dimension. Some other numerical/ 
experimental models on electro-kinetic flow were de- 
veloped in the past. All these studies were also limited 
to simple Newtonian fluids only. 

The flow behavior of non-Newtonian fluids are 
of greater interest in the study of various problems in 
different branches of science and technology. It is 
known that most physiological fluids such as blood, 
saliva and also DNA solutions are viscoelastic in natu- 
re. Existing scientific literature indicates that changes 
due to various diseases or surgical intervention can be 
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readily identified, considering blood viscoelasticity as 
a useful clinical parameter. Several investigators ca- 
rried out the study of viscous fluid flow over a stre- 
tching sheet, where the fluids obey non-Newtonian 
viscoelastic (cf. Ref.[5]-[9]) constitutive equations. 
Misra et al.[10,11] also carried out a series of investiga- 
tions to explore a variety of important information on 
the characteristics of blood flow in arteries in normal 
physiological state/pathological condition, such as ar- 
teriosclerosis. Keeping in view the enormous applica- 
tion potential of studies on electro-osmotic flow of 
non-Newtonian fluids in many industrial problems 
and in physiological fluid dynamics, very recently 
Misra et al.[2] investigated channel flow characteristics 
of electro-osmotic flow of a viscoelastic fluid. The 
analysis presented by them was applied successfully 
to put forward useful numerical estimates of some im- 
portant characteristics of electro-osmotic flow of phy- 
siological fluids. Afonso et al.[12] analytically studied 
the mixed elctroosmotic/pressure driven flows of vis- 
coelastic fluids in micro-channels. Ng and Qi[13] ana- 
lytically solved the problem of an elctroosmotic flow 
of a viscopastic material through a slit channel with 
walls of arbitrary zeta potential. Some other authors 
presented a solution for a viscoelastic fluid model 
using Phan-Thien-Tanner model. Influence of viscosi- 
ty index and electro-kinetic effect on the velocity of a 
third-grade fluid between micro-parallel plates has 
also been reported in scientific literatures. Reports on 
the effect of dynamic viscosity on the velocity of the 
electro-osmotic flow of power law fluids are also 
available. 

It is known that one of the important factors re- 
sponsible for actuating electro-osmotic flows is the 
so-called “velocity-slip” of the fluid particles. Bao and 
Lin[14] analytically studied the gas flow and heat tran- 
sfer in micro-channels by considering higher order 
slip boundary conditions. The effects of second-order 
slip conditions on flow and heat transfer in micro 
Couette fluid flow has been investigated by Bao et 
al.[15]. Studies on peristaltic flows of different types of 
fluids in circular cylindrical tubes under the velocity- 
slip condition have also been reported previously. 

Keeping in view the fact that most fluids used in 
different industries are far from being Newtonian, a 
theoretical investigation has been made in the present 
paper to explore a variety of information regarding the 
characteristics of electro-osmotic flow of a non- 
Newtonian fluid, -a viscoelastic fluid, in particular. 
This study is motivated towards throwing some light 
on the electrokinetic transport of physiological fluids, 
which are prominently viscoelastic in nature, in situa- 
tions when the fluid transport takes place through lab- 
on-a-chip based micro-system subject to an externally 
applied electric field. For this purpose, a model has 
been developed, which takes into account the veloci- 
ty-slip of the viscoelastic fluid during electro-osmotic 

flow on a hydrophobic microchannel. The model has 
been analyzed by using suitable constitutive equations 
and by employing appropriate analytical techniques. 
Solution of the problem has been achieved by develo- 
ping a suitable perturbation scheme, with an aim to in- 
vestigate the influence of fluid viscoelasticity on the 
ionized motion of the fluid, under the action of ele- 
ctro-kinetic forces. As an illustration of the applicabi- 
lity of the analysis, the derived analytical expressions 
have been computed for the electrokinemetically ac- 
tuated flow of blood that possesses prominent visco- 
elastic properties, as evidenced by experimental obse- 
rvations reported in existing scientific literatures. The 
numerical estimates have been presented in graphical 
form. 

The study along with the numerical data prese- 
nted here will be immensely useful for validating the 
results of future theoretical studies for more realistic 
models, which may necessitate the use of numerical 
models to handle the complexity of the problem. Ex- 
perimentalists will also find the results valuable, be- 
cause they will be able to validate their experimental 
observations by using the results of the present study. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 Physical sketch of the problem 
 
 
1. The model 

Let us consider the steady incompressible two-di- 
mensional electro-osmotic flow of a viscoelastic fluid 
in a microchannel bounded by two parallel plates. The 

-x axis is taken along the centre line of the channel 
and the -y axis in the transverse direction. The flow is 

taken to be symmetric about -x axis (cf. Fig.1). The 
plates are supposed to be under the action of an ele- 
ctric field, which is responsible for the flow to be ele- 
ctro-kinetic. The distance between the plates is deno- 
ted by 2h  and the length of each plate by L . Consi- 
dering symmetry in the electric potential and velocity 
fields, the flow domain to be studied is reduced to one 
half, if the electrical potential and pressure gradients 
are assumed to be applied along the -x axis of the 
channel. 

Assuming incompressible laminar flow of the 
fluid, the equations that govern its motion are the 
equations of continuity, linear momentum and energy 
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transfer, which are respectively given by 
 
div( ) = 0V                                 (1) 

 
d

= div +
d EK
V T F
t

�                          (2) 

 
and 
 

21d
= grad( ) div( ) +

d xT V q E
t
�

� �� �              (3) 

 
with 
 

=EK eF E�                                 (4) 

 
In the above-written equations, V  is the velocity ve- 
ctor, �  the density of the fluid and T  the stress 

tensor. EKF  stands for the electrokinetic body force, 

e�  for the density of the net electric charge and E  for 

the resultant electric field. 1�  is the specific internal 

energy and q  represents the heat flux vector. Heat 

flux vector is given by the Fourier equation, thermal 
radiation being neglected. �  denotes the permittivity 

of the electric field. The term 2
xE�  in the right hand 

side of Eq.(3) represents Joule heating. The electric 
field is assumed to act in -x direction only. The parti- 
cular type of fluid to be considered in the present 
study is a second order fluid. For such a fluid, the 
Cauchy stress tensor T  for an incompressible homo- 
geneous thermodynamically compatible may be put in 
the form 
 

2
1 1 2 2 1= + + +T pI A A A� 	 	                   (5) 

 
where p  is the pressure and �  the coefficient of 

viscosity, 1	  and 2	  are the normal stress moduli 

and 1A  and 2A  are defined as 

 
T

1 = (grad ) + (grad )A V V                      (6) 

 
and 
 

T1
2 1 1

d
= + grad( ) + grad( )

d

AA A V V A
t

�            (7) 

 
d / dt  being the material time derivative. The assump- 
tions concerning the sign of 1	  in the fluid model re- 

presented by Eq.(5) together with Eqs.(6) and (7) are 
mentioned in the next section in course of the theore- 
tical analysis of the problem. 

Considering the hydrophobic nature of the cha- 
nnel surface, the boundary condition can be given by 
the Navier slip model described as 
 

=
VV b
n






, at the boundary                   (8) 

 
where b  denotes the slip length (see Fig.2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Schematic illustration of the paradigm of velocity slip 
 
 
2. Analysis 

From the laws of thermodynamics, it follows that 
the material constant 1	  has to be positive (cf. 

Ref.[7]). Since the viscoelastic fluid for the study is 
being represented by the second order fluid model 
given by Eq.(5), it needs to be compatible with the 
principles of thermodynamics. So it has to satisfy the 
Clausius-Duhem inequality for all motions. The analy- 
sis that follows is based on the assumption that the 
specific Helmholtz free energy of the fluid is a mini- 
mum, when it is locally at rest. 

Then 0� � , 1 0	 �  and 1 2+ = 0	 	 . 

The constitutive equation given by Eq.(5) repre- 
sents a non-Newtonian fluid with viscoelastic beha- 
viour ( 0� � , 1 0	 � ). 

For a steady flow with no pressure gradient, 
Eq.(2) reduces to 
 

2
1 1 2 2 1grad( ) = div( + + ) + EKV V A A A F� � 	 	�     (9) 

 
For a symmetric ( : )z z  electrolyte, the density 

of the total ionic charge, e�  is given by 

 
+= e ( )e z n n� ��                           (10) 

 
in which +n  and n�  are the number densities of ca- 
tions and anions, respectively, and are given by the 
Boltzmann distribution (considering no EDL overlap) 
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*

0

e
= exp

B ab

zn n
k T

� � �
� �
� �
�                       (11) 

 
In Eq.(11), 0n  represents the concentration of ions at 

the bulk, e  stands for the charge of a proton, z  is 
the valence of ions, Bk  the Boltzmann constant, and 

abT  the absolute temperature. 

To express the body force, we use the Poisson- 
Boltzmann equation and the Debye-Huckel approxi- 
mation. The Poisson-Boltzmann equation is related to 
the potential distribution  �  within the EDL. In the 

vertical direction, it takes the form 
 

2 *

2

d
=

d
e

y
�
�

�                              (12) 

 
where �  is the dielectric constant (or the permittivity) 
of the fluid. Using Eq.(12) and taking help of Eqs.(10) 
and (11), we obtain the Poisson-Boltzmann equation 
in the form 
 

2 * *
0

2

2 ed e
= sinh

d B ab

n z z
y k T
 

�
� �
� �
� �

                  (13) 

 
Let us now introduce a normalized electro-osmotic 
potential function   with zeta potential �  of the me- 

dium in the form 
 

*

=

�

                                 (14) 

 
Henceforward we shall use the non-dimensional 

coordinates 
 

=
x
h

� , =
y
h

�                             (15) 

 
In terms of the non-dimensional variables defi- 

ned in Eqs.(14) and (15), Eq.(13) now reads 
 

2 2

2 2

d
= sinh( )

d D

h 	
� � 	

                     (16a) 

 
Since the potential function on the boundary 

should be equal to unity, we have 
 

= 1  on = 1�                           (16b) 

 
In Eq.(16a), = e / B abz k T	 �  is the ionic energy para- 

meter and 1 1/2
0= (e ) ( / 2 )D B abz k T n� ��  is the Debye 

length. 
Now considering that the gradient of the EDL 

potential acts only in the normal direction of the boun- 
dary, using the boundary condition (16b) and assu- 
ming that 0 �  and d / d = 0 � , at points far away 

from the EDL, we obtain the solution of Eq.(16a) in 
the form interfere 
 

14
( ) = e tanhtanh

4
m� 	 �

	
� � �� � � �
� �� � � �

� � � ��  
            (17) 

 
where = / Dm h �  is the electo-osmotic parameter. The 

solution (17) is valid for all situations, where the 
EDLs formed on different surfaces do not interfere 
with each other. For low values of �  potential, the 

Debye-Huckel linearization solution (17) reduces to 
the form 
 

cosh( )
( ) =

cosh( )

m
m
� �                          (18) 

 
Assuming that the fluid is thermodynamically compa- 
tible 1( 0)	 � , we consider the flow of an incompre- 

ssible second order fluid through two parallel imper- 
meable sheets =y h� . Considering the flow to be 

symmetric, we can confine our study to the region 
0 y h! !  for [0, ]x L" . In a steady state and in abse- 

nce of any pressure gradient, the continuity Eq.(1) and 
momentum Eq.(8) can be written in the form that 
 

+ = 0
u v
x y


 


 


                              (19) 

 
2 2 2

1
2 2

+ = + +
u u u u u uu v u
x y y x y y x y

	
#

�
� � �
 
 
 
 
 
 


�� � �
 
 
 
 
 
 
 
� � ��
 

 
3

3
+ e xEuv

y
�
�

�

�
  

                        (20) 

 
where u  and v  denote the fluid velocity compone- 
nts along -x  and -y directions respectively and #  

represents kinematic viscosity coefficient. 
In the Cartesian coordinate system, the boundary 

conditions for the flow problem concerning a second- 
order fluid, which is being studied here are 
 

=
uu b
y






, = 0v  at =y h                   (21) 

 

= 0
u
y






, = 0v  at = 0y                    (22) 
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In the analysis that follows we shall make use of 
the following transformations 
 

= ( )HSUu x f
h

�$  and = ( )HSv U f ��           (23) 

 
where HSU  stands for the Helmholtz-Smoluchowski 

velocity given by 
 

= = x
HS x

EU M E ��
�

�
�                      (24) 

 
in which M  represents the mobility of the medium. 

Using the non-dimensional coordinate defined in 
Eq.(15) and non-dimensional variables defined in 
Eq.(23), the non-dimensional form of the momentum 
Eq.(20) is obtained in the form 
 

2
2 i

2

d
+ (2 ) + = 0

d
vf K f f f ff �

�
$$$ $ $$$ $$� �       (25) 

 

1= /HSK U h	 �  being the viscoelastic parameter and 

= /h L�  the aspect ratio. Dashes denote differentia- 
tion with respect to � . This equation has been derived 

by neglecting the inertia term and is valid for low 
Reynolds number flow. 

The boundary conditions in terms of non-dimen- 
sional variables read 
 

( ) = 1 � , ( ) = ( )ff S f� �$ $$ , ( ) = 0f �  at = 1� (26) 

 

( ) 0 � � , 
d

= 0
d


�

, ( ) = ( ) = 0f f� �$$  at = 0�  

(27) 
 
In Eq.(26), = /fS b h  is the non-dimensional velocity 

slip factor. 
Considering K  to be small, a perturbation ex- 

pansion of f  is taken in the form 
 

2
0 1 2( ) = ( ) + ( ) + ( ) +f f K f K f� � � � �          (28) 

 
Substituting Eq.(28) into Eq.(25), equating like powe- 
rs of K  and neglecting second and higher powers of 
K , we obtain 

 
2

0 2

d
=

d
f �

�$$$ �                             (29) 

 
and 
 

2
1 0 0 0 0 0+ 2 = 0ivf f f f f f$$$ $ $$$ $$� �                 (30) 

From the Eqs.(26) and (27), it now follows that 
the boundary conditions for   and f  can be listed 

as 
 

(1) = 1 , 0 0(1) = (1)ff S f$ $$ , 1 1(1) = (1)ff S f$ $$ ,  

 

0 1(1) = (1) = 0f f                           (31) 

 
(0) 0 � , (0) = 0 $ ,  

 

0 1 0 1(0) = (0) = (0) = (0) = 0f f f f$$ $$             (32) 

 
Solving the third-order differential Eqs.(29) and (30) 
subject to the boundary conditions (31) and (32), the 
expressions for 0f  and 1f  are found in the form 
 

0 1

sinh( )
( ) = ( )

cosh( )

mf S
m m
� �� � � � �               (33) 

 
and 
 

1 1
1

5 ( )sinh( ) ( )cosh( )
( ) = +

cosh( ) cosh( )

S m S mf
m m m

� � � �� � �
�

� �
�

 
2 2 3

22
+ +

( ) 3cosh

m S
m

� �� �
� �
� �
� �

               (34) 

 
where 
 

1

sinh( )
=

cosh( )
fS m m

S
m

�
, 1 3

2

( )
=

cosh( )

S SS
m m
� � �

,  

 
2 2

3 = 5 sinh( ) (4 + ) cosh( )S m m m m m�  
 

From the Eqs.(33) and (34), we further have 
 

0 1

cosh( )
( ) = ( )

cosh( )

mf S
m

� �� �$ � �                (35) 

 
and 
 

1 1
1

4 ( )cosh( ) ( ) sinh( )
( ) = +

cosh( ) cosh( )

S m S m mf
m m

� � � �� � �
�$

� �
�

 
2 2

2
22

(1+ ) +
( )cosh

m S
m

� �                     (36) 

 
The volumetric flow rate is then given by 

 
1

1

0

2 tanh( )
= 2 ( )d = 2( ) + 2m lm

mV f S KV
m

�� � �$ � �%  

(37) 
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in which 
 

2 2
1

1 22

5 ( ) 4
= tanh( ) + ( ) +

3cosh ( )lm
S mV m S S

m m
� � � � �

�
� �

 
The energy equation is given by 

 
22 * 2

12
+ + + + +

T u u u u u u vu
y y y x y x y y y

	 � 	
�� �
 
 
 
 
 
 
 

�� �
 
 
 
 
 
 
 
 
� � �

 

 
2

2
2

+ = 0x
uv E

y
�

�

�
 �

                        (38) 

 
where T �  represents the temperature of the fluid, 	  
and �  denote respectively the thermal conductivity 
of the fluid and the electrical permittivity, while the 
term 2

xE�  represents Joule heating. 

The thermal boundary conditions are given by: 
 

*
*

0= +w
TT T k
y






 at =y h                   (39) 

 
*

= 0
T
y






 at = 0y                         (40) 

 

where wT  denotes the surface temperature and 0k  is 

the temperature jump factor. 
Let us now introduce the non-dimensional tem- 

perature variable defined by 
 

*
2

0 1( , ) = = ( ) + ( )
w

T
T

& � � & � � & �                (41) 

 
Thus by using the non-dimensional coordinates as 
well as the non-dimensional variables and then equa- 
ting the coefficients of 0�  and 2� , we get the follo- 

wing ordinary differential equations: 
 

0 1+ = 0& #$$                                (42) 
 
and 
 

2 2
1 2 2+ + ( ) = 0f K f f ff f& # #$$ $$ $ $$ $$ $$$�         (43) 

 
in which 2 2

1 = /x wE h T# � 	  is a non-dimensional pa- 

rameter related to Joule effect and 2 1= /HSU h# 	 �  is 

Brinkmann number. 
The non-dimensional forms of the thermal boun- 

dary conditions (39) and (40) are 
 

0 0(1) = 1+ (1)tS& & $ , 1 1(1) = (1)tS& & $            (44) 

and 
 

0 1(0) = (0) = 0& &$ $                           (45) 

 
where 0= /tS k h  is the non-dimensionalized tempe- 

rature jump factor. 
Solving the Eqs.(42) and (43) subject to the 

boundary conditions (44) and (45), we obtain the ana- 
lytical expressions for 0&  and 1&  given respectively 

by 
 

21
0 = 1+ (1 2 )

2 tS#
& �� �                     (46) 

 
and 
 

2
2

1 42
= [ cosh(2 ) +

8cosh ( )
S m

m
� #

&  

 

1

cosh( )
(1+ 6 6 )cosh(2 ) 64 +

cosh( )

mK S K m K
m
�� � �� �  

 

5

sinh( )
sinh(2 ) + 32 +

cosh( )

mmS m Km
m
�� �  

 

1 6( ) sinh(2 ) + 2 ]tKm S m S S� � �� �          (47) 

 
where 
 

2
4 1= 2 ( )[ ( 1) 3] + 2 1tS K S m S� �� � � � ,  

 

5 1= 2 2 ( )(11 12) 2 tS K S S� � �� � � � � ,  

 
2 2

6 1= (5 1)( 1) +S m S K �� �  

 
2[32 ( 1)(5 +11)] +K m� � �� �  

 
16 ( 2) tanh( )Km m� � �  

 
 
3. Computation of electro-osmotic flow and heat 

transfer variables in the micro-circulatory sys- 
tem 

In this section, we shall illustrate the applicability 
of the model developed and analyzed in the preceding 
sections. For this purpose, let us consider the electro- 
osmotic flow of blood and heat transfer in the micro- 
circulatory system subject to the action of an applied 
electric field. The derived expressions for the velocity 
profile, temperature profile and volumetric flow rate 
are numerically computed by taking into account the 
velocity-slip and temperature-jump at the wall of an 
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arteriole. In order to have a proper insight into the 
flow behaviour of blood through an arteriole under the 
influence of electro-osmosis, the variation of f $ , 0&  

and mV  have been estimated and the computational 

results have been presented in graphical form. The va- 
lues (or ranges of values) of the physical parameters 
involved in the model study conform to experimental 
data for blood flow during micro-circulation, reported 
in scientific literatures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Velocity distribution of blood in the micro-circulatory 

system for different values of electro-osmotic parameter 
m  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.4 Distribution of blood velocity for different values of velo- 

city-slip factor fS , when = 0.001K , electro-osmotic 

parameter = 10.0M  and = 0.001�  

 
Figure 3 depicts the variation of blood velocity 

for different values of the electro-osmotic parameter 
m  when values of other parameters are kept constant. 
It should be noted that velocity is minimum at the wall 
of the arteriole. It is further seen that velocity is enha- 
nced with an increase in the electro-osmotic parameter. 
Since m  is the ratio of height of the channel and the 
Debye thickness D� , it is indicated that an increase in 

the height of the channel causes a rise in axial velocity 
throughout the channel for a viscoelastic fluid. 

Figure 4 reveals that velocity-slip at the wall of 
the arteriole bears the potential to alter the velocity 
distribution to a significant extent. This figure shows 
that during electro-osmotic flow, blood velocity in- 
creases as the slip factor increases. It may be noted 

that the velocity maintains a constant value in the vici- 
nity of the axis of the channel, but in the proximity of 
the wall the velocity distribution is strongly influenced 
by the velocity-slip factor. It is revealed that the wall- 
slip effects bear the potential to arrest the velocity gra- 
dients in the interfacial region and also that such effe- 
cts promote the advective transport of mobile ions in 
the EDL. This coupling between the wall slip and 
EDL transport plays the most critical role in determi- 
ning the streaming potential field and in turn strongly 
influences the consequent variations in the energy 
transfer efficiency. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Velocity distribution of blood for different values of K  

in the absence of velocity-slip in the micro-circular sys- 
tem, when = 10.0m  and = 0.001�  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.6 Change in the velocity distribution with change in the va- 

rious value of �  in the absence of velocity-slip, for 
= 10.0M  and = 0.001K  

 
Nature of velocity distribution for different va- 

lues of the viscoelastic parameter K  under no-slip 
condition is depicted in Fig.5. It may be noted that for 
a Newtonian fluid ( = 0)K , blood velocity is greater 

than that of a non-Newtonian viscoelastic fluid (K �  

0). It is also seen from this figure that the velocity is 
minimum at the endothelium of the arteriole. 

Figure 6 illustrates the change in velocity distri- 
bution for different values of the aspect ratio �  in the 
absence of wall-slip. This figure reveals that the cha- 
nge in aspect ratio does not bring about any apprecia- 
ble change in the velocity distribution qualitatively, 
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however, an increase in aspect ratio enhances the 
magnitude of the velocity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Temperature distribution for different values of the Joule 

heating parameter 1v  when temperature-jump factor 

= 0tS  

 

Figure 7 gives temperature profiles 0 ( )& �  for di- 

fferent values of Joule heating parameter 1v  in the ab- 

sence of temperature-jump. One may note from this 
figure that temperature rises as the value of the Joule 
heating parameter is increased. This effect is more 
pronounced at the axis of the arteriole. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Change in temperature distribution with change in the 

value of tS , when 1 = 0.1v  

 
One can have an idea of the temperature profiles 

0 ( )& �  for various values of the temperature-jump 

factor from Fig.8, when Joule heating parameter 1v  is 

equal to 0.1. This figure indicates that temperature de- 
creases as the temperature-jump factor or the vertical 
distance increases. 

Figure 9 illustrates the extent of variation in the 
volumetric flow rate, as blood viscoelasticity changes 
corresponding to different values of the velocity-slip 
factor =fS �0.1, �0.2, �0.3 when electro-osmotic pa- 

rameter = 20.0m  and aspect ratio = 0.002� . The 
plots presented in this figure reveal that volumetric 
flow rate increases with a rise in the value of the pa- 
rameter fS . It is important to note from this figure 

that the volumetric flow rate is inversely proportional 
to the viscoelastic parameter K . 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 Variation in volumetric flow rate mV  with K  for diffe- 

rent values of fS , in the case when = 20.0m  and =�  

0.002 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 Comparison of velocity distribution between the results 

of the present study and those of a previous study[6] 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Comparison of velocity distribution between the results 

of the present study and those of another previous study 
on electro-osmosis[2] 

 
 
4. Comparison of the results of the present study 

with those of previous investigations 
In Fig.10, results of a previous investigation[6] 

have been presented along with the results of the pre- 
sent study. For the purpose of comparison, both the 
studies have been naturally brought to the same plat- 
form, by considering a vanishing value for the electric 
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potential and also by disregarding the slip effects for 
the present study, while for the previous study[6], wall 
stretching and magnetic field effects have been consi- 
dered to be zero. 

Figure 11 gives a comparison of the results of the 
present study in the absence of slip factors with those 
of another previous study[2] on electro-osmotic flow, 
in the case when wall stretching is negligibly small. 

One may observe from these figures that the re- 
sults of the present study are in good agreement with 
those of both the previous studies. 
 
 
5. Concluding remarks 

Analytical solution for the electro-osmotic flow 
and heat transfer of a non-Newtonian viscoelastic 
fluid has been derived by taking into account the 
Navier slip and temperature-jump. Symmetric boun- 
dary conditions with equal zeta potential at the walls 
have been considered. A non-linear Poisson- 
Boltzmann equation governing the electrical double- 
layer field and a body force generated by the applied 
electric potential field have been incorporated in the 
Navier-Stokes equations. 

The central objective of the study has been to in- 
vestigate the distributions of the electric potential, as 
well as the variation of velocity, temperature and vo- 
lumetric flow rate for the non-Newtonian viscoelastic 
fluid under the influence of electro-kinetic forces. 

It may be mentioned that the references of many 
of the previous publications relevant to the present 
work, had to be ommited in the final version of the 
manuscript owing to the restriction in the number of 
references stipulated for this journal. However, some 
of the previous papers published recently, in which the 
state-of-the art of the area has been duly reviewed 
along with references, have been included in the Intro- 
duction Section of this paper and their references have 
been given in the Bibliography. 

The study serves as a first step towards understa- 
nding the role of electro-osmosis during blood flow in 
the micro-circulatory system. It also bears the poten- 
tial of having useful applications in nano-scale bio- 
sensor technologies as well as in electro-mechanical 
transducers. A strong merit of the present study lies in 
the fact the associated problem of heat transfer has 
also been elucidated here. This serves as an important 
step towards understanding the effect of Joule heating 
on blood flow in the micro-circulatory system. On the 
basis of the present study, it may be conjectured that 
Joule heating has a dominant role to play in contro- 
lling the temperature of blood in micro-vessels of the 
circulatory system. 
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