304

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Journal of Hydrodynamics

2015,27(2):304-310
DOI: 10.1016/S1001-6058(15)60485-1

www.sciencedirect.com/
science/journal/l0016058

Irreversibility analysis of unsteady couette flow with variable viscosity”

EEGUNJOBI A. S.', MAKINDE O. D.*?, TSHEHLA M. S.”, FRANKS O.?
1. Department of Mathematics and Statistics, Namibia University of Science and Technology, Windhoek,

Namibia, E-mail: samdetl@yahoo.com

2. Faculty of Military Science, Stellenbosch University, Stellenbosch, South Africa
3. Faculty of Engineering Built Environment and Information Technology, Nelson Mandela Metropolitan

University, Port Elizabeth, South Africa

(Received December 21, 2013, Revised December 10, 2014)

Abstract: This paper investigates numerically the inherent irreversibility in unsteady generalized Couette flow between two parallel
plates with variable viscosity. The nonlinear governing equations are derived from the Navier-Stokes equations and solved
numerically using a semi-discretization finite difference method together with the Runge-Kutta-Fehlberg integration scheme. The
profiles of velocity and the temperature obtained are used to compute the entropy generation number, Bejan number, skin friction and
Nusselt number. The effects of embedded parameters on entire flow structure are presented graphically and discussed quantitatively.
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Introduction

Study of flow and heat transfer in viscous incom-
pressible fluids between two parallel plates, one of
which is moving relative to the other, known as the
Couette flow, is motivated by several important pro-
blems in engineering and industries!). Lichun and
Duane'” investigated the instabilities of a Couette
flow composed of two layers of immiscible fluids ex-
perimentally and compared with the theoretical predi-
ctions of a linear instability analysis. Asghar and
Ahmad™ constructed the analytic solution for an un-
steady Couette flow in the presence of an arbitrary
non-uniform applied magnetic field. Makinde and
Onyejekwe!”! reported a numerical solution for an
MHD generalized Couette flow and heat transfer with
variable viscosity and electrical conductivity. Since
then, several authors have made interesting investiga-
tions of relatied flow and heat transfer in the Couette
flow under various physical situations™.

Meanwhile, the Couette flow and heat transfer
processes are irreversible. This causes disorder in the
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flow system which can be quantified in term of entro-
py. Entropy generation analysis is closely associated
with thermodynamic irreversibility and has become an
important aspect of modeling and optimizing applica-
tion in fluid flow and energy system for efficient ope-
ration. Bejan'"® presented a theoretical work on entro-
py generation in flow systems and heat transfer proce-
sses. The entropy generation in the Couette flow assi-
sted with pressure gradient and four different combi-
nations of thermal boundary conditions was reported
by Aziz”). Makinde and Eegunjobi!'” considered
theoretically the inherent irreversibility in a variable
viscosity hydromagnetic generalized Couette flow
with suction/injection at the walls. Butt et al.'"! stu-
died entropy generation rate in hydrodynamic slip
flow over a vertical plate with convective boundary.
Some other papers such as''*"'* have also investigated
entropy generation rate in flow system under various
situations. From the literature survey, it seems that the
problem of inherent irreversibility in an unsteady va-
riable viscosity Couette flow has not received much
attention.

In this paper, the combined effects of flow un-
steadiness and temperature-dependent viscosity on en-
tropy generation rate in a generalized Couette flow are
investigated. In the following sections, the model pro-
blem is obtained and solved numerically using a semi-



discretization finite difference method coupled with
Runge-Kutta-Fehlberg integration scheme!'™. Pertine-
nt results are presented graphically and discussed qua-
ntitatively.

1. Mathematical model

Consider the unsteady laminar flow of an incom-
pressible variable viscosity fluid between two parallel
plates channel under the combined action of a con-
stant pressure gradient and uniform motion of the
upper plate. It is assume that the channel width is a,
the lower plate is fixed at y =0 while the uniform

velocity of upper plate is U as depicted in Fig.1.

u=U, T=T,
y=a
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Fig.1 Schematic of the problem under consideration

Under the above assumptions, the governing
equations for continuity, momentum and energy bala-
. . . . 3-6.9
nce in one dimension can be written as®*”;
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where u is the axial velocity, x the dynamic visco-
sity, o the fluid density, 7 the fluid temperature, C,

the specific heat at constant pressure, k& the thermal
conductivity of the fluid, P the fluid pressure and ¢
the time. The initial and boundary conditions are
given as:

u(y,00=0, T(y,0)=T, “4)
u(0,)=0, 70,0)=T, (5a)
u(a,y=U, T(a,t)=T, (5b)

where T, is the channel walls temperature and 7, is
the fluid initial temperature. The dynamical viscosity
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4 is assumed to be an exponential decreasing fun-
ction of temperature, given by

p(T) = gy ©)

where g, is the initial fluid viscosity at 7, and « is

the variable viscosity parameter. We introduce the di-
mensionless variables as follows:

T-T

9: 0 5 W:i’ 77:1’ T:Z_‘:’ V_&,
T,-1," U 4 a p

P= aP’ :__6P’ B=a(T,-T,), X:f,
U oX

2
Pr:—#OCP , Ec:—U @)
k C,(T,~T,)

The dimensionless governing equations together
with the appropriate initial and boundary conditions
can be written as:

owin.o) _ ., 0 [ w0 ®)
or on on

fﬁ~a€(”’f)::829(”’7)+aPrEbe-ﬂ€{fbf£Qlfl}2 9)

or on’ on
w(17,0)=0, 6(17,0)=0 (10)
w(0,7)=0, 6(0,7)=1 (11a)
w(l,7)=1, 6(1,7)=1 (11b)

where A is the pressure gradient, Ec the Eckert
number, Pr the Prandtl number, and /£ the dimen-
sionless viscosity variation parameter. The shear stress
and the rate of heat transfer at the plate surface are
given as:

(12)

Tw:/’l_ > qW:_ A

vl . o

y=0,a

Using Eq.(12), the expression for skin-friction
coefficient and the local Nusselt number are obtained:

at, _ 0 0w, 7)|

C, = ,
U'uo 677 |7]:O,1

Ny —_ 94 __06001.7)] 13
k(YWW - 7:)) 877 |7]:0,1
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Equations (8)-(9) together with boundary conditions
(10)-(11) constitute a coupled nonlinear boundary-
value problem, which is solved numerically using a
semi-discretization finite difference method together
with the Runge-Kutta-Fehlberg integration scheme!"”.
Thereafter, the numerical results for the velocity and
temperature profiles are obtained and utilized to com-
pute the skin friction and the Nusselt number using the

expression in Eq.(13).

2. Entropy analysis

Thermodynamic irreversibility and entropy gene-
ration are indispensable part of flow and heat transfer
processes. Following Wood!'?, the simplified volume-
tric rate of entropy generation is given by

E, =i2[a—rj + 40 (a—“] (14)
7\ oy T, \ oy

0

where the first and the second terms on the right hand
side of Eq.(14) are irreversibilities due to heat transfer
and viscous dissipation respectively. Introducing the
dimensionless quantities defined in Eq.(7) to Eq.(14)
leads to

_ TE, | 06(,7) 2+Bre’ﬁg ow(n, ) ’
" KT, -T,) on 0 on

(15)

where Q2=(T, —1;)/T, isthe temperature difference

parameter and Br = EcPr 1is the Brinkmann number.
We define the Bejan number Be as

Be=£=L (16)
N, 1+¢

where

N,=N,+N,,

2
N, = (j—gj (Heat transfer irreversibility),
n

N _Br {W(n, 7)

2
Fluid friction irreversibility),
27 on } ( y)

N. s )
@ =—2 (Irreversibility ratio)
1

It is noteworthy that Be=0 corresponds to the
limit of dominant effects of fluid friction irreversibili-

ty while Be=1 represent the heat transfer irreversibi-
lity dominant limit. When Be=1/2 both fluid friction
and heat transfer contribute equally to the entropy ge-
neration in the flow process.

3. Results and discussion

Here, we have assigned numerical values to the
parameters encountered in the problem in order to
gain a clear insight into the entire flow structure and
thermal development. Numerical solutions are displa-
yed and discussed in Figs.2-22 below.
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Fig.2 Velocity profiles with increasing space

Fig.4 Velocity profiles with increasing A4

3.1 Velocity profiles with parameter variation
Figures 2, 3 show that the fluid velocity increases
gradually in time and space until it attains a steady



state at 7=0.8 for a given set of parameter values.
Moreover, it is noteworthy that the fluid velocity is
zero at the lower fixed plate and maximum at the
upper moving plate satisfying the prescribed boundary
conditions. The velocities in Figs.4 and 5 increase
with the increase in pressure gradient 4 and dimen-

sionless viscosity variation parameter S respectively.

This is expected, since as the values of 4 and S in-

crease the fluid becomes lighter and flow faster due to
a rise in temperature.
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Fig.5 Velocity profiles with increasing /3
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Fig.7 Temperature profiles with increasing time

3.2 Temperature profiles with parameter variation
Figures 6, 7 show that for a given set of parame-

ter values, the fluid temperature increases both in

space and time to its steady state value 7=0.8. Inte-
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restingly, the fluid temperature is initially minimum
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Fig.8 Temperature profiles with increasing A4
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Fig.10 Temperature profiles with increasing Pr
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Fig.11 Temperature profiles with increasing Ec
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within the channel centreline region, but increases
gradually with time as the flow develops until steady
state is achieved. Figure 8 depicts the effect of pressu-
re gradient parameter A4 on the temperature profile.
The increase in A4 raises the fluid temperature near
the lower plate region and reduces the temperature
near the moving upper plate region. In Fig.9 a genera-
lly decrease in the temperature across the flow is obse-
rved as S increases. This may be attributed to the

fact that the fluid viscosity decreases leading to a de-
clination in the internal heat generation due to energy
dissipation. Figures 10 and 11 show the effects of the
Prandtl number, Pr and the Eckert number, Ec on
the temperature. These figures show that as each of
these parameters is increasing, the temperature profi-
les increases uniformly across the flow. This is expe-
cted, since Ec and Pr increase, the internal heat ge-
neration increases due to a combined effect of viscous
heating and decrease in thermal diffusivity.

o b —n=0,4=01 i Y
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Fig.12 Variation of skin friction profiles with increasing A4

and S

007
006 ..
0.5 P
Zomf
0.03

0.02

Fig.13 Variation of Nusselt number with increasing 4 and S

3.3 Skin friction and nusselt number with parameter

variation

As the fluid viscosity decreases (i.e., £ increa-
ses), the skin friction increases at the lower plate and
decreases at the moving upper plate (see Fig.12). An
increase in the pressure parameter A also causes a
further increase in the skin friction for the lower plate
while the skin friction for the upper plate decreases.

This is due to the fact that the fluid is lighter with high
velocity gradient at the lower fixed plate and low ve-
locity gradient at the moving upper plate. Figure 13 il-
lustrates the effect of parameter 4 and S on the

Nusselt number. The heat transfer rate at both lower
and upper plates decreases with a decrease in the fluid
viscosity. However, as the pressure gradient increases,
an increase in the heat transfer rate at the lower plate
is observed while the Nusselt number at the moving
upper plate decreases. Figure 14 shows that the
Nusselt number increases with increasing values of
Ec and Pr. This may be attributed to a rise in the
temperature gradient at both upper and lower plates
due to viscous heating.
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Fig.14 Variation of Nusselt number with increasing Pr and
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Fig.15 Variation of entropy generation rate with increasing
time

3.4 Entropy generation rate with parameter variation
The entropy production near the fixed lower plate
and the moving upper plate suddenly increases and
gradually decreases in time until the steady state is ac-
hieved as shown in Fig.15. It is noteworthy that the
channel centreline region (77 =0.5) is not affected by

the entropy production at the flow development state.
When the flow is hydrodynamically and thermally de-
veloped into a steady state, a decrease in entropy ge-
neration across the channel is noticed with maximum
entropy production at the fixed lower plate and mini-
mum at the moving upper plate as illustrated in



Figs.16-18. However, the entropy production declines
as the fluid viscosity decreases (i.e., [ increases).

Figure 17 shows that the entropy generation rate in-
creases with an increase in the value of parameter

group Br2~' due to viscous dissipation effect. In

Fig.18, the entropy generation rate near fixed lower
plate increases while it decreases near the moving
upper plate as the pressure gradient increases. Intere-
stingly, the entropy generation rate along the channel
centreline region is not affected with increasing para-
meter value of 4.
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Figl7 Variation of entropy generation rate with increasing
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Fig.18 Variation of entropy generation rate with increasing A4

3.5 Bejan number with parameter variation
The Bejan number suddenly increases and then
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gradually decreases near both the lower and upper
plate region as time increases until the steady state
flow condition is achieved as illustrated in Fig.19.
This implies that the sudden dominant effect of heat
transfer irreversibility diminished in time and the do-
minant effect of fluid friction gradually takes over
until the flow becomes steady. Meanwhile, it is intere-
sting to note that the fluid friction irreversibility do-
minate along the channel centerline region. For hydro-
dynamically and thermally developed flow at steady
state, the dominant effects of heat transfer irreversibi-
lity is observed near both the fixed lower plate and the
moving upper plate region while the fluid friction irre-
versibility dominate the entropy production along the
channel centreline region as shown in Figs.20-22.
Moreover, the Bejan number decreases near the lower
plate and increases near the upper plate as the parame-
ter value of A4 increases (see Fig.20). This implies
that the dominant effect of heat transfer irreversibility
decreases at lower plate and increases at the upper
plate as the pressure gradient parameter increases.
Figure 21 shows that the dominant effect of irreversi-
bility due to heat transfer is enhanced near both lower
and upper plate regions as the parameter group

1. . . . .
Br) increases. A decrease in fluid viscosity enhan-

ces the dominant effects of entropy generation due to
viscous dissipation at both plates as shown in Fig.21.
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Fig.20 Variation of Bejan number with increasing 4
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Fig.21 Variation of Bejan number with increasing Br2"'
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Fig.22 Variation of Bejan number with increasing /3

4. Conclusions

The inherent irreversibility in an unsteady varia-
ble viscosity Couette flow has been numerically
investigated. The governing equations are solved
using a semi-discretization finite difference method

coupled with Runge-Kutta-Fehlberg integration schem.

The results obtained can be summarized as follows:
(1) For a given set of parameter values, the velo-
city and temperature increase unsteadily until steady
flow condition is achieved. Futher increase is obse-
rved with increasing values of 4 and /.
(2) Fluid temperature increases with increasing
Pr, Ec and A, butdecreases with increasing f.

(3) The skin friction increases at the fixed lower
plate and decreases at the moving upper plate with S
and 4.

(4) Increase in S causes the decrease in Ns

while increase in Br&2™' leads to the increase in Ns .

The entropy generation rate increases at lower plate
and decreases at upper plate as A increases.

(5) Fluid friction irreversibility dominates the
channel centreline region. The increase in S causes

the increase in Be while the increase in Br2™' cau-

ses the decrease in Be near the lower and upper plate
regions.
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